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1. Introduction 

The Health Technology Assessment Coordination Group (HTA CG) Methodological 

Guideline for Quantitative Evidence Synthesis: Direct and Indirect Comparisons 

describes the currently available methods for direct and indirect comparisons, their 

underlying assumptions, strengths, and weaknesses, and specifies the appropriateness 

of methods to the data situation. This Practical Guideline is intended for assessor/co-

assessors and gives additional, more- detailed advice for use in practice. As indicated in 

the criteria for selection of assessors and co- assessors, it is expected that statistical 

expertise will be available in the assessment team. 

1.1. Definitions 

The terms used in this document might be used with a slightly different meaning in other 

contexts. Below, we define the terms as they are used in this guideline. 

Direct comparison: comparison of treatments either by means of a single comparative 

study or a pairwise meta-analysis or other method for synthesis of comparative studies 

without indirect comparisons. 

Effectiveness: describes how well a treatment works in patients; includes efficacy and 

safety. 

Exchangeability: if patients from one treatment group were substituted into another, the 

same treatment effect is expected; contains the components similarity, homogeneity, 

and, in the case of indirect comparisons, consistency. 

Health technology: Health technologies encompass medicinal products, medical 

devices, in vitro diagnostic medical devices and medical procedures, as well as 

measures for disease prevention, diagnosis or treatment. 

Indirect comparison: a broad term to refer to any evidence synthesis in which treatment 

groups from different studies are compared. This includes evidence synthesis in which 

inference about the relative effectiveness of two treatments is made without the use of 

trials comparing both treatments head-to-head; indirect comparisons are also made 

when more general methods of network meta-analysis are applied, even when head-to-

head studies for the comparison of interest are available. 

Meta-analysis: the synthesis of two or more comparative studies with a common 

intervention and comparator, to produce a pooled estimate of the relative treatment 

effect. Sometimes referred to as pairwise meta-analysis to distinguish from network 

meta-analysis. 

Network meta-analysis (NMA): generalisation of meta-analysis to evidence networks 

consisting of more than two treatments, which can include both direct evidence and 

indirect evidence. NMA incorporates other terms used in the literature to describe the 

synthesis of both direct and indirect evidence, such as mixed treatment comparisons and 

indirect treatment comparisons. 

Population-adjusted method for indirect comparisons: method for indirect 

comparisons in which a mix of individual patient data (IPD) from one or more trials, and 

aggregate data from other trials, are used to adjust for relevant population characteristics 

that differ between studies in order to estimate a treatment effect. 
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1.2. Relevant articles in Regulation (EU) 2021/2282 

Articles from Regulation (EU) 2021/2282 directly relevant to the content of this practical 

guideline are: 

● Article 9: Joint Clinical Assessment (JCA) reports and the dossier of the Health 

Technology Developer (HTD); 

● Article 18: Preparation of the joint scientific consultations outcome document. 
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2. Scope and objective of the guideline 

This Practical Guideline describes how to deal in practice with evidence syntheses in 

JCA reports and provides guidance for assessors, co-assessors and other members of 

the assessment team (henceforth referred to collectively as assessors) dealing with 

submitted results of direct and indirect treatment comparisons from Health Technology 

Developers (HTDs). Each Section of this Guideline contains a list of requirements that 

should be reported in the JCA reports in cases in which an evidence synthesis in the 

form of a direct or indirect treatment comparison was submitted. This guideline does not 

specify when and if a particular method for evidence synthesis should be conducted 

within JCA as this is primarily determined by the PICO questions and available evidence 

base. It is also not the objective of this Guideline to make explicit recommendations about 

whether a submitted direct and indirect treatment comparison should be accepted by the 

Member States (MSs). Each MS should be enabled to decide on the validity of direct or 

indirect treatment comparisons itself based on the JCA report, which should include all 

methodological details needed to do so. Of note, the analysis and reporting 

recommendations for assessors are made with the implicit assumption that appropriate 

analyses and information is provided by the HTD. As such, this guideline also has 

practical implications for the submission dossier and assessment report which should be 

taken into account in the preparation of these documents and associated guidance.  

In the HTA CG Methodological Guideline for Quantitative Evidence Synthesis: Direct and 

Indirect Comparisons, the methods for evidence syntheses are summarised, and general 

guidance is provided on which method(s) are appropriate in a particular situation. This 

Practical Guideline gives more practical advice for assessors within the framework 

described in the Methodological Guideline. Often, when using evidence synthesis 

methodology, some assumptions will be made, which might affect the certainty of results. 

The aim of this Guideline is to enable HTA assessors and developers to identify potential 

issues and address bias and uncertainty as much as possible. However, we recognise 

that there is an element of subjectivity in the assessment of many assumptions and that 

decisions might vary between MSs. To answer certain PICO questions, methods of 

evidence synthesis will sometimes need to be applied despite uncertainty or doubt as to 

their validity. In these scenarios, the HTD must always submit evidence to inform the 

comparison of interest, together with sufficient supporting information to allow the JCA 

assessors to determine the extent to which the corresponding results produce 

meaningful estimates of relative treatment effectiveness, and to evaluate the extent of 

bias and uncertainty. In particular, the fact that no more reliable method is available to 

estimate a treatment effect of interest (e.g., due to limitations of the evidence base or 

lack of available data) does not in itself have any bearing on the certainty of results.     
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3. General considerations 

JCAs can use results from multiple studies, which are combined through evidence 

synthesis. A rigorous systematic review of the relevant literature with explicit inclusion 

and exclusion criteria is a prerequisite before conducting any evidence synthesis. 

Evidence synthesis can allow researchers to obtain a more- robust estimate of the 

treatment effect and, in the case of indirect treatment comparisons (ITCs), provide 

relative treatment effects for interventions that have not been studied in the same trial. 

However, it is important that the selection of trials and synthesis methods is made with 

caution and is rigorously examined by assessors in collaboration with healthcare 

professionals and statisticians. Dependent on the chosen method for evidence 

synthesis, a statistical analysis plan (SAP) is required. If the terminology “a priori” or 

“prespecification” is used, this means that the corresponding choices are specified (e.g., 

in a SAP) before the evidence synthesis is performed. Importantly, according to the 

Regulation (EU) 2021/2282, assessors must ensure that estimates are obtained by 

pooling relative treatment effects from each trial (i.e., compared with an appropriate 

comparator) and no inference is based on pooling the absolute effect of a particular 

treatment in a trial (i.e., regarding the mean outcome in one group only). The rest of this 

Section details how to assess whether trials are sufficiently similar to be combined, the 

main modelling choices to consider and scrutinise, and the inferences that can or cannot 

be made based on the methods and data used. 

3.1. Selection of studies for evidence synthesis 

For direct and indirect comparisons by means of evidence syntheses, the aspects of the 

population, intervention, comparator, outcome (PICO) framework and the study design 

of the included studies have to be examined. Depending on the research goal, the patient 

population of interest, the intervention, and the control are prespecified and studies have 

accordingly been searched and selected. Only studies relevant for the given research 

question according to the PICO scheme should be included in the evidence synthesis;  

in the case of indirect comparisons this includes studies that do not formally match the 

PICO as they do not directly compare the intervention with a comparator of interest, but 

nonetheless contribute indirect evidence to the comparison. Here, we assume that all 

studies included in a considered evidence synthesis are relevant for the research 

question and the corresponding PICO. 

However, patient characteristics, such as distributions of age, sex, disease duration, 

measurement, and operationalisation of the outcome of interest, and features of the 

experimental design still need to be assessed in detail. Additional aspects, such as year 

and region of study conduct, forms of treatment application or the relevant intercurrent 

events and strategies for handling them in line with the estimands framework for clinical 

trials as outlined in [7] also have to be assessed if they potentially represent possible 

effect modifiers (see following Sections). 

Evidence networks for indirect comparisons determine which methods are potentially 

applicable and should be constructed systematically from the PICO question(s) to avoid 

bias. The resulting networks may differ depending on whether multiple comparators in 

the same population are considered separately (potentially resulting in different networks 

for each comparator) or simultaneously (resulting in a single network for all comparators); 

depending on the network structure, this choice can potentially also have an impact on 

the relative effect estimates. For a given comparison, the inclusion of additional indirect 

evidence arising from a larger network can positively or negatively impact certainty of 
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evidence, depending on how the exchangeability assumption is affected. The 

simultaneous comparison of multiple treatments within a single per-population network, 

which ensures consistency of analysis methods across comparisons, may also be 

necessary to address individual MS evidence needs. To ensure a comprehensive 

assessment, the JCA submission should therefore generally include both (i) an evidence 

synthesis in the ‘population-level’ network, including all comparators identified by the 

assessment scope than form a connected network with the intervention, and (ii) evidence 

synthesis in each individual ‘comparator-level’ network, if these differ from the 

population-level network. Further guidance on how multiple comparators should be 

handled in the context of JCA will be developed by the MPG subgroup. 

Once the treatments to be compared in the analysis have been determined, the evidence 

network should in the first instance include all studies in the relevant population that 

compare two or more treatments of interest; in other words, studies comparing the 

intervention to one or more relevant comparators, or studies comparing two or more 

relevant comparators with one another. As this may result in a disconnected evidence 

network, it may be necessary to include additional studies to connect the intervention 

with the comparator(s) of interest. To avoid the possibility of bias arising from the 

selection of studies used to connect the network, these additional studies should be 

identified via a systematic search of the literature, and all possible connecting studies 

should be considered for inclusion in the network. Once connections have been 

established via a path or paths of a given length, it is not generally necessary to search 

for longer connecting paths. This procedure is described in detail in Section 1.6 of [14] 

and in Section 3 of [18]. It should be noted that following the assessment of 

exchangeability, certain studies may subsequently be excluded from the analysis set. 

