1 2 3 4 5 6	European Commission
7 8	
9	
10	
11	Scientific Committee on Consumer Safety
12	SCCS
14	
15	
16	OPINION on Triphenyl phosphate
17	(CAS No. 204-112-2, EC No. 115-86-6)
18	
19	
20	
21 22	
23	
24 25	
	Scientific Committees
	* * * * * * *
	on Consumer Safety
26 27	t on Health, Environmental and Emerging Risks
28	
29 30	
31	The SCCS adopted this document
32	during the plenary on 27 March 2024
33 34	
35	
36 37	
38	
39 40	
41	
42 43	
44	
45 46	
46	

2 ACKNOWLEDGMENTS

3 SCCS members listed below are acknowledged for their valuable contribution to the 4 5 6 7 finalisation of this Opinion.

For the Preliminary Opinion

8 9	SCCS members Dr U. Bernauer	
10 11	Dr L. Bodin Brof, O. Chaudhry	(SCCS Chair)
12	Prof P 1 Coenraads	(SCCS Vice-Chair, Chairperson of the WG and Rapporteur)
13	Dr J. Ezendam	
14	Dr E. Gaffet	
15	Prof. C. L. Galli	
16	Prof. E. Panteri	
17	Prof. V. Rogiers	(SCCS Vice-Chair)
18	Dr Ch. Rousselle	
19	Dr M. Stepnik	
20 21	Prof. T. Vannaecke	
21	Di S. Wijinioven	
23	SCCS external experts	
24	Dr E. Benfenati	
25	Dr N. Cabaton	
26	Prof. E. Corsini	
2/	Dr A. Koutsodimou	(Dopportour)
20 20	DI A. LOUIO Prof W. Liter	(Rapporteur)
30	Dr N von Goetz	
31		
32		
33		
34		
35		
36 27		
32		
39		
40		
41		
42		
43		
44 45		
45 46	All Declarations of Working	Group members are available on the following webpage:
47	Register of Commission exi	pert groups and other similar entities (europa.eu)
48		
49		

1	
2	1. ABSTRACT
3	
4 5 6	The SCCS concludes the following:
6 7 8 9 10	1. In light of the data provided and taking under consideration the concerns related to potential endocrine disrupting properties of Triphenyl Phosphate, does the SCCS consider Triphenyl Phosphate safe when used as a plasticiser in nail products up to a maximum concentration of 5%?
11 12 13	Based on the currently available information, it is not possible for the SCCS to conclude on the safety of Triphenyl phosphate because the genotoxicity potential cannot be excluded.
14	
15 16	2. Alternatively, what is according to the SCCS the maximum concentration considered safe for use of Triphenyl Phosphate in nail products?
17	/
18 19 20	<i>3. Does the SCCS have any further scientific concerns with regard to the use of Triphenyl Phosphate in nail products?</i>
21 22	The SCCS mandates do not address environmental aspects. Therefore, this assessment did not cover the safety of Triphenyl phosphate for the environment.
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	
41 42	Keywords: SCCS, scientific opinion, triphenyl phosphate, preservative, Regulation 1223/2009, CAS No. 204-112-2, EC No. 115-86-6)
43 44 45 46 47 48	Opinion to be cited as: SCCS (Scientific Committee on Consumer Safety), Opinion on triphenyl phosphate (CAS No. 204-112-2, EC No. 115-86-6) preliminary version of 27 March 2024, SCCS/1664/24

1 2 4 5 6 7 8	About the Scientific Committees Two independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems, which may pose an actual or potential threat. These Committees are: the Scientific Committee on Consumer Safety (SCCS) and the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER) and they are made up of scientists appointed in their personal capacity.
9 10 11	In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA).
12 13 14 15 16 17	SCCS The Committee shall provide Opinions on questions concerning health and safety risks (notably chemical, biological, mechanical and other physical risks) of non-food consumer products (for example cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).
19 20 21 22 23	Scientific Committee members Ulrike Bernauer, Laurent Bodin, Qasim Chaudhry, Pieter Jan Coenraads, Janine Ezendam, Eric Gaffet, Corrado Lodovico Galli, Eirini Panteri, Vera Rogiers, Christophe Rousselle, Maciej Stepnik, Tamara Vanhaecke, Susan Wijnhoven
24 25 26 27 28 29 30	Contact European Commission Health and Food Safety Directorate B: Public Health, Cancer and Health security Unit B3: Health monitoring and cooperation, Health networks L-2920 Luxembourg SANTE-SCCS@ec.europa.eu
31	© European Union, 2024
32	ISSN ISBN
33	Doi ND
34	
35 36 37 38	The opinions of the Scientific Committees present the views of the independent scientists who are members of the committees. They do not necessarily reflect the views of the European Commission. The opinions are published by the European Commission in their original language only.
39	
40 41	<u>SCCS - Opinions (europa.eu)</u>

