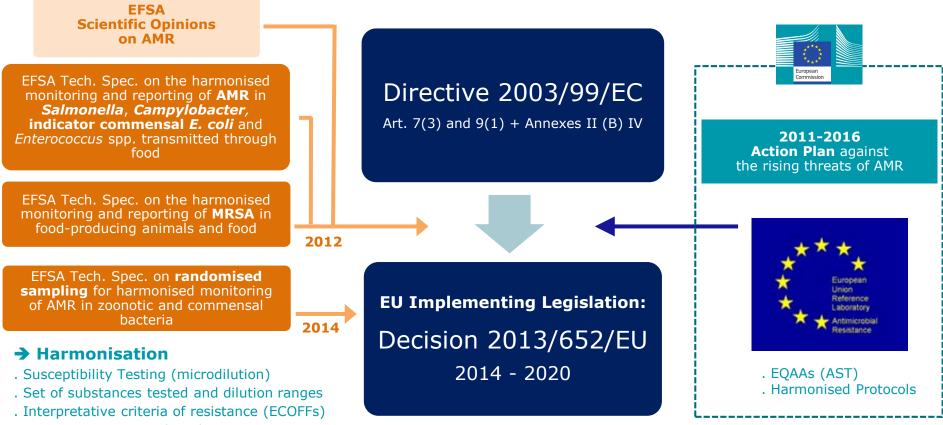
Update of the activities of the EFSA WG on the review of the Technical Specifications for AMR monitoring

on behalf of the EFSA WG


EC One Health Meeting 12 Mars 2019 Brussels, Belgium

The Mandate

Monitoring AMR: Legal and Technical Bases

. Representative sampling designs

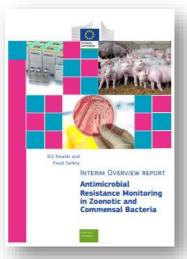
Terms of reference (1)

To update:

- 2012 EFSA Tech. Spec. on harmonised monitoring of AMR in ...
- 2012 EFSA Tech. Spec. on harmonised monitoring of MRSA
- 2014 EFSA Tech. Spec. on randomised sampling for ...
- In Ensuring that the proposed developments
 - Enhance the JIACRA performed by ECDC, EFSA and EMA
 - = Analysis of the relationships between antimicrobial use and resistance

Terms of reference (2)

... Taking into account **new scientific developments**


- Recent trends in AMR
- Relevance for public health
- Recent EFSA Scientific Opinions
 - Joint Scientific Opinion on Outcome Indicators of AMC and AMR
- Technological developments

To address the use of molecular typing methods!
To complement and/or replace the phenotypic methods
To ensure the comparability between the results of technics
To integrate molecular data with past/future phenotypical data

Terms of reference (3): Audits by dir. F of DG Santé

- ... Taking into account **data collection needs**
 - Audits: Interim Overview Report (July 2017)
 - Main 'key implementation barriers'
 - Achieving the minimum required number of samples/isolates
 - Prev_{C. coli} >> Prev_{C. Jejuni} in certain production sectors/MSs
 - ✤ Salmonella spp.
 - Processing samples within 48 hours of collection

The Approach

Specific Questionnaire Survey (SQS)

Views and direct feedback from the MSs

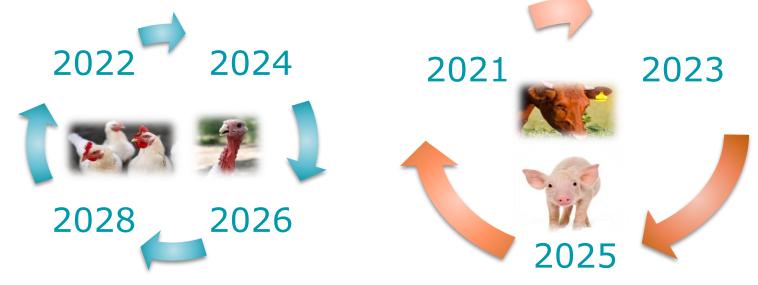
- Isolation of *Campylobacter*
- Monitoring of MRSA
- Monitoring of specific colistin resistance
- Further characterisation of ESBL/AmpC/carbapenemase producers and corresponding genes identification
- First and second panels for susceptibility testing of Salmonella and E. coli

Guiding Principles for the Proposals

- To ensure the continuity of the phenotypic monitoring
- To ensure comparability with historical data

but also ...