 

Requirements for reporting 

● Assessment of the extent to which the studies included in the evidence synthesis 

reflect the established PICO based on all information described above. 

● In the case of indirect comparisons, assessment of the approach used to 

construct the evidence network, highlighting any risk of bias arising from the 

inclusion or exclusion of studies and/or comparators in the network. 

 

 

 

3.2. Assessment of exchangeability 

The fundamental assumption of exchangeability, which is required for (network) meta-

analysis, is operationalised by assessing the properties of similarity, homogeneity, and, 

in the case of indirect comparisons, consistency. We emphasise here that these three 

properties are not, strictly speaking, distinct assumptions, because a failure of 

homogeneity or consistency is often the result of an imbalance in effect modifiers 

between studies (i.e., a violation of similarity). However, in many cases, not all effect 

modifiers will be known or reported across all studies and, therefore, assessment of 

homogeneity and consistency (if relevant) could detect an imbalance in unknown effect 

modifiers that would not be identified through assessment of similarity alone. In situations 

in which few studies are available for one or more pairwise comparisons, statistical tests 

might be underpowered to detect violations of homogeneity or consistency and, 

therefore, the assessment of exchangeability will depend entirely on the similarity of the 
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included studies in terms of observed characteristics. Thus, assessors should be aware 

that such assessments cannot explore the potential impact of unknown effect modifiers.  

3.2.1. Assessment of similarity 

The similarity assumption states that all studies considered are comparable with respect 

to possible effect modifiers across all interventions. This is tested by means of the PICO 

scheme (see above) and the estimand framework used in the studies [7]. The PICO 

scheme chosen, the resulting inclusion and exclusion criteria and the chosen estimand 

should apply to all studies included in the evidence synthesis. For similarity, the following 

aspects should always be evaluated to identify possible effect modifiers [9]: 

1. Study and patient characteristics (including duration of follow-up): a list of 

potential effect modifiers should be drawn up a priori (i.e., before the evidence 

synthesis is performed). The basis for this can be not only clinical considerations, 

but also findings from other studies on the therapeutic indication. The following 

characteristics are frequently relevant: age, sex, disease severity, region, and 

study duration. Only those factors that are identified as potential effect modifiers 

should be included in this list. Effect modifiers should be identified through a 

literature search, input from healthcare professionals and other methods (as 

necessary); 

2. Characteristics of the intervention and the comparator: typical examples are 

given by dosage, application, and concomitant treatments. 

The evaluation of similarity should also consider methodological factors that should not 

differ substantially between studies. Consideration of the observed values of relevant 

outcomes has also been shown to be helpful in evaluating similarity: 

3. Characteristics of outcomes (e.g., definitions of outcomes): an a priori definition 

of what is considered sufficiently similar for each characteristic will usually be 

difficult. It will often also depend on what is present in the studies included; 

4. Observed values of relevant outcomes at baseline: an examination of the 

observed values of relevant outcomes at baseline can provide information on the 

similarity of the individual studies, especially the study arms in which the 

comparator is used. However, to determine similarity, it is not a standard 

prerequisite that the observed values have to be identical, because the distribution 

of prognostic variables might well differ between studies. Nevertheless, extreme 

differences that even lead to floor or ceiling effects regarding the range of possible 

outcome values should not exist. If the corresponding information is not available 

at baseline, the values recorded during the course of the study or at the time of 

analysis can be used instead. In this case, it has to be taken into account that 

differences between the studies may be due treatment effects. 

It is important to note the following issues regarding effect modification: 

● For a given treatment effect measure, not all prognostic variables are effect 

modifiers, and therefore an imbalance in prognostic variables between studies 

does not automatically indicate dissimilarity; 

● Effect modification is a property of the relative effect between a pair of treatments. 

As such, it is possible for a variable to modify the relative treatment effect of A 

versus B, but not the effect of treatment A versus treatment C. This could occur, 

for example, when A is placebo, B is a therapy targeting a particular genetic 
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mutation [e.g., an epidermal growth factor receptor (EGFR) tyrosine kinase 

inhibitor (TKI)], and C is another active treatment that does not specifically target 

this mutation (e.g., chemotherapy): in this case, the presence of this genetic 

mutation in an individual could be an effect modifier for A versus B but not A 

versus C. More generally, a variable could be an effect modifier for both A versus 

B and A versus C, but the magnitude and even the direction of this effect could 

differ between comparisons (e.g., if patients responded less well to 

chemotherapy in the presence of this genetic mutation). In an NMA, the possibility 

of effect modification must therefore be investigated for each pairwise contrast in 

the network, and the similarity assumption requires that any variables that are 

effect modifiers for one or more pairwise contrasts in the network be similarly 

distributed across all studies in the network; 

● The status of a variable as an effect modifier, and the magnitude and direction of 

this effect, is specific to the scale on which the treatment effect is measured [6]. 

For example, in a hypothetical placebo-controlled study of an influenza vaccine, 

female participants experience a reduction in risk from 10% to 5% and male 

participants from 6% to 3%, with vaccination compared with placebo. On the 

relative risk scale, sex is not an effect modifier [relative risk (RR)= 0.5 in both 

groups], but it is on the risk-difference scale (–5% for females versus –3% for 

males). 

It is essential that the process used to identify relevant effect modifiers is comprehensive 

and transparently reported. This process should include a comprehensive review of the 

literature and consultation of healthcare professionals with knowledge of the disease 

area. The set of all identified potentially relevant effect modifiers should be reported in 

the submission dossier. However, assessors should note that it is likely that some 

potential effect modifiers will remain unknown and/or unmeasured. 

The assessment of similarity should include a quantitative analysis of the impact of all 

observed patient covariates. However, statistical tests for effect modification using 

subgroup data from clinical trials (e.g., testing for the significance of interaction terms) 

will often be underpowered and suffer from issues with multiplicity. Given that the risk of 

both type 1 and type 2 errors is typically high, statistical tests for effect modification 

should not be used in isolation to justify the selection of covariates as potential effect 

modifiers [22,25]. The assessor should also obtain opinions from healthcare 

professionals to assess whether there are missing effect modifiers. 

After assessment of all these aspects, a decision has to be made about whether all 

studies considered in the evidence synthesis are comparable with respect to possible 

effect modifiers across all interventions (sufficient similarity) or not (insufficient similarity). 

If data on a relevant effect modifier is unavailable from one or more studies, then such a 

comparison cannot be made, and this should be clearly reported as a limitation in the 

JCA report. It may be possible to consider proxies for the missing effect modifier in the 

assessment of similarity, however, the HTD should provide sufficient evidence to 

demonstrate the validity of any such proxy, and the assessor should highlight any 

uncertainties that arise from this approach. 

Requirements for reporting 

● Description of methodology used to identify potential effect modifiers and whether 

the methodology is suitable to capture all possible effect modifiers; 
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● Assessment of the list of all potential effect modifiers identified and whether this 

list is likely to be complete; where possible, estimates of the magnitude and 

direction of the interaction effects; 

● Description of any likely missing effect modifiers and the direction of potential 

bias due to effect modification, if this can be determined; 

● The final conclusion about whether the assumption of sufficient similarity is 

expected to hold or not, with reasoning. 

3.2.2. Assessment of homogeneity 

The homogeneity assumption states that there is no meaningful heterogeneity between 

the effect estimates of the individual studies of each possible direct comparison. Even if 

studies are sufficiently similar, it is still possible that the data show meaningful 

heterogeneity. Heterogeneity can be caused by unknown effect modifiers and also by 

factors initially judged to be sufficiently similar or not judged to be potential effect 

modifiers. To test the homogeneity assumption for a pairwise comparison, at least two 

direct studies must be available for this comparison in principle, although typically at least 

five studies are required for a reliable assessment [11]. If only one study is available for 

each pairwise comparison, the homogeneity assumption cannot be tested. However, this 

does not prevent the performance of an indirect comparison. The heterogeneity between 

the studies has to be assessed to determine whether a pooling of the results is 

meaningful [11]. It is important to compare design features of the included studies, as 

well as to use statistical methods to assess heterogeneity. 

Two widely used statistical approaches to assess heterogeneity are given by the 

statistical test based on the Q statistic (Q-test) [10,61] and the heterogeneity measure I² 

[10,29], which measures the proportion of variance in the meta-analysis that is explained 

by heterogeneity. In the case of individual patient-level data (IPD) meta-analysis, other 

approaches based on suitable regression models may be more appropriate. As a rough 

guide for the interpretation of I², the following overlapping categories were proposed [11]: 

● 0–40%: might not be important; 

● 30–60%: might represent moderate heterogeneity; 

● 50–90%: might represent substantial heterogeneity; 

● 75–100%: considerable heterogeneity. 

However, the importance of observed I² values depends on the magnitude and direction 

of treatment effects and the strength of evidence for heterogeneity (p-value from the Q-

test, uncertainty of the I², or number of studies) [11]. Assessors should also note that in 

cases with few studies and/or small sample sizes, the corresponding estimate of I2 may 

lack precision, which should be taken into account when interpreting the statistic. 

One commonly used objective criterion to decide whether the studies should not be 

pooled is given by the statistical significance of the Q-test (p <0.05). However, the current 

data situation should always be considered when interpreting the results of the Q-test. 

On the one hand, the Q-test suffers from low power, especially in the situation of few 

studies [10], which means that a non-significant Q-test does not necessarily indicate that 

there is no relevant heterogeneity. On the other hand, in the case of a large number of 

studies, the Q-test might be statistically significant although only low heterogeneity is 

shown in the forest plot. In such instances, the I² measure can help to describe the 

amount of heterogeneity. For example, if I² < 50%, it might be useful to decide that there 
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is no substantial heterogeneity even if the Q-test is statistically significant. In any case, 

a graphical inspection of the forest plot is advisable in addition to the use of the Q-test 

and the heterogeneity measure I² for the assessment of heterogeneity [10]. 