TABLE	OF	CONTENT	'S
			-

1		TABLE OF CONTENTS
2	ACKN	IOWLEDGMENTS 2
3	1.	ABSTRACT
4	2.	MANDATE FROM THE EUROPEAN COMMISSION 6
5	3.	OPINION
6	3.3	CHEMICAL AND PHYSICAL SPECIFICATIONS 7
7		3.1.1 Chemical identity7
8		3.1.2 Physical form8
9		3.1.3 Molecular weight8
10		3.1.4 Purity, composition and substance codes8
11		3.1.5 Impurities / accompanying contaminants8
12		3.1.6 Solubility
13		3.1.7 Partition coefficient (Log Pow)8
14		3.1.8 Additional physical and chemical specifications8
15		3.1.9 Homogeneity and Stability8
16	3.2	2 TOXICOKINETICS
17		3.2.1 Dermal / percutaneous absorption9
18		3.2.2 Other studies on toxicokinetics
19	3.3	3 EXPOSURE ASSESSMENT
20		3.3.1 Function and uses
21		3.3.2 Calculation of SED/LED10
22	3.4	4 TOXICOLOGICAL EVALUATION
23		3.4.1. Irritation and corrosivity12
24		3.4.2 Skin sensitisation
25		3.4.3 Acute toxicity
26		3.4.4 Repeated dose toxicity15
27		3.4.5 Reproductive toxicity
28		3.4.13.4.6 Mutagenicity / genotoxicity
29		3.4.7 Carcinogenicity
30		3.4.8 Photo-induced toxicity
31		3.4.9 Human data
32		3.4.10 Special investigations: Endocrine disruption (ED) properties
33	3.5	SAFETY EVALUATION (INCLUDING CALCULATION OF THE MOS)
34 25	3.6	DISCUSSION
35	4.	CONCLUSION
30	5.	MINORITY OPINION
3/ مە	ь. ¬	KEFEKENCES
30 20	/.	GLUSSARY OF TERMS
29	ð.	LIST OF ADDREVIATIONS
4U		

2. MANDATE FROM THE EUROPEAN COMMISSION

4 **Background on substances with endocrine disrupting properties**

5 On 7 November 2018, the Commission adopted the review¹ of Regulation (EC) No 1223/2009 6 on cosmetic products ('Cosmetics Regulation') regarding substances with endocrine disrupting 7 (ED) properties. The review concluded that the Cosmetics Regulation provides the adequate 8 tools to regulate the use of cosmetic substances that present a potential risk for human 9 health, including when displaying ED properties.

10 The Cosmetics Regulation does not have explicit provisions on EDs. However, it provides a 11 regulatory framework with a view to ensuring a high level of protection of human health. 12 Environmental concerns that substances used in cosmetic products may raise are considered

13 through the application of Regulation (EC) No 1907/2006 ('REACH Regulation').

In the review, the Commission commits to establishing a priority list of potential EDs not 14 already covered by bans or restrictions in the Cosmetics Regulation for their subsequent 15 16 safety assessment. A priority list of 28 potential EDs in cosmetics was consolidated in early 2019 based on input provided through a stakeholder consultation. The Commission carried 17 18 out a public call for data in 2019² for 14 substances (Group A)³ and a second call in 2021⁴ for 10 substances (Group B)⁵ in preparation of the safety assessment of these substances. 19 20 Triphenyl Phosphate is one of the above-mentioned substances for which the call for data 21 took place.

22 100

1 2

3

23 Background on Triphenyl Phosphate

Triphenyl Phosphate (CAS No. 204-112-2, EC No. 115-86-6) is included in the European database for information on cosmetic substances and ingredients (CosIng) with the reported function of 'plasticiser', meaning that it is used to soften or make supple various synthetic polymers that otherwise could not be easily deformed, spread or worked out.

Triphenyl Phosphate is used in nail products, including nail polishes, enamels or manicuring preparations, but it has additional functions as fire retardant and plasticizer in various industrial and other consumer materials. Currently, Triphenyl Phosphate is not regulated under the Cosmetic Regulation (EC) No. 1223/2009.