- To account for recent scientific developments
- To account for technological developments


Phenotypic monitoring

FREQUENCY OF SAMPLING

Sampling on a yearly basis is a preferable option. Sampling on a biennial basis is acceptable.

Bacteria, Animal populations and Food targeted

Focusing on healthy animal populations domestically produced to which the consumer is most likely exposed through food derived thereof

Animal populations/ Derived Meat	Salmonella spp. (at the serovar level)	C. jejuni/ C. coli	Indicator commensal <i>E. coli</i>	ESBL/AmpC/CP- producing <i>E. coli</i>	CP- producing <i>E. coli</i>	E. faecalis/ E. faecium
Animals						
Broilers	M: NCP, CSS	M: CSS	M: CSS	M: CSS	M/V ¹ : CSS	V
Laying hens	M: NCP	-	-	-	-	-
Fattening turkeys	M: NCP, CSS	M: CSS	M: CSS	M: CSS	M/V ¹ : CSS	V
Bovines, < 1 y. old	M: CSS	M: CSS	M: CSS	M: CSS	M/V ¹ : CSS	V
Fattening pigs	M: CSS	M: CSS	M: CSS	M: CSS	M/V ¹ : CSS	V
Meat						
Broiler meat	-	-	V: R	M: R	M/V ¹ : R	-
Turkey meat (!)	-	-	V: R	M: R	M/V ¹ : R	-
Pig meat	-	-	V: R	M: R	M/V ¹ : R	-
Bovine meat	-	-	V: R	M: R	M/V ¹ : R	-

CSS: caecal samples from healthy animals at slaughter; **M**: mandatory monitoring; **NCP**: *Salmonella* national control plans; **PHC**: surveillance of process hygiene criteria; **R**: at Retail; **V**: voluntary monitoring. 1: Mandatory on 4 -year rotational basis, voluntary in intervening years.

Focus on Sampling Design

REVISION OF SAMPLING STRATEGIES: KEY POINTS

Active monitoring in healthy animals and meat

- Representative random sampling plans
- Food-producing animal populations domestically produced
- Stratified sampling with proportional allocation
- Even sampling over the year

Revision of the definitions of epidemiological units

Number of isolates/samples to be tested

Number of isolates should allow, with a predetermined accuracy:

- The assessment of the levels of resistance, AND
- The detection of changes in these levels over time (trends)

Number of samples should also account for the prevalence of:

- Salmonella
- Campylobacter

Minimum Sample Sizes re-assessed

◦ According to objectives ⇔ Compromise

SIMULATIONS

- Context: Action Plans implemented by the EU MSs
- ... To be able to effectively detect a decrease in resistance ...
- ... Biennial Monitoring:at least 3 data points over the validity period of the Decision