After assessing heterogeneity, it must be determined whether there is meaningful 

heterogeneity between the effect estimates of the individual studies of each possible 

direct comparison (insufficient homogeneity) or not (sufficient homogeneity). If it can be 

decided that there is sufficient homogeneity and it is meaningful to pool the included 

studies, it has to be determined whether a fixed-effect or a random-effects model should 

be used for the evidence synthesis. In the case of indirect comparisons, the assessment 

results of the consistency assumption also have to be considered (see below). A fixed- 

effect model assumes a common treatment effect in all studies, which may be 

implausible in many situations and requires rigorous justification from the HTD. 

Justification requires evidence of a high degree of similarity of the included studies in 

terms of effect-modifiers together with minimal statistical, clinical and methodological 

heterogeneity. Therefore, the standard approach in many practical settings is to use the 

random- effects model. However, if there is a marked consistency of the PICO and 

design properties of all studies, for instance in the case of evidence syntheses when only 

few studies are available, a fixed- effect model might be appropriate. An example of 

where the fixed-effect model can regularly be assumed to be valid is the situation of two 

studies with identical design. In general, however, the possibility of heterogeneity cannot 

be reasonably excluded thus the appropriate choice will be uncertain. Where such 

uncertainty exists, the results of both fixed- and random-effects models should be 

included in the JCA, provided the estimation of the random-effects model is feasible with 

the available data (see Section 4.1.3). 

Requirements for reporting 

● The complete evaluation of whether the analyses provided to support the 

homogeneity assumption (including the forest plots, the p-values for the 

heterogeneity test, and the I² values) for all pairwise comparisons are sufficient 

to demonstrate that it is likely to hold. 

● The final conclusion of whether the assumption of sufficient homogeneity holds 

or not with reasoning (including sensitivity analyses). 

● The final conclusion of whether it is meaningful to pool the included studies, with 

reasoning. 

● The decision of whether a fixed-effect or random-effects approach is adequate, 

with reasoning. 

3.2.3. Assessment of consistency 

General remarks 

Under the consistency assumption, the same treatment effect is estimated through both 

the direct and indirect pathways for a particular contrast in the network. Inconsistency is 

analogous to heterogeneity, but occurs among trials comparing different contrasts within 

closed loops in the evidence network. Thus, inconsistency is between-trial variation 

comparing different treatment contrasts, and heterogeneity is between-trial variation 

within treatment contrasts. 

The choice of methods to assess consistency depends on the network structure, and not 

all methods are suitable for networks of any complexity. The methods used to test for 
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inconsistency should be clearly identified and justification provided for this choice, with 

reference to the network structure. 

Although any indirect comparison relies on the consistency assumption, it cannot be 

tested in networks without a loop structure. Therefore, the first step is to examine the 

network diagram for loops. It is also important to identify multi-arm trials because these 

represent a loop that is consistent by definition. 

In practice, NMAs often contain too few studies and sparse data to assess inconsistency 

adequately. Failure to detect inconsistency does not imply that the evidence is 

consistent. Statistical detection of inconsistency requires more data than are required to 

establish a treatment effect. Inconsistency can be caused by imbalance in the 

distributions of effect modifiers in the direct and indirect evidence, commonly factors such 

as age, severity, and line of treatment, which might be confounded with each other. 

Therefore, the check for inconsistency should be done alongside the assessment of 

similarity and heterogeneity in the NMA. 

To minimise the risk of drawing incorrect conclusions, more empirical indicators are also 

suggested. Empirical assessment of heterogeneity and the between-trials variation in 

trial baseline can be used to assess the risk of inconsistency. Comparison of events and 

responses in the placebo arms might be useful in this context, although while differences 

between placebo arms might indicate an imbalance in prognostic variables across 

studies, this need not result in inconsistency unless these variables are also effect 

modifiers. 

Bucher method for single loops 

The Bucher method is a two-stage method for testing consistency, in which the first step 

is to synthesise each pair-wise contrast and the second is to test whether the direct and 

indirect evidence are in conflict. The estimate of inconsistency comes from subtracting 

the direct and indirect estimates and referring the null hypothesis of no inconsistency to 

the normal distribution. This test requires that the loop consists of three independent 

sources of data and thus cannot be applied in loops containing multi-arm trials, because 

the effect estimates in multi-arm trials are correlated. 

The Bucher method can also be extended to networks with multiple loops calculating the 

statistic referring to a chi-square distribution. However, repeated use of the Bucher test 

in large complex networks with multiple loops can be problematic and, instead, an 

inconsistency model could be applied for assessing consistency in complex networks. 

Furthermore, the use of the Bucher method to test for consistency is not advisable when 

random-effects models are used to synthesise one or more of the pairwise comparisons 

[14]. 

Inconsistency models: Bayesian NMA 

The principle of the inconsistency model is to assume no consistency, that all contrasts 

in the network are unrelated, and that the relative treatment effects are estimated directly 

from all contrasts (unrelated mean effect). In a consistency model, effects of all included 

treatments are estimated relative to the reference treatment. To test consistency, the 

deviance and deviance information criterion (DIC) statistics of the consistency and 

inconsistency models are compared. Plots of the posterior mean deviance of the 

individual data points in the inconsistency model against the corresponding posterior 
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mean deviance in the consistency model can help identify loops in which inconsistency 

is present [19]. 

Further assessment of inconsistency will be a comparison of the posterior estimates of 

the treatment effect between the consistency and inconsistency models and assessing 

whether credible intervals overlap. 

Node-splitting methods: Bayesian 

The node-splitting method [17] can be applied to any contrast in any network of different 

complexities in which there is both direct and indirect evidence. In this method, the 

information contributing to the estimates of a parameter (a so-called ‘node’) is split into 

evidence that is direct only and indirect, which is based on the remaining evidence in the 

network meta-analysis. The indirect estimates in the node- splitting method use not only 

the indirect evidence of a specific loop, but also the whole evidence base in the network. 

Residual deviance, DIC and the heterogeneity parameter for random-effect models of 

the full NMA compared to model with a split node can be used to assess potential 

inconsistency between the evidence for a particular node. Reduction of these parameters 

in the node-split model can be an indicator of inconsistency. The assumption that a split 

results in equal treatment effects for direct and indirect evidence can be tested in the 

same way as an inferential hypothesis. Therefore, p-values can be calculated to indicate 

that the hypothesis of equal treatment effects for direct and indirect evidence can be 

rejected. Although a smaller p-value would indicate inconsistency, interpretation of these 

p-values is context dependent and no formal framework for the required significance 

level exists. 

Requirements for reporting 

● Methods used to test for inconsistency and justification for this choice with 

reference to the network structure; the report should highlight whether the 

methods used are likely to be appropriate. 

● Criteria used to determine whether a meaningful violation of consistency has 

been detected. 

● Summary of the results of statistical tests and/or models used to investigate 

consistency, stating whether these indicate the presence of inconsistency, and 

describing the extent of the inconsistency and resulting uncertainty in these 

results. 

● In cases in which inconsistency is detected, description of the possible sources 

of inconsistency in terms of effect modifiers and, if possible, estimates of the 

magnitude of effect modification. 

● If methods have been used to explore the qualitative aspects of node splits, 

resulting p-values should be reported as well as an explanation of the 

assumptions underlying the analysis. 

● The final conclusion of whether the requirement for sufficient consistency holds, 

with reasoning. If no formal assessment of consistency is possible (i.e., no closed 

loops in the network) then this should be explicitly stated. 
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3.3. Possible approaches when the assumptions are violated 

If at least one of the components of the exchangeability assumption is not valid for a 

considered data situation, alternative approaches to answering the PICO questions 

should be considered, for example: 

1. Splitting into subgroups: If dissimilarity is shown for a potential effect modifier or 

heterogeneity is shown that can be explained by the effect modifier, it might be 

useful to divide the entire study pool into several subpools and draw separate 

conclusions (e.g., for men and women). The limitations of subgroup analyses 

based upon aggregated data should be taken into account [16]; 

2. Use of (network) meta-regression: Potential effect modifiers can be included as 

covariates in a (network) meta-regression model. This requires a sufficient number 

of data points (= number of studies) so that all parameters can be estimated in the 

model. The limitations and assumptions of meta-regression based upon 

aggregated data should be taken into account [4,8,28]; 

3. Exclusion of studies: In the case that only very few studies are responsible for 

dissimilarity or heterogeneity, sensitivity analyses might be performed with and 

without these studies (see below); 

4. Sensitivity analyses: If a clearly useful procedure is not possible, sensitivity 

analyses at least should be performed that allow assessment of the impact of the 

violated assumptions (e.g., consideration of study results with unexplained 

heterogeneity in two separate study pools with homogeneous study results). Given 

that there are many areas of uncertainty regarding the ‘right’ methods for meta-

analysis, sensitivity analyses are also an important aid in all further decisions in 

the process to estimate their impact on the results;  

5. Population-adjusted indirect comparisons: When there is a suspected violation 

of the similarity assumption via one or more observed (patient-level) effect 

modifiers, it might be possible to apply population-adjusted methods, such as 

matching-adjusted indirect comparison (MAIC), simulated treatment comparison 

(STC), or multilevel network meta-regression (ML-NMR), to obtain indirect 

estimates of treatment effects. However, these methods have numerous limitations 

and might not generate results that are applicable to the research question (see 

Section 5). 

The options described above could lead to the formation of new networks and study 

pools (e.g., for two different subgroups) and, thus, to a separate performance of a direct 

or indirect comparison. In this case, subsequent testing of the assumptions in the 

respective new networks and study pools is necessary. 

Requirements for reporting 

● The complete evaluation results regarding potential effect modification. 

● Approach to, and reasoning for, handling dissimilarity and heterogeneity. 