32 During the call for data, stakeholders submitted scientific evidence to demonstrate the safety 33 of Triphenyl Phosphate as a plasticiser in nail products. The Commission requests the SCCS

34 to carry out a safety assessment on Triphenyl Phosphate in view of the information provided.

35 Terms of reference

- In light of the data provided and taking under consideration the concerns related to
 potential endocrine disrupting properties of Triphenyl Phosphate, does the SCCS
 consider Triphenyl Phosphate safe when used as a plasticiser in nail products up to a
 maximum concentration of 5%?
- Alternatively, what is according to the SCCS the maximum concentration considered
 safe for use of Triphenyl Phosphate in nail products?
- 42 3. Does the SCCS have any further scientific concerns with regard to the use of Triphenyl
 43 Phosphate in nail products?
- 44

¹https://ec.europa.eu/transparency/regdoc/rep/1/2018/EN/COM-2018-739-F1-EN-MAIN-PART-1.PDF ²https://ec.europa.eu/growth/content/call-data-ingredients-potential-endocrine-disrupting-properties-usedcosmetic%20products_en

³Benzophenone-3, kojic acid, 4-methylbenzylidene camphor, propylparaben, triclosan, Homosalate, octocrylene, triclocarban, butylated hydroxytoluene (BHT), benzophenone, homosalate, benzyl salicylate, genistein and daidzein ⁴https://ec.europa.eu/growth/content/call-data-ingredients-potential-endocrine-disrupting-properties-usedcosmetic-products-0 en

⁵Butylparaben, Methylparaben, Ethylhexyl Methoxycinnamate (EHMC)/Octylmethoxycinnamate (OMC)/Octinoxate, Benzophenone-1 (BP-1), Benzophenone-2 (BP-2), Benzophenone-4 (BP-4), Benzophenone-5 (BP-5), BHA/Butylated hydroxyanisole/tert-butyl-4-hydroxyanisole, Triphenyl Phosphate and Salicylic Acid

3. OPINION

In this Opinion, the abbreviation TPP will be used for triphenyl phosphate. In the public literature it is also abbreviated to TPHP.

7 3.1 CHEMICAL AND PHYSICAL SPECIFICATIONS

3.1.1.5 Structural formula

	3.1.1 Chemical identity	
	3.1.1.1 Primary name and/or INCI name	
	Triphenyl phosphate	
	Chemical class: organophosphates	
	3.1.1.2 Chemical names	
	Phenyl phosphate ((PhO) ₃ PO)	
	Phosphoric acid, triphenyl ester	
	Triphenoxyphosphine oxide	
	Triphenyl phosphate	
IUPAC name		
	Triphenyl phosphate	
	3.1.1.3 Trade names and abbreviations	
	Disflamoll TP	
	Celluflex TPP	
	TPP	
	ТРНР	
	EVERFOS TP	
	(see PubChem for more names)	
	3.1.1.4 CAS / EC number	
	CAS: 115-86-6 EC: 204-112-2	

1	
2	3.1.1.6 Empirical formula
4	C ₁₈ H ₁₅ O ₄ P or (C ₆ H ₅) ₃ PO ₄
5	3.1.2 Physical form
6 7	Colourless crystalline solid with an aromatic, phenol-like odour
8	3.1.3 Molecular weight
9	326.3 g/mol
10	3.1.4 Purity, composition and substance codes
11	>99.6%
12	3.1.5 Impurities / accompanying contaminants
13	Phenol and esters
14	3.1.6 Solubility
15	Water: 1.9 mg/L at 20°C (practically insoluble, or insoluble),
16	Soluble in ethanol, acetone, ether, benzene, carbon tetrachloride, chloroform
17	3.1.7 Partition coefficient (Log Pow)
18	Log Kow: 4.63 at 20°C
19	3.1.8 Additional physical and chemical specifications
20	Melting point: 49-50 °C
21 22	Boiling point: BP: 245 °C at 11 mm Hg Vapour pressure: 7 50 x 10 ⁻⁶ mmHg at 25°C
23	Density: 1.21 g/cm^3 at 50 °C
24	Viscosity: 7.8 cSt at 60° C
25	UV / visible light spectrum: max 236 – 238 nm
20	
27	3.1.9 Homogeneity and Stability
28 29 30	Stable under neutral and acidic conditions.
31	3.2 TOXICOKINETICS
32	The major metabolites of TPP are diphenyl phosphate (DPHP), monohydroxylated TPP and
33 34 35	dihydroxylated TPP. These metabolites, as well as TPP, have been detected in the urine of humans in various cohort studies.
36	According to the applicant, TPP is expected to have a moderate oral absorption, based on its
37	physicochemical parameters (i.e., low molecular weight of 226.29 g/mol, low water solubility
38 39	In the absence of oral absorption data, the SCCS will apply its default 50% bioavailability to
40	the NOAEL from oral studies.
41	