Trend as percentage	Sample Size	Percentage Accurate 2021	Average Accuracy 2021	Percentage Accurate 2023	Average Accuracy 2023	Percentage Accurate 2025	Average Accuracy 2025	Power Trend 2019-23	Power Trend 2019-2!
95% ∖ 9 0%		At (2021, 2	023, 2025) est	imation of 93.68°	%, 92.03%, 90%	% with accuracy 0.	.0454, 0.0475, 0	.05 respectively	,
	300	100	0.028	100	0.031		0.034	31.8	75.5
	250	100	0.030	100	0.034	100	0.037	27.9	71.7
	200	99.5	0.034	99.6	0.037		0.041	24.3	64.3
	²⁰⁰ 170	97.1	0.037	92.2	0.041		0.041	22.2	55.5
					0.041		0.045	21.6	
	150		0.039	76.3		65.2			
	100	33.7	0.049	20.1	0.054	13.2	0.058	18.6	45.2
90% ⊻ 80%		At (2021, 20	23, 2025) esti	mation of 87.29%	, 83.98%, 80%	with accuracy 0.0	534, 0.0575, 0.0	0625 respective	ly
	300	100	0.038	100	0.041	100	0.045	64.3	97.8
	250	100	0.041	100	0.045	100	0.049	59.2	95.9
	200	98.8	0.046	99.3	0.051	99.8	0.055	53.0	93.8
	170	80.1	0.050	77.6	0.054	81.8	0.060	47.7	91.4
	150	52.0	0.053	40.1	0.058	37.6	0.063	47.0	90.0
	100	4.9	0.065	2.1	0.071	0.6	0.077	38.6	83.0
80% ⊻ 70%		At (2021, 20	023, 2025) esti	mation of 76.97%	%, 73.63%, 70%	with accuracy 0.0	0663, 0.0705, 0.	075 respectivel	y
	300	100.0	0.047	100.0	0.050	100.0	0.051	47.9	89.0
	250	100.0	0.052	100.0	0.054	100.0	0.056	44.4	84.2
	200	100.0	0.058	100.0	0.060	100.0	0.063	38.3	81.8
	170	89.7	0.062	97.3	0.065	100.0	0.068	35.1	80.5
	150	43.9	0.067	59.6	0.070	82.8	0.072	33.0	76.4
	100	0.5	0.081	0.2	0.085	0.3	0.088	27.5	62.5
					• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • •
70% ⊻ 60%		At (2021, 20	23, 2025) esti	mation of 66.82%	o, 63.48%, 60%	with accuracy 0.0	790, 0.0832, 0.0	0875 respective	ly
	300	100	0.053	100	0.054	100	0.055	38.7	82.5
		100	0.058	100	0.059	100	0.060	34.8	78.0
	250								72.1
	250 200	100	0.064	100	0.066	100	0.067	29.8	/2.1
			0.064 0.070	100 100	0.066 0.071	100 100	0.067	30.8	68.7
	200 170	100 100	0.070	100	0.071	100		30.8	68.7
	200 170 150	100 100 99.1	0.070 0.074	100 100	0.071 0.076	100 100	0.073	30.8 25.3	68.7 66.4
	200 170	100 100 99.1 0.5	0.070 0.074 0.09	100 100 0.8	0.071 0.076 0.092	100 100 1.0	0.073 0.077 0.094	30.8 25.3 24.4	68.7 66.4 56.1
60% ⊻ 50%	200 170 150	100 100 99.1 0.5	0.070 0.074 0.09	100 100 0.8	0.071 0.076 0.092	100 100	0.073 0.077 0.094	30.8 25.3 24.4	68.7 66.4 56.1
60% ⊻ 50%	200 170 150	100 100 99.1 0.5	0.070 0.074 0.09	100 100 0.8	0.071 0.076 0.092	100 100 1.0	0.073 0.077 0.094	30.8 25.3 24.4	68.7 66.4 56.1
60% ⊻ 50%	200 170 150 100 300	100 100 99.1 0.5 At (2021, 2	0.070 0.074 0.09 023, 2025) est	100 100 0.8 imation of 56.72°	0.071 0.076 0.092 %, 53.37%, 50 %	100 100 1.0 % with accuracy 0.	0.073 0.077 0.094 0916, 0.0958, 0	30.8 25.3 24.4 .10 respectively	68.7 66.4 56.1 79.6
60% ⊻ 5 0%	200 170 150 100 300 250	100 100 99.1 0.5 At (2021, 2 100.0 100.0	0.070 0.074 0.09 023, 2025) est 0.056 0.061	100 100 0.8 imation of 56.72° 100.0 100.0	0.071 0.076 0.092 %, 53.37%, 50% 0.056 0.061	100 100 1.0 % with accuracy 0. 100.0 100.0	0.073 0.077 0.094 0916, 0.0958, 0 0.056 0.061	30.8 25.3 24.4 .10 respectively 35.7 32.7	68.7 66.4 56.1 79.6 76.6
60% ⊻ 50%	200 170 150 100 300 250 200	100 100 99.1 0.5 At (2021, 2 100.0 100.0 100.0	0.070 0.074 0.09 023, 2025) est 0.056 0.061 0.068	100 100 0.8 imation of 56.72° 100.0 100.0 100.0	0.071 0.076 0.092 %, 53.37%, 50% 0.056 0.061 0.068	100 100 1.0 % with accuracy 0. 100.0 100.0 100.0	0.073 0.077 0.094 0916, 0.0958, 0 0.056 0.061 0.068	30.8 25.3 24.4 .10 respectively 35.7 32.7 30.8	68.7 66.4 56.1 79.6 76.6 70.4
60% ⊻ 50%	200 170 150 100 300 250	100 100 99.1 0.5 At (2021, 2 100.0 100.0	0.070 0.074 0.09 023, 2025) est 0.056 0.061	100 100 0.8 imation of 56.72° 100.0 100.0	0.071 0.076 0.092 %, 53.37%, 50% 0.056 0.061	100 100 1.0 % with accuracy 0. 100.0 100.0	0.073 0.077 0.094 0916, 0.0958, 0 0.056 0.061	30.8 25.3 24.4 .10 respectively 35.7 32.7	68.7 66.4 56.1 79.6 76.6