● The complete results of all sensitivity analyses. 

● If the entire study pool was split into several subpools: 

o A complete description of the subpools; 
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o The complete evaluation results of the similarity and homogeneity 

assumptions of all pairwise comparisons within all subpools (see Sections 

3.2.1 and 3.2.2). 

o Results of evidence synthesis in the entire study pool and a comparison 

of these with the results obtained from each subpool. 

3.4. Missing data 

As in any data analysis, in evidence syntheses a frequent problem in practice is given 

by missing data, which may lead to serious bias. There are many potential sources for 

missing data in evidence syntheses, e.g., missing complete studies, missing outcomes 

in some studies, missing summary data for some outcomes in some studies, or missing 

data for some study participants. The amount of and the reasons for missing data should 

be carefully described and the potential impact of the missing data on the findings of the 

evidence synthesis should be addressed by sensitivity analyses. Many methods to deal 

with missing data are described in the literature; we refer to Section 10.12 in the 

Cochrane Handbook [11] and the references therein. 

Requirements for reporting 

● Information about the amount of and the reasons for missing data. 

● Description of methods used to deal with missing data. 

● The complete results of all sensitivity analyses. 

● Description of the potential impact of the missing data on the reliability of the 

overall results (if this can be determined). 
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4. Methods applicable to direct or indirect comparisons 

4.1. Methods for direct comparisons 

4.1.1. Standard approaches 

Standard approaches for meta-analyses according to the fixed-effect model (with the 

assumption of a common effect in all included studies) are given by the inverse variance 

method for continuous data and the Mantel–Haenszel method for binary data [3]. Other 

useful methods are available in special situations, such as rare events (see below). 

Given that the assumption of a common effect in all included studies can be implausible, 

the standard model for meta-analyses is usually given by the random-effects model. In 

accordance to the recommendations of the Cochrane Collaboration, the Knapp–Hartung 

(KH) method should be used with the Paule–Mandel estimator for the heterogeneity 

parameter for frequentist meta-analyses with five or more studies [66]. 

With sufficient justification, other methods for meta-analysis can be used in special 

situations. In the situation of binary data with rare events, the Peto method [11] can be 

applied. However, this method should not be used when treatment effects are large and 

the trial arm sizes are unbalanced [5,62]. In the situation of many double-zero studies 

(i.e., no observed events in both treatment arms), the beta-binomial model can be 

applied [35,37]. This model allows the inclusion of double-zero studies and contains a 

random effect for the baseline risk. Nevertheless, the treatment–study interaction is 

included as a fixed effect, which means that the standard beta-binomial model is a fixed-

effect meta-analytic model. 

As a general alternative to frequentist methods, a Bayesian approach can be used for 

meta-analysis provided that the required prior distributions are available and can be 

justified [60]. This is especially useful in the situation with very few studies (see Section 

4.1.3). 

In general, the choice of methods for direct comparisons must be justified. This includes, 

but is not limited to, justification for the use of a fixed-effect model over a random-effects 

model, the choice of informative, non-informative, or vague priors (Bayesian), and 

baseline risk adjustment models. Additionally, any subgroup or meta-regression analysis 

for different levels of identified effect modifiers must be described and justified. Further 

considerations must be given to the number and heterogeneity of the included studies, 

number of events (rare versus common events), scale [odds ratio (OR), RR, hazard ratio 

(HR), risk difference (RD) or mean difference (MD)], quality of evidence etc. when 

assessing the appropriateness of the method and model choices. 

In the case of random-effects models, both confidence intervals and prediction intervals 

should be reported alongside the results. Prediction intervals can be interpreted as 

estimating the range of values in which the true treatment effect from a future study is 

likely to lie. In the frequentist case, prediction intervals are commonly estimated using 

the method described in [66][63], however, this may perform poorly when sample sizes 

are small [40,41]. 

4.1.2. Application of the Knapp-Hartung method 

For direct comparisons based on the random-effects model, the general standard 

approach is given by the KH method. In general, this method holds the type 1 error even 

in the case of few studies [66]. However, in homogeneous data situations, the standard 
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error of the estimated treatment effect according to the KH method might be arbitrarily 

small. In this case, the calculated confidence interval is misleadingly narrow [3]. To avoid 

such misleading results, a simple ad hoc variance correction was proposed [34]. In 

practice, a check is required to decide whether the use of the ad hoc variance correction 

is required. A comparison with the confidence interval calculated by means of the 

DerSimonian-Laird (DSL) method should be used for this purpose [12]. If the confidence 

interval of the KH method is narrower than that of the DSL method, the use of the ad hoc 

variance correction is required [33,70]. However, the application of the KH method with 

ad hoc variance correction can reduce the power of the KH method. Thus, in the case of 

very few studies, the KH method can lead to non- informative results (see Section 4.1.3). 

4.1.3. Direct comparisons with very few studies 

Meta-analyses with fewer than five studies introduce additional challenges [3], in 

particular when a fixed-effects model cannot be justified. First, a reliable assessment of 

heterogeneity is frequently not possible and, therefore, the choice between the fixed-

effect and the random-effects model is difficult. Second, the standard random-effects KH 

approach frequently has very low power. The power might be so low that the KH 

confidence interval is wider than the union of all confidence intervals of the included 

studies [57]. In such cases, the KH method is not useful because the results are non-

informative and, thus, alternative approaches are required. 

In general, a random-effects model should be applied even for meta-analyses with very 

few studies. However, the chance that the assumption of the fixed-effect approach is 

valid is greater in the case of very few studies compared with situations with a large 

number of studies. Especially in the situation with only two studies, it might be justified 

to apply the fixed-effect model by default. This means that the fixed- effect model should 

always be applied when there are only two studies, unless there are clear reasons 

against its use. 

In the situation in which a random-effects model is indicated (i.e., two studies and clear 

reasons against the fixed-effect model and in the case of three or four studies without 

clear reasons in favour of the fixed- effect model), the first approach should be to use 

the KH method (with or without ad hoc variance correction). However, because of the 

low power, a comparison with the DSL method is helpful to find a valid conclusion. If both 

methods (DSL and KH) yield the same result regarding statistical significance, the 

corresponding conclusion can be drawn for the treatment effect. If the estimated 

treatment effect resulting from the DSL method is statistically significant but that of the 

KH method is not, the situation is less clear. In this case, a qualitative summary of the 

study results can be performed. If there are at least two statistically significant studies in 

the same direction and most of the available evidence supports this direction, the 

conclusion of a significant effect can be drawn, although this effect cannot be quantified. 

To explore whether most of the evidence supports this direction, the study weights of the 

performed random-effects model according to the KH method can be used. As an 

example, clear thresholds for the required study weights are proposed in the methods 

paper of the Institute for Quality and Efficiency in Health Care (Institut für Qualität und 

Wirtschaftlichkeit im Gesundheitswesen, IQWiG) [31]. More details about the model 

choice for direct comparisons with very few studies are given elsewhere [57]. 

Alternatively, a random-effects Bayesian meta-analysis with weakly informative prior 

distribution for the heterogeneity parameter might be useful in the case of very few 

studies, because external heterogeneity information decreases the problem of 
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estimating heterogeneity with insufficient data [51,63-65]. A clear rationale is required for 

the choice of the prior distributions, because this choice can have substantial effects on 

the final results in Bayesian meta-analyses with very few studies [58]. Moreover, the 

impact of the chosen prior distribution should be explored in sensitivity analyses. 

Requirements for reporting 

● Assessment of whether the assumptions of the chosen method for meta-analysis 

are justified; in the case of deviations from standard meta-analytic approaches, 

a thorough justification for the chosen approach should be given and assessed 

in the JCA. 

● Assessment of the forest plot with point estimates and confidence intervals of all 

included studies, the p-value of the heterogeneity test, the I² value, and the 

pooled effect estimate with confidence interval; in the case of a random-effects 

model, an assessment of the prediction intervals. 

● Determination of whether a fixed- or random-effects model is appropriate. 

● In the case of a Bayesian meta-analysis, an assessment of the chosen prior 

distributions with justification and sensitivity analyses (see also Section 4.2 for 

reporting requirements for Bayesian approaches); a clear indication of the extent 

to which the estimated treatment effects are sensitive to the choice of prior 

distribution; where informative prior distributions are used, the justification for this 

should be assessed. 

● In the case of a qualitative summary of the study results, a description of the 

chosen approach with criteria used for the decision whether there is an overall 

effect (e.g., thresholds for study weights). 

4.2. Indirect comparisons 

In this section, important domains in assessment of the credibility of anchored indirect 

comparison methods are described. 

The first step in the assessment of the statistical analysis is to consider whether the 

method used is correct for the network of evidence. The Bucher indirect treatment 

comparison is appropriate for a network comprising two treatments indirectly compared 

through a common comparator.  The Bucher method can be applied in star-shaped 

networks to obtain indirect comparisons of each pair of treatments via a shared 

comparator and can also be applied iteratively in ladder networks to indirectly compare 

treatments connected by paths of length greater than two. Multi-arm trials can only be 

included as pairwise comparisons, but the generated effect estimates are correlated, and 

the corresponding standard errors are inappropriate. This correlation will be problematic 

if the aim is to use the estimates in a decision model because the method assumes 

independence between pairwise comparisons. The Bucher method should not be used 

when random-effects meta-analysis has been used to pool multiple trials for one or more 

contrasts in the network [14]. In cases with several different pairwise comparisons, or 

when a random-effects approach is deemed appropriate, a network meta-analysis 

encompassing all this evidence should be considered. Frequentist and Bayesian 

methods are equally applicable. Naive comparisons (i.e., comparisons of absolute 

outcomes without any adjustment for confounding) should not be used because they do 

not preserve randomisation. Disconnected evidence networks cannot be analysed with 

these methods (see Section 6). 
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If the method for analysis is deemed appropriate (assumptions met), the appropriateness 

of the model used must be validated. This includes, but is not limited to, justification for 

the use of a fixed-effect model over a random-effects model, the choice of informed, 

uninformed, or vague priors (Bayesian), and baseline risk adjustment models. 