42 Distribution

- There are no studies available that specifically investigate the distribution of TPP within the
- 44 body following absorption. Given the small molecular size and high lipophilicity, TPP is

expected to be distributed to highly perfused organs/tissues (i.e., liver, kidney) once absorbed. This is supported by evidence from available repeated dose toxicity studies, where liver and kidney appear to be the target organs. However, significant toxicity was not observed in these studies and the bioaccumulation potential of the substance is expected to be low considering the metabolism and bioconcentration (BCF) values determined in fish (ECHA 2021).

3.2.1 Dermal / percutaneous absorption

The absorption potential of TPP was evaluated in human volunteers (two cohorts; 26 10 volunteers) exposed via fingernail painting. Urine samples (n=411) were collected before 11 and after application of a polish containing 0.97% w/w TPP and the metabolite diphenyl 12 phosphate (DPH) was measured. Before application, the geometric mean of DPH for the 13 control samples was 0.96 ng/mL. In a second part of the study, to determine relative 14 contributions of inhalation and dermal exposure, 10 volunteers also painted their own nails 15 16 or synthetic nails adhered to gloves on two separate occasions. Urine was collected for 24 17 hours following applications for metabolite analysis. The concentration of DPH was found to increase nearly seven-fold approximately 10-14 hours after fingernail painting (13.02 18 ng/mL). Urinary DPH was significantly diminished when the volunteers wore gloves, 19 20 suggesting that the primary route of exposure was dermal (Mendelsohn et al., 2016). 21

22 The in vitro percutaneous penetration of TPP was studied in human skin using Franz 23 diffusion cells. Skin areas of 2.64 cm² were exposed, and the average volume of the 24 receptor chamber was 16.6 mL. An aqueous solution composed of 0.9% sodium chloride, 25 5% bovine serum albumin, 40 mg/L hexamycin, and disodium phosphate buffer served as 26 receptor fluid. The entire skin surface was covered with 1000 ng (0.001 mg) TPP in 500 27 µL ethanol: toluene (4:1) solution (i.e., 0.0002% of TPP). The diffusion cells were studied at 24, 48, and 72 hours after dosing and the donor cell wash, epidermis, dermis, and receptor 28 fluid were analysed for the test substance content. The apparent flux was determined to be 29 30 0.093 ng cm⁻² h⁻¹. The permeability coefficients (kp) were 0.92×10^{-4} cm h⁻¹ and 3.3×10^{-4} cm 31 h^{-1} for receptor only and receptor and dermis, respectively. The results suggested that TPP tended to build up in the upper layers of the skin tissues. Little TPP permeated the skin and 32 33 reached the receptor fluid within 72 hours.

- 34 (Frederiksen et al., 2018)
- 35

7

8

9

According to the applicant, the above (Frederiksen 2018) study suggests a very low absorption of TPP via the dermal route. Based on the information from the above studies and the limited quantitative data, a maximum dermal absorption of 10% is considered as a conservative value for the exposure assessment.

40

41 SCCS comment

The study by Frederiksen *et al* is not in accordance with the SCCS basic criteria for dermal absorption. The tested concentration (in a mixture of organophosphate esters) was much lower than the intended use concentration. Considering these aspects, the default dermal absorption of 50% will be used in this Opinion for the skin adjacent to the nails.

46

3.2.1 3.2.2 Other studies on toxicokinetics

47

48 Metabolism

An *in vitro* metabolism study was conducted with TPP using rat liver microsomes. TPP at 0.0004M in ethanol served as a substrate to determine the extent of microsomal decomposition with and without NADPH and/or other enzyme systems. Degradants were characterised by gas chromatography. The results showed that TPP was easily decomposed by the rat liver microsomal fraction without NADPH. The metabolic reactions were inhibited almost completely by SKF-525A and carbon monoxide in the absence of NADPH, whereas KCN, NaN3, dipyridyl and EDTA showed little effect. It was therefore concluded that the mixed-function oxidase system in the microsomes plays a central role in the metabolism of TPP. The only major metabolite, obtained by hydrolysis, was diphenyl phosphate (DPH), which was not further decomposed by the microsomes. (Sasaki *et al.*, 1984)

5 In an *in vitro* metabolism study using human liver S9 fraction and microsomes, TPP 7 was mainly transformed to a diester metabolite by *O*-dearylation and to a hydroxylated 8 metabolite. (Van den Eede *et al.*, 2013)