RANDOMISED SAMPLING STRATEGIES

Stratified sampling with proportional allocation

Two-stage stratified sampling

1st stage (strata)

Proportional allocation

2nd stage (strata)

Sample

Over-time sample collection

Caeca at slaughter

Slaughterhouses (60% of national throughput)

Sample size proportionate to the SH throughput

Slaughter batches

caecal sample(s) from distinct batches

Even sampling every quarter of the year Meat samples at retail

NUTS 3 area

Sample size proportionate to the area population

Retailers

1 meat sample per retailer

Even sampling every quarter of the year

Focus on Salmonella/E. coli

Slight Revision Harmonised Panels

Inclusion of Amikacin in panel 1

- Commonly used aminoglycosides in hospitals for treatment of Gram –
- High use in some countries with high-level resistance in Gram (IT, EL)
- Presumptive detection of 16S rRNA methyltransferases
- Confer resistance to all aminoglycosides (except streptomycin)
- Increasingly associated with CP, AmpC, ESBIs and FQ res. in Gram enterobacteriacae, especially outside Europe
- 2 main objectives
 - to include another aminoglycosides
 - to detect pan-aminoglycosides resistance
- ... Reduction of some dilution ranges (right hand side)
- No planned alteration of the harmonised panel 2
- No planned alteration of the specific monitoring of ESBL-/AmpCproducing *E. coli*

Focus on *Campylobacter*

Recent Trends in AMR in Campylobacter

- Prev_{C. coli} >> Prev_{C. jejuni}
- New mechanisms of AMR emerged/demonstrated erm(B), 'super' efflux pumps, GEN-R genes, cfr(C)
 - > Necessary to optimise methods aimed at their early detection
 - Expansion of concentration ranges for ERY and CIP
 - Susceptibility testing to phenicols
 - WGS of isolates with MDR/GEN-R: genes involved, resistant clones, human strains
- Monitor AMR in C. coli: erm(B), AMEs, cfr(C) genes
 - Important *per se*
 - Reservoir of resistant genes
 - Samples already tested for *C. jejuni*: limited additional cost

Slight alterations of the Harmonised Panel

- **Removal of Nalidixic acid** (resistance to CIP parallels NAL resistance)
- Removal of lower concentration Gentamicin
- Removal of Streptomycin (not tested in humans, not used for human campylobacterioris, was not mandatory for animal isolates)
- Inclusion of a carbapenem
- □ Increasing the **upper range of the ERY** concentrations (detection of *erm*(B))
- Increasing the concentration range of CIP
- □ Inclusion of a **phenicol molecule** (6 dilutions)

1 harmonised plate

Better detection of isolates with modifications of the sequence of CmeABC pump and its regulating region

Preliminary Draft Method

- Need for a harmonized method for isolation and identification of *C. jejuni* (or *C. coli*) within the framework of the AMR monitoring.
- Questionnaire: 78% of laboratories used the European standard EN ISO 10272-1 for any purpose and 70.4% are accredited for this standard