Additionally, any subgroup or meta-regression analysis for different levels of identified 

effect modifiers must be described and justified. Further considerations must be given to 

the number and heterogeneity of studies informing each contrast, number of events (rare 

versus common events), scale (OR, RR, HR, RD, or MD), quality of evidence, and so 

on, when assessing the appropriateness of the method and model choices. 

Results from Bayesian NMA may be used to derive rankograms, that is, numerical and 

graphical summaries of the estimated rankings of each treatment in the network in order 

of effectiveness. Examples include surface under the cumulative ranking curve 

(SUCRA), cumulative probability curves, and probability of being the ‘best’ treatment in 

the network (P-score) which can be estimated within both frequentist and Bayesian 

analyses [53,54]. Assessors should note that these summaries typically do not capture 

the full extent of uncertainty in the NMA and may be misinterpreted by non-statisticians, 

therefore care is needed when presenting and discussing these outputs [38]. 

In addition to the methods of NMA described here and in the corresponding 

methodological guideline, many other approaches have been proposed in the literature, 

such as the original method of Lumley [36] and the ‘arm-based’ NMA introduced by Hong 

et al. [30]. However, many of these methods make different fundamental assumptions to 

those described in this document and are, in general, unlikely to be suitable for use in 

JCAs [15,55,69]. If such an analysis is presented in a JCA, it is essential that assessors 

carefully examine the underlying assumptions and assess their plausibility, as well as 

the relevance of the results obtained. 

Requirements for reporting 

● Determination of whether pooling of the studies is meaningful, and justification 

for this determination (will be informed by the assessment of exchangeability). 

● Assessment of whether the chosen method for the network meta-analysis is 

appropriate given the evidence base (including assumptions regarding the 

variances of the effects). 

● Assessment of the graphical and tabular presentations of the evidence network, 

including the information on the number of randomised controlled trials (RCTs) 

per contrast, and number of patients and events (where relevant) per trial and 

per contrast. 

● Presentation of the relative effect estimates for the new intervention vs. all 

relevant comparators, along with the associated estimation uncertainties 

(confidence intervals or credible intervals) and p- values. 

● In the case of random-effects model, an assessment of the prediction intervals; 

● Assessment of the separate results from direct and indirect comparisons, 

including measures of uncertainty; where both direct and indirect estimates for a 

particular comparison are available (closed loop), results of the inconsistency 

model any discrepancies between them should be highlighted. 

● If possible, assessment of rankograms (SUCRA, cumulative probability curves, 

and probability of being the best treatment (P-score)). 
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● In the case of a Bayesian NMA, an assessment of the following issues: 

o The chosen prior distributions with justification and sensitivity analyses; 

o Plots of the posterior mean deviance of individual data points for the 

original model versus the inconsistency model; 

o Convergence of the Markov chains. 

4.3. Evidence synthesis of time-to-event data 

4.3.1. Assessment of the proportional hazards assumption 

A (network) meta-analysis of HRs requires that the proportional hazards (PH) 

assumption holds for all pairwise comparisons in the network. This means that the 

validity of the assumption must be assessed for all included studies, preferably based on 

analysis of IPD for all studies or the construction of pseudo- IPD from digitised Kaplan–

Meier curves (e.g., by using the algorithm proposed by Guyot [26]). Substantiating the 

PH assumption when such evidence is unavailable might be possible in some cases, but 

the acceptance is then at the discretion of the MSs. The PH assumption is also required 

for comparisons for which there is no direct evidence available; this cannot be assessed 

directly. 

Failure of the PH assumption occurs when the HR between treatment arms is non-

constant, which can be interpreted as a time-varying treatment effect. An example of this 

is the delayed effect on survival observed in studies of immunotherapies in the treatment 

of advanced cancers [39]. When the PH assumption fails, the average HR will vary 

according to the length of follow-up, which can differ across studies in the network. 

Furthermore, the HR obtained from the Cox model might be biased as an estimate of 

this average because of censoring (unless a suitable adjustment is performed to account 

for this) [56]. Therefore, if the PH assumption is deemed to be implausible for one or 

more comparisons in the network, then (network) meta-analysis of HRs should not be 

carried out. The reasons for the absence of PH in the individual studies can be explored 

and provided. Excluding trials can be considered, but only in situations where the 

reasons for the PH violation are deemed irrelevant for the question at hand. In this 

scenario, there are two preferred alternative approaches that may be undertaken: 

● (Network) meta-analysis of restricted mean survival times (see Section 4.3.2); 

● (Network) meta-analysis of flexible survival models [such as fractional 

polynomials (FPs), piecewise exponential models or others if considered 

acceptable] (see Section 4.3.3). 

Requirements for reporting 

● Assessment of whether the PH assumption has been thoroughly evaluated in the 

submission, with particular reference to the following criteria: 

o Log-cumulative hazard plots for all studies (the lines representing the 

intervention and comparator should be parallel if PH holds); 

o Plots of Schoenfeld residuals (these should show no trend over time if PH 

holds); 

o Results of any statistical tests used to assess the PH assumption; 

o Additional external evidence such as opinions from healthcare 

professionals received on the plausibility of the PH assumption (for 
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example, if a delayed treatment effect is expected) can be included in the 

PH assessment. 

4.3.2. (Network) meta-analysis of restricted mean survival time 

When the PH assumption does not hold, it is possible to carry out a (network) meta-

analysis of restricted mean survival time (RMST) [52]. This involves the selection of a 

relevant time-point for follow-up and then calculation of the area under the Kaplan-Meier 

curve between randomisation and this time. Relative treatment effects are then 

computed as either the difference or ratio of RMSTs between treatment arms. These 

effects can then be synthesised in a fixed or random-effects meta-analysis using 

methods previously described. 

When RMST is used, a key consideration is the choice of follow-up time, because 

different choices can produce different results. Possible values are limited by the 

available data, and some higher values might be more uncertain because of the limited 

numbers at risk. Therefore, it might be necessary to consider the duration of follow-up of 

the included studies to select an appropriate time-point. It is important that prespecified 

criteria for selecting the base case follow-up time are clearly reported, and that a range 

of follow-up times be presented in sensitivity analysis. 

4.3.3. (Network) meta-analysis with flexible survival time models 

The use of flexible models for the hazard function allows (network) meta-analysis to be 

carried out without the assumption of PHs. These methods require the use of IPD or, 

more commonly, pseudo-IPD, whereby published survival curves for the endpoints of 

interest are scanned and digitised (e.g., by using the algorithm proposed by Guyot [26]). 

FP (network) meta-analysis involves modelling time-dependent hazard rates for each 

intervention separately (as linear combinations of positive and negative powers of time), 

allowing for a wide range of different-shaped hazards. Treatment effects comprise 

multiple correlated parameters and can be synthesised using fixed or random-effects 

models. A similar approach is possible using restricted cubic spline models [23]. Other 

models exist. Some are discussed in Freeman et al. [24], but their acceptability is at the 

discretion of MSs. 

Evidence synthesis using FP requires selection of the most appropriate model for the 

hazard rates; that is, the most appropriate combination of powers of the time variable. 

This can be assessed using measures of statistical fit [e.g., Akaike information criterion 

(AIC), Bayesian information criterion (BIC), or, in a Bayesian framework, DIC], visual fit 

to the observed hazards and survival functions, and/or clinical plausibility. Assessors 

should be aware that the use of different FP models can lead to different conclusions 

regarding relative treatment effects; therefore, sensitivity analysis is important. 

Piecewise exponential models also allow for a relaxation of the PH assumption. With this 

approach, the follow-up period for all treatments is split into a fixed number of pieces, 

and the hazard rate for each intervention in the network is assumed to be constant within 

each piece. Treatment effects estimated using this method comprise piecewise HRs; 

thus, the PH assumption is required within each piece, but not over the entire follow-up 

period. Such an assumption might be plausible in situations in which a delayed treatment 

effect is expected (e.g., immunotherapies in oncology), but where PH is expected to hold 

thereafter. These piecewise hazard ratios can be incorporated into a (network) meta-

analysis in the usual way, using fixed- or random-effects models. 
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To carry out piecewise exponential (network) meta-analysis, it is necessary to choose 

the number and location of the cut-points of the pieces. This can be done using visual 

and statistical fit to the observed data, and external opinion might also be helpful. 

Furthermore, the plausibility of the PH assumption within each piece should be assessed 

using the methods described previously. Assessors should again be aware that choosing 

different numbers and locations of cut-points can alter the estimated treatment effect; 

thus, sensitivity analysis is important. 

A limitation that applies to both FPs and piecewise exponential models is that the 

estimated treatment effects they produce are multidimensional and not easily 

interpretable. There is no obvious way to perform statistical inference in this setting (i.e., 

testing for statistically significant treatment effects). The usual method for addressing this 

is to compare either restricted mean survival time or extrapolated mean survival time, 

obtained from the chosen models. This is usually carried out in a Bayesian framework, 

in which posterior distributions of the model parameters are used to obtain posterior 

estimates of (restricted/extrapolated) mean survival times. When extrapolation is used, 

the plausibility of long-term extrapolations should also be considered as part of the model 

selection process. When restricted means are used, consideration must be given to the 

chosen time-point. 

Requirements for reporting 

● For flexible parametric models: assessment of model choice with reference to 

measures of statistical fit and any other information used to inform this choice 

(e.g., clinical opinion). 

● For RMST: assessment of the rationale for the choice of follow-up time; sensitivity 

of the results to this choice should be assessed. 

● Comparison of observed and modelled HRs over time (e.g., table of the HRs at 

different time points and/or the plot of HR over time to indicate whether the 

chosen method is appropriate). 

● Comparison of the survival time distribution implied by the chosen (best-fitting or 

most plausible) model along with the alternative models and the study KM data; 

evaluation of visual fit to the observed data. 

● Where multiple model choices are comparable in terms of fit and/or plausibility, 

the results obtained from these alternative models should be compared and 

assessed. 
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5. Assessment of population-adjusted methods 

5.1. General considerations: is population adjustment for indirect comparisons 
appropriate? 

Population-adjusted methods are used in the context of an ITC or more general NMA, in 

which there is concern that the similarity assumption might not hold. These methods aim 

to adjust for this imbalance to obtain an unbiased estimate of the relative treatment effect 

in the scenario in which IPD is available for one or more trials in the network, and only 

aggregate data (AgD) for others. MAIC and STC should not be used when full IPD is 

available for all studies; IPD network meta-regression is generally the appropriate 

method to adjust for covariate imbalances in this case. 

The most common examples of population-adjusted methods are MAIC, STC, ML-NMR, 

and other mixed IPD and aggregate data regression methods. The MAIC method 

reweights patients in the IPD study to match the characteristics of the AgD study, 

whereas STC and ML-NMR fit outcome regression models to the IPD studies, which can 

be extrapolated to other populations. A consideration when selecting among these 

methods is that MAIC and STC can only perform the indirect comparison in the 

population of the AgD study, whereas ML-NMR can in principle do so in any population 

with known covariate values for the effect modifiers [44,45]. Both MAIC and STC are 

limited to simple networks with two studies, whereas ML-NMR can be applied to any 

connected network. However, the ML-NMR method as currently proposed cannot be 

applied to the analysis of time-to-event outcomes. 

When assessing a population-adjusted indirect comparison, the problem of multiplicity 

arising from ‘researcher degrees of freedom’ must be considered. Indeed, the number of 

methods and potential covariate combinations available to the modeller raises the 

possibility of selecting the method that produces the most favourable results for the 

intervention under assessment. For this reason, these methods are often more suitable 

as an exploratory analysis rather than as the primary analysis. In addition, a transparent 

method of model selection must be pre-specified in the protocol and SAP of the study to 

mitigate the risk of selective reporting as much as possible, and to allow a fair 

assessment of potential uncertainties in the results associated to model selection and 

estimation. In the case of anchored comparisons, it should be demonstrated that bias 

will be reduced by the use of a population-adjusted methods. This generally requires 

evidence that (i) one or more (observed) patient- level covariates is an effect-modifier 

and (ii) there is sufficient imbalance in those effect modifiers between study populations 

to result in bias in the observed relative treatment effect(s). 

MAIC and STC methods are also sometimes used in the case of disconnected networks; 

in this context, absolute outcomes (rather than relative effects) are adjusted and, 

therefore, adjustment must account for all potential confounders in addition to effect 

modifiers. The Methodological Guideline for Quantitative Evidence Synthesis: Direct and 

Indirect Comparisons details the many issues regarding population adjustment 

methodologies for unanchored ITCs. By describing these methods here, we are not 

endorsing them, and once again reiterate that estimates arising from using population-

based adjustment methods when performing unanchored ITCs are unreliable. 

Requirements for reporting 

● Assessment of the justification for population adjustment as a means of 

estimating treatment effectiveness. 
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● A complete description of the method and/or model(s) used for population 

adjustment and estimation of the treatment effects, and an assessment of the 

appropriateness of this choice. 

5.2. Assessing covariate selection (all population-adjusted methods) 

The validity of all population-adjusted methods depends on the inclusion of all effect 

modifiers as covariates in the relevant model. These should be identified using the 

methods described in Section 3.2.1, ideally before conducting the analysis. In the case 

of unanchored comparisons, all prognostic variables must also be included (see Sections 

5.5 and 6). 

In the case of both MAIC and STC, only effect modifiers of the relative effect being 

estimated in the IPD trial are needed to carry out the adjustment. However, interpretation 

of the results also requires knowledge of effect modifiers for the AgD trial. In the case of 

more-complex networks of evidence (e.g., using ML-NMR), knowledge of effect modifiers 

for all pairwise comparisons is typically needed. 

Covariates that are initially balanced (or approximately balanced) between study 

populations at baseline should not be omitted because the adjustment procedure could 

create an imbalance where none existed before. Methods of covariate selection based 

upon statistical significance or model fit are of limited use for STC and MAIC, given that, 

when limited IPD is available, these methods will typically be underpowered to detect 

relevant effects. In general, the inclusion of additional effect modifiers reduces bias at 

the expense of increased variance, resulting in wider confidence/credible intervals for 

estimated treatment effects. As a result, when sample sizes are small it may not be 

possible to include all relevant effect modifiers and therefore population adjustment may 

not be appropriate. 

When effect modifiers are omitted for any reason, population-adjusted treatment effects 

obtained using the methods described here will necessarily be biased. The magnitude 

of this bias depends on both the magnitude of effect modification associated with the 

missing covariate(s) and the extent of the imbalance between treatment groups in terms 

of this characteristic (after adjustment). It is often unknown whether covariates are 

missing or which covariates these might be. When multiple relevant-effect modifiers are 

missing, the combined impact becomes difficult to predict. Assessors should highlight 

the potential for residual bias in the resulting estimate and give an indication of the size 

and direction of that bias where possible. 

Assessors should be aware that, when population-adjusted indirect comparisons are 

carried out despite relevant covariates being unavailable, bias in the estimated treatment 

effects could still be present and could be increased or decreased as a result of 

adjustment, compared with the results of a standard NMA. Consider an example in which 

the relevant effect modifiers are background statin use and history of cardiovascular 

disease and where, in one study, there is a strong positive association between these 

two variables (e.g., because of statin therapy being initiated following a cardiovascular 

event), but there is no such association in the other study (e.g., because of statin being 

used for primary prevention of cardiovascular disease among these patients). In such a 

scenario, adjustment for background statin use but not cardiovascular disease in a MAIC 

could increase the imbalance in the proportion of patients with a history of cardiovascular 

disease across studies. 
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To account for the risk of bias (RoB) because of missing or unknown effect modifiers, it 

is possible to perform statistical inference on the estimated treatment effect by testing 

against a shifted null hypothesis [67]; that is, a null hypothesis of some non-zero relative 

treatment effect of a magnitude large enough to account for any plausible bias arising 

from missing covariates. If this is done, the shifted hypothesis to be tested should be 

prespecified and its magnitude clearly justified. While the results of these tests may be 

presented in the submission dossier and JCA report, the determination of an appropriate 

threshold for decision-making is considered to be a matter for individual MS. 

Requirements for reporting 

● Assessment of the methodology used to identify relevant-effect modifiers. 

● Assessment of the adequacy of the set of included effect modifiers to generate 

an unbiased estimate of the treatment effect. 

● When relevant effect-modifiers have not been included in the assessment model, 

a quantification of the potential magnitude and likely direction of the resulting 

bias. 

● If shifted hypothesis testing has been used, an assessment of whether this is 

sufficient to account for the likely magnitude of residual bias arising from missing 

covariates. 

5.3. Additional considerations for outcome regression approaches 

The STC and ML-NMR methods involve fitting an outcome regression model (typically a 

generalised linear model, or in the case of STC, a Cox PH model is also a possibility) to 

the available IPD to obtain an estimate of the outcome at each level of the included 

covariates. The chosen model must estimate treatment effects on the same scale as the 

indirect treatment comparison. For example, if the indirect comparison is to be carried 

out on the log OR scale, an appropriate choice for the outcome regression model would 

be a generalised linear model with a binomial likelihood and logit link. It is not appropriate 

to use logistic regression to adjust absolute risks in each arm and then carry out the 

indirect treatment comparison on the risk-difference or log-risk ratio scales. 

A fundamental assumption of STC and ML-NMR is that the effect of the covariates is 

additive on the outcome measure scale (i.e., that the functional form of the outcome 

regression model is appropriate). For example, if a Cox PH model is used for the 

treatment effect (log hazard ratio), then the effect of the covariates is assumed to be 

linear on the log hazard ratio scale (i.e., PHs). In the case of the IPD study, this should 

be assessed and reported using standard model diagnostics (e.g., analysis of residuals). 

External data could also be helpful here; for example, the effect of LDL cholesterol levels 

on cardiovascular event rates has been characterised as approximately linear on a log-

rate scale [21]. 

In the case of anchored STCs, the inclusion of additional prognostic variables (that are 

not also effect modifiers) in the outcome model will not reduce bias, but could improve 

precision of the estimated treatment effect and, therefore, can be considered. In this 

case, standard measures of model fit, such as AIC/BIC, residual deviance, and so on, 

have been suggested as an approach to select these additional covariates [44]. If this is 

done, then the additional variables should be specified a-priori and justified. 

The STC and ML-NMR methods can generate estimates of the treatment effect in any 

target population by substituting the relevant mean covariate values into the outcome 

regression model. This can be useful if the population of interest differs from the trial 
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populations. However, the validity of these estimates is unknown outside the range of 

covariate values included in the IPD study; extrapolation beyond this region might not 

generate meaningful estimates of the treatment effect. For example, if the age range of 

the IPD study population is 40–55 years, it would not be appropriate to use STC/ML-

NMR to extrapolate treatment effects to a population with a mean age of 60 years, 

because the relationship between age and treatment effect cannot be assessed outside 

the range of the IPD study. More generally, treatment effects for covariate combinations 

that are not well represented in the IPD study will be uncertain. Therefore, the degree of 

overlap in baseline covariates should be reported and assessed by, for example, plotting 

the distributions of baseline characteristics in the IPD trial(s) together with the mean and 

confidence intervals from the AgD trials. 