To propose a protocole derived from the EN ISO 10272-1 "Horizontal method for detection and enumeration of *Campylobacter* spp. " (detection procedure C)

Complementary Baseline Surveys

COMPLEMENTARY BASELINE SURVEYS

- Complementary baseline surveys to the routine monitoring, in particlar:
 - MRSA in pigs -> Tech. Spec. reviewed in the report
 - AMR in bacteria from sea food (liaison with the ASK consortium)
 - AMR in bacteria from the environment
- Baseline surveys to be performed over the validity period of the next legislation
- Still time to plan and propose detailed protocoles

Complementary Molecular Monitoring

COMPLEMENTARY MOLECULAR MONITORING

Added value of WGS is indisputable

State of play ... situation of implementation varies markedly between the MSs ...

Too premature to propose a switch NOW for technical and practical reasons

COMPLEMENTARY MOLECULAR MONITORING !

Proposed approach to integration of WGS ...

- Incremental approach over 2021-2026
- Voluntary use of WGS:
 - □ for *Specific Monitoring* of ESBL/AmpC/CP-producing *E. coli* (*mandatory*!)
 - □ For *Confirmatory Testing* using WGS

Harmonised protocol and quality criteria are needed!

- Several bioninformatic tools/pipelines/sequencing platforms
- Various reference AMR gene databases
- ... can hamper comparative accuracy of WGS results.
- -> EURL-AR to provide Harmonised Protocole/Quality Criteria and Training on DNA extraction, library preparation, sequencing (already started) in 2019-2020

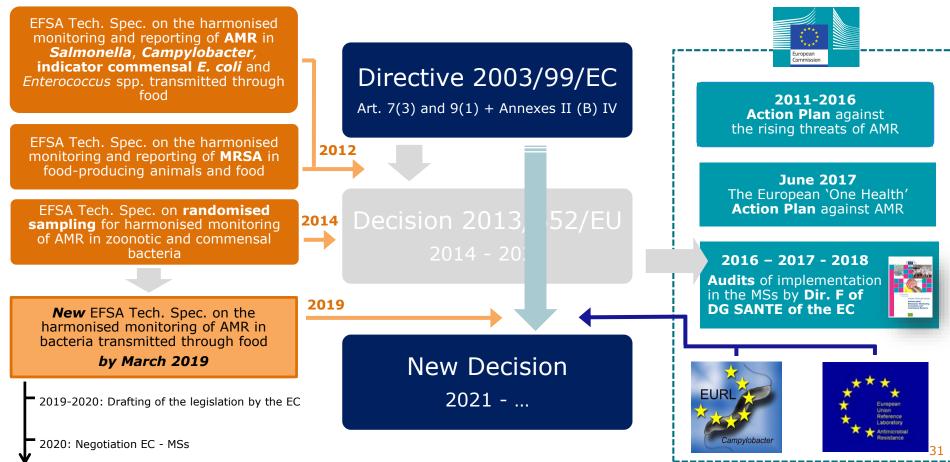
COMPLEMENTARY MOLECULAR MONITORING

Reporting of AMR genes to EFSA

- AMR genes (ESBL ...) according to AMR gene catalogue (EURL-AR)
- Current EFSA Data Model enables collecting data on genes

Further developments in the future

- ... To switch: EU-wide WGS data collection, leading to h. AMR mon.
- Provided a high concordance between WGS based genotyping for AMR and phenotypic antimicrobial susceptibility ... and technology fully mature and implemented ... and MSs ready
- To be re-assessed regularly in the course of 2021-2026


Next Steps

- Preliminary draft Scientific Report under Consultation of the EFSA Network in March 2019
- Constant liaison with EURL-AR
- Constant liaison with EURL-Campylobacter
- Liaison with ECDC

Outcome

ACKNOWLEDGMENTS

The EFSA WG

• I. Kempf, C. Teale, K. Veldman, A. Battisti, M. Aerts, B-A. Tenhagen, D. Wasyl, R. Hendriksen

EURL-AR: R. Hendriksen, V. Bortolaia

- EURL-Campylobacter: H. Skarin
- The ASK consortium
- All laboratories involved!

Thank you for your attention!