The usual approach to STC involves substituting mean covariate values from the AgD 

population into the outcome regression model, which estimates the conditional treatment 

effect at this level of the covariates (i.e., the predicted individual-level response) [46,49]. 

However, the summary effect estimate from the AgD study is typically a marginal 

treatment effect (i.e., population average) or, in some cases, a conditional effect but 

typically adjusted for a different set of covariates. As a result, STC, conducted using the 

substitution of mean covariate values, combines incompatible effect estimates, 

potentially leading to bias in the estimation for both estimands (conditional and marginal) 

when the outcome regression model is nonlinear, and produces invalid standard errors 

in all cases [46,49]. To overcome this, approaches to STC targeting marginal treatment 

effects have been proposed [32,50]. Both approaches to STC make different 

assumptions regarding the joint covariate distribution from the AgD study [44]; therefore, 

the plausibility of these assumptions should be assessed. The JCA report should clarify 

the STC approach used and the target estimand. 

Additional assumptions and/or data requirements for ML-NMR depend on the targeted 

treatment effect. In a simple network of one IPD study and one AgD study, the 

(population average) marginal treatment effect in the AgD population can be estimated 

with no further assumptions beyond those required for STC [45]. However, estimation of 

conditional treatment effects, marginal effects in any other population, or any application 

of ML-NMR in a network with two or more AgD studies requires the estimation of 

additional treatment–covariate interactions. To achieve this, the available data must 

include, for each treatment in the network, either full IPD from at least one study 

investigating that treatment or enough AgD studies investigating that treatment to 

estimate the relevant interactions. If such data are not available, then the ‘shared effect 

modifier’ assumption is required (see Section 5.6) for certain treatment classes within 

the network and, therefore, the plausibility of this assumption must be assessed [42,45]. 

Furthermore, specification of the joint covariate distributions for the AgD studies is 

required, which typically necessitates additional assumptions. 

Requirements for reporting 

● An assessment of the model fit and appropriateness of the outcome regression 

model to capture the effect of covariates (including treatments) on outcomes. 

● An assessment of the covariate overlap between the IPD study (or studies) and 

the populations to which relative treatment effects are adjusted (e.g., the AgD 

study or studies). 

● For STC, a description of the method used to estimate outcomes (e.g., 

substitution of mean covariate values, simulation, or numerical integration) and 
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the treatment effect that is targeted by the chosen approach; assessment of 

whether the estimands that have been combined are compatible, highlighting any 

potential for bias. 

● For ML-NMR, clear statement as to whether the available data are sufficient to 

estimate treatment-covariate interactions; statement of any additional 

assumptions (e.g., shared effect modifier) that have been made to estimate the 

model. 

● An assessment of the method used to estimate the joint covariate distributions in 

the AgD studies, if required (applies to ML-NMR and certain approaches to STC). 

5.4. Additional considerations for matching-adjusted indirect comparisons 

When MAIC is used to carry out population adjustment, the principal concern is whether 

the weighted pseudo-population has the same distribution of effect modifiers (anchored 

and unanchored comparisons) and prognostic variables (unanchored only) as the target 

population. These distributions should be reported, and their similarity assessed; if 

nontrivial differences exist for one or more variables after matching, then the results of 

the MAIC will likely be biased. The use of hypothesis tests for the equality of means after 

matching is indeed not recommended as a method to decide whether sufficient balance 

has been achieved, because multiple tests are typically required (increasing the risk of 

type 1 error) and statistical power might be low (type 2 error). 

The distribution of weights should be examined to assess the extent of overlap between 

the two populations. The approximate effective sample size (ESS) should also be 

reported. If this is considerably smaller than the original sample size of the IPD study, 

then statistical power will be reduced accordingly. The presence of extreme weights 

and/or large reductions in ESS also indicates that the target population of the MAIC is 

considerably different from the source population. This could be problematic in the 

context of a JCA because it is likely that the IPD study population is of greater interest to 

the assessment than the AgD study population (see also Section 5.6). 

The assessor should ensure that an appropriate method, such as robust standard errors 

or bootstrapping, has been used to estimate the confidence interval associated with the 

treatment effect. Failure to do so will result in confidence intervals that are artificially 

narrow and do not capture the full extent of (statistical) uncertainty in the estimated 

treatment effect. 

Requirements for reporting 

● Assessment of covariate balance achieved after matching (without the use of 

hypothesis tests), and of potential impact of any residual imbalance on the results 

(if this can be estimated). 

● Assessment of the distribution of weights and ESS after matching to assess the 

extent of overlap between the two populations. 

● Statement as to whether the reported confidence interval for the treatment effect 

appropriately captures the additional uncertainty arising from reweighting (e.g., 

whether the confidence interval has been estimated using an appropriate 

method, such as robust standard errors or bootstrapping). 
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5.5. Dealing with unanchored MAICs and STCs: additional challenges 

Population-adjusted methods for indirect comparisons are also used when considering 

disconnected networks. The validity of the results depends on all relevant prognostic 

variables (as well as effect modifiers) being included as covariates in the relevant model, 

which is unlikely to be satisfied in practice. In general, this will substantially increase the 

amount of adjustment required. The process used to identify prognostic variables is 

analogous to that described previously for effect modifiers and should be reported 

transparently in the submission. 

Differences in patient characteristics are typically more likely to affect the absolute values 

of outcomes than the relative effects, which means that more covariates must be 

included in the adjustment model to obtain an unbiased estimate of the treatment effect. 

For example, if two hypothetical treatments, A and B, aimed at lowering blood pressure 

were to be compared in an unanchored comparison, then adjustment would need to be 

carried out for all covariates potentially affecting blood pressure, such as age, sex, 

smoking status, race, geographical location, body mass index, diabetes status, and 

many others that might not have been recorded. By contrast, an anchored comparison 

of an A and B via a common (e.g., placebo) comparator would only require adjustment 

for covariates affecting response to treatment. 

There will inevitably be differences in the trials other than patient characteristics. 

Interventions will be administered under different conditions and endpoints might be 

recorded in different ways (e.g., investigator versus independent assessment of tumour 

progression). Again, these differences typically have a greater impact on unanchored 

comparisons compared with anchored comparisons, because absolute values of 

outcomes are being compared. An assessor should assess these carefully, using 

opinions from healthcare professionals again if required, to decide whether it is 

appropriate to undertake an unanchored MAIC or STC. 

In summary, although unanchored MAICs and STCs are often presented as the only way 

of quantifying a relative treatment effect in a disconnected network, this does not mean 

that the method will be of sufficient standard to confidently estimate a relative treatment 

effect. When unanchored indirect comparisons are required to answer a PICO question, 

it is in general always preferable to use methods developed for the analysis of non-

randomised data (outlined in Section 6) rather than unanchored MAIC/STC, however 

these methods require access to full IPD. 

Requirements for reporting: 

● An assessment of the methodology used to identify all relevant prognostic 

variables. 

● An assessment of the appropriateness of carrying out an unanchored indirect 

comparison, with reference to data availability, definitions of outcomes, 

comparability of study characteristics, and other considerations; if full IPD were 

available for all studies, then this should be clearly highlighted because, under 

this scenario, other IPD-based methods (e.g., propensity score matching) would 

likely be more appropriate. 

● An assessment of whether the set of included covariates is likely to be sufficient 

to generate an unbiased comparison of outcomes; quantification of the 

magnitude and direction of potential bias arising from missing prognostic 

variables in the analysis. 
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5.6. Interpretation and use of population-adjusted results 

Population adjustment using STC or MAIC estimates treatment effects in the population 

of the AgD study, which might not be generalisable outside of that population. However, 

in the context of JCAs, it is likely that estimation of the treatment effect in the population 

of the IPD study is of interest. Phillippo et al. [44] highlight this issue in relation to two 

MAIC analyses of the same two trials comparing secukinumab and adalimumab to 

placebo as treatments for ankylosing spondylitis. The relative treatment effect differed 

depending on which trial the IPD was taken from, which is explained by patient 

differences in the target studies. 

In some situations, it might be reasonable to ‘transpose’ effect estimates obtained from 

anchored MAIC or STC to other populations, such as that of the source trial. Doing so 

requires the additional ‘shared effect modifier’ assumption proposed by Phillippo et al. 

[43]. This assumption applies to a set of active treatments and states that, relative to a 

common comparator: (i) the covariates that are effect modifiers and (ii) the change in 

treatment effect for each effect modifier (i.e., the magnitude and direction of the 

interaction terms), are the same for all active treatments in this set. When this holds, the 

relative effect between any pair of treatments in this set will be the same in any 

population, which means that treatment effects obtained from population-adjusted 

indirect comparisons can be transposed to the population of the source (IPD) trial or 

indeed any other relevant population. The shared-effect modifier assumption is more 

likely to hold for treatments with a similar mode of action (e.g., an ITC of two angiotensin-

converting enzyme inhibitors) than for those in different classes (e.g., in an ITC of and 

angiotensin-converting enzyme inhibitor versus an angiotensin receptor blocker). Strong 

biological and/or clinical justification must be provided to justify its use in a JCA. 

Although ML-NMR can potentially estimate relative treatment effects in any target 

population, depending on the level of available data, some form of the shared effect 

modifier assumption may also be required to estimate the model in practice (see Section 

5.3). Different population adjustment methods target different estimands. The MAIC 

method targets the marginal treatment effect (population average effect over the AgD 

population), whereas STC, performed using substitution of mean covariate values, 

targets the conditional treatment effect at the specified level of the covariates (individual-

level treatment effect for the ‘average’ patient in the AgD population). In its most general 

form, ML-NMR can target estimand in any target population [47-49]. 

To incorporate results of an MAIC or STC into a wider NMA, it is necessary to assume 

similarity of effect modifiers across the network after adjustment; in other words, the 

distribution of effect modifiers across all studies in the network is similar to that of the 

target study rather than of the source study. 

Population adjustment aims to reduce bias arising from an imbalance of effect modifiers 

(or prognostic variables for unanchored comparisons) but does so at the cost of 

increased variance. The result is a loss of precision when estimating treatment effects 

(i.e., wider confidence intervals) or, equivalently, a loss of statistical power. When 

inference is made on the basis of population-adjusted comparisons, assessors should 

take into account that these comparisons are typically underpowered. 



Practical Guideline for Quantitative Evidence Synthesis: Direct and Indirect Comparisons 

32 

Requirements for reporting 

● A clear description of the population in which the treatment effect has been 

estimated, and its relevance to the assessment question; any limitations should 

be clearly outlined, and potential biases arising from population differences 

should be reported (including an assessment of the likely magnitude and direction 

of any bias, if possible). 

● Clear statement as to whether the ‘shared-effect modifier’ assumption is required 

to estimate the treatment effect in the target population; if this assumption is 

invoked, the biological and/or clinical basis for this assumption should be 

scrutinised and the strengths and limitations clearly described. 

● A comparison between the population-adjusted estimates of treatment effects 

with those obtained from standard methods of (network) meta-analysis; if the 

magnitude, direction, and/or precision of these effects differ considerably, then 

assessors should discuss likely explanations for this (e.g., covariate adjustment, 

loss of ESS, or underlying assumptions). 

● The target estimand of the chosen population-adjustment method, that is, 

marginal (population- average relative treatment effect) or conditional (individual 

level treatment effect for the ‘average’ patient) relative effects, and its relevance 

to the assessment question. 
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6. Assessment of comparisons based upon non-randomised evidence 

6.1. General considerations 

All commonly encountered sources of evidence outside of RCTs are non-randomised 

(i.e., single-arm trials, cohort studies, case-control studies, other observational studies, 

and the use of historical controls). Similarly, unanchored indirect comparisons constitute 

non-randomised evidence, even in situations where data for both treatment groups was 

collected in (separate) RCTs. Any such study has much greater potential to include 

material bias in the estimate of treatment effect compared with an appropriate RCT, and 

this is likely to carry through when combining evidence from these sources. A key 

concern is that the underlying assumption of exchangeability is unlikely to hold because 

there is a very high risk of confounding bias, meaning that the association between 

intervention and outcome differs from its causal effect. 

Therefore, treatment comparisons based upon non-randomised evidence require careful 

consideration of their validity. This is particularly the case for comparisons that combine 

data from a single-armed clinical trial (or a single arm of an RCT) with observational data 

for the comparator. The inclusion and exclusion criteria for each study (which should be 

prespecified, for the external control arm, before the indirect treatment comparison is 

conducted) should be carefully examined, because these criteria are typically more 

restrictive for clinical trials than for observational studies, leading to potential violations 

of the positivity assumption (e.g., individuals with very poor prognosis are often excluded 

from clinical trials but not from cohort studies). The potential for unmeasured confounding 

arising from ‘volunteer bias’ should also be considered when interpreting the results: 

willingness to participate in a clinical trial might be associated with several prognostic 

variables that might be unmeasured, such as access to medicine, socioeconomic status, 

location, educational attainment, and overall health status. If the external control arm 

relies on pooling different data sources, this should be described and the 

appropriateness of pooling these data sources should also be examined.  

In some cases, it might be that the lack of randomisation can be partially compensated 

for by rigorous adjustment for confounding. However, for this to be done robustly, it is 

required that all confounders and effect modifiers relevant for adjustment are measured 

and that the model and covariate selection strategies for adjustment are prespecified 

and based upon transparent criteria [27]. The requirement of all confounders and effect 

modifiers being measured is unlikely to be met, given that unknown modifiers and 

confounders are assumed to be always present. These adjustment methods require 

access to the full IPD information. Aggregated data alone are not sufficient to reliably 

estimate treatment effects. A SAP (that can be distinct from the SAP of the original 

studies) is required to describe the methods planned to adjust for confounding. 

To account for the RoB due to missing or unknown confounders or effect modifiers, it is 

possible to perform statistical inference on the estimated treatment effect by testing 

against a shifted null hypothesis [67]; that is, a null hypothesis of some non-zero relative 

treatment effect of a magnitude large enough to account for any plausible bias arising 

from missing covariates. If this is done, the shifted hypothesis to be tested should be 

prespecified and its magnitude clearly justified. As noted previously, while the results of 

these tests may be presented in the submission dossier and JCA report, the 

determination of an appropriate threshold for decision-making is considered to be a 

matter for individual MS. 
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Requirements for reporting 

● Assessment of the inclusion and exclusion criteria for the relevant non-

randomised data. 

● Assessment of the RoB and the validity of the results of all included trials. 

● Comparison of baseline characteristics of all included studies. 

● An assessment of the methodology used to identify all relevant prognostic 

variables and effect modifiers. 

● An assessment of the SAP with the methods used to adjust for confounding. 

● An assessment of whether the set of included covariates is likely sufficient to 

generate an unbiased comparison of outcomes; quantification of the magnitude 

and direction of potential bias arising from missing prognostic variables and effect 

modifiers in the analysis. 

● If shifted hypothesis testing has been used, an assessment of whether this is 

sufficient to account for the likely magnitude of residual bias arising from missing 

covariates. 

6.2. Propensity scores 

6.2.1. Checking that the assumptions of propensity score matching and/or 
weighting are valid 

An important method to adjust for confounding in non-randomised studies is by using 

propensity scores. This method requires careful planning of all possible modelling 

options in the form of a SAP [68]. As mentioned in Methodological Guideline for 

Quantitative Evidence Synthesis: Direct and Indirect Comparisons, three assumptions 

must be met when using non-randomised data and propensity scores or another method 

to adjust for confounding: positivity, overlap, and balance. In the JCA context, the 

assessors must check and report the validity of these assumptions. 

Checking the positivity assumption 

The positivity assumption means that patients in both groups must be theoretically 

eligible for both treatments of interest. In randomised evidence, positivity is guaranteed 

by randomisation. In non- randomised evidence, the positivity assumption concerns the 

probability of receiving treatment, but this probability needs to be modelled (e.g., by 

propensity score) because of the absence of randomisation. Suspicion of violation for 

positivity assumption (e.g., inclusion of patients in one treatment group, with 

contraindication to the other treatment group, or patients with a propensity score equal 

or close to zero or one) should be systematically reported. 

Checking the overlap assumption 

Sufficient overlap means that the distribution of patients among the different propensity 

scores must be similar. To allow this assumption to be checked, propensity score 

distribution (using histograms or density plot), among samples if applicable (i.e., whole 

population, matched population, and/or population created by weighting), should be 

reported in the JCA and discussed. The overlap depends on the matching performed 

and the techniques used [20]. In the case of trimming, if a large proportion of the sample 

is lost after trimming regions of non-overlap, then it could indicate insufficient overlap 

[13]. When trimming is performed, the selected population should be described in detail 

to investigate whether it sufficiently represents the original research population. 
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Checking the balance assumption 

The populations in the compared groups must be sufficiently balanced after adjustment 

for confounding. The achieved balance must be assessed before and after matching, 

weighting, or stratification. Absolute standardised differences between the treatment 

groups should be used to compare the balance for each covariate [2]. Cut-offs for 

acceptable absolute standardised difference vary (0.1–0.25) [59]. Therefore, the final 

conclusion regarding the balance assumption would be left to the MSs for absolute 

standardised differences <0.25; if any absolute standardised difference is ≥0.25, 

violation of the balance assumption should be stated. Doubly robust methods combining 

propensity scores and outcome regression can be used to reduce bias arising from 

residual covariate imbalance after matching or weighting. 

Checking the inferential goal 

The inferential goal (i.e., target of inference) determines, in part, the choice of a specific 

propensity score method. The most common estimands are the average treatment effect 

(ATE) and the average treatment effect among treated (ATT). Adequation between 

inferential goal and chosen estimand (ATT or ATE) should be evaluated by the 

assessors. Adequation between propensity score method (matching, stratification, 

adjustment using the propensity score, or weighting) and the chosen estimand should 

also be assessed (e.g., matching primarily estimates ATT) [1]. 

Requirements for reporting 

● An assessment of the SAP with the propensity score methods used to adjust for 

confounding. 

● An assessment of the required assumptions of sufficient positivity, overlap, and 

balance. 

● The final decision whether the assumptions of positivity, overlap, and balance 

hold, with reasoning based on the analyses submitted by the HTD. 

6.2.2. Interpreting results of propensity score 

In the JCA report, when propensity score methods are used, qualitative evaluation must 

be first performed by the assessors, assessing the evidence and analyses submitted by 

the HTD to support the validity of assumptions (see Section 6.2.1). If underlying 

assumptions are considered to be violated, this must be explicitly reported before 

quantitative results are interpreted, because they would be biased. 

Quantitative results (effect estimates with confidence intervals) should be presented for 

both crude and propensity score analyses. Results of sensitivity analyses should always 

be presented to evaluate the robustness of results. Quantitative results based upon non-

randomised data assess the degree of statistical association, but a statistically significant 

association does not necessarily imply a causal relationship, because missing covariates 

may induce RoB. The JCA report should be factual and the assessors are not supposed 

to conclude on causality. 

Requirements for reporting 

● An assessment of the models used for confounder adjustment and estimation of 

the treatment effects and whether any limitations exist with regard to model 

choice. 
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● A clear description of the population in which the treatment effect has been 

estimated, and its relevance to the assessment question; any limitations should 

be clearly outlined, and potential biases arising from population differences 

should be reported (including an assessment of the likely magnitude and direction 

of any bias if possible). 

● An assessment of the effect estimates with confidence intervals for the crude 

data and after adjustment. 

● An assessment of the results of all sensitivity analyses. 
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