10 The metabolism of TPP was investigated in a further in vitro study using primary human 11 hepatocytes. The liver cells were incubated for up to 2 hours in media containing 20 µM 12 TPP. Extracts of these materials were then analysed by liquid chromatography with mass spectrometry detection. DPH and mono and di- hydroxylated TPP proved to be the major 13 14 metabolites. The final DPH concentrations corresponded to less than half of the depletion of 15 TPP. Other metabolites, mainly sulphate and glucuronide conjugates, were formed at lower rates. The authors concluded to a low percentage of TPP depletion and slow hepatic 16 17 clearance. (Van den Eede et al., 2016)

18

9

19 **3.3 EXPOSURE ASSESSMENT**

20

21 3.3.1 Function and uses

22

Triphenyl phosphate has a function of 'plasticiser', meaning that it is used to soften or make supple various synthetic polymers that otherwise could not be easily deformed, spread or worked out. It is used in nail products, including nail polishes, enamels or manicuring preparations, but it has additional functions as fire retardant and plasticizer in various industrial and other consumer materials.

28

3.3.2 Calculation of SED/LED

29

The applicant stated that as TPP is intended to be used in nail polishes only, the dermal route is the major route of exposure. The exposure by inhalation is assumed to be an unlikely route of exposure due to the low vapour pressure and thus low volatility of TPP.

34 According to the applicant, consumer exposure to TPP via nail polish is expected to be 35 extremely low when used as intended with limited contact to skin by careful application to the nail plate only. As exposure to an ingredient in a nail polish through the nail plate is limited 36 37 (Brown et al., 2009; Kreutz et al., 2019; Thatai et al., 2016), the systemic bioavailability via 38 the nail plate may be considered as a negligible contribution compared to any contact with 39 skin. This is because, for any amount of the substance that penetrates in the nail structure 40 and then through the nail plate, there is a significant lag time for a substance to transverse 41 through the nail to become systemically bioavailable (Brown et al., 2009; Cutrín-Gómez et 42 al., 2018; Jackson, 2008; Kobayashi et al., 2004; Kobayashi et al., 1999; Kreutz et al., 2019; 43 Lee et al., 2019; McAuley et al., 2016; Mertin and Lippold, 1997; Palliyil et al., 2013). This 44 results in a negligible exposure on a daily basis compared to estimates of exposure to skin 45 around the nail from an application where direct contact (unintentionally) occurs.

For evaluating potential exposure via the skin, estimates from consumer applications can be considered (e.g., RIVM, 2006; Danish EPA, 2008). Dermal exposure to skin around the nail from consumer nail polish applications has been reported in the literature with a P50 value of 40 mg per application, and a P95 value of 58 mg (Ficheux *et al.*, 2014). This is similar to a default value of 50 mg proposed as a value for risk assessment in RIVM Cosmetics fact sheet (Bremmer *et al.*, 2006) or 9% of an applied nail product being in contact with skin around the nail (Danish EPA, 2008). As consumers can sometimes also apply additionally a base-coat and/or a top-coat, but with lower quantities of product use than the primary nail lacquer
(Ficheux *et al.*, 2014), doubling the default value of 50 mg is a conservative total estimate
for contact to nail polishes when accounting for additional coats applied in a single day.

Assuming that the application of multiple coats of nail polishes all containing TPP at 5% results in 100 mg total exposure of nail polish to skin in a day, the resulting amount of TPP in contact with the skin is calculated as 100 mg x 5% = 5 mg/day. When accounting for skin penetration of 10%, and adjusting for bodyweight, the resulting systemic exposure is calculated as 0.008 mg/kg bw/day.

11 SCCS comments

12

10

13 *Exposure through the nail plate.*

14

15 The SCCS agrees that penetration through the nail plate and the subsequent systemic exposure can be considered extremely low. Penetration through the nails by pharmaceuticals 16 17 (mainly anti-fungal agents) has generally been found to be insufficient to deliver the desired dosage. The nail plate is likely to act as a complex compact hydrophylic filter (Brown 2009). 18 Nail permeability is independent of lipophilicity, but clearly decreases with increasing 19 20 molecular weight (Kobayashi 2004). Flux rates through the nail plates were determined by Kobayashi 2004 for caffeine as 3.64 and by Brown 2009 for methylparaben as 6.05 and for 21 Terbenafine (which has a molecular weight almost similar to TPP) as 0.55 microgram per cm2 22 23 per hour. In view of these studies, and considering that most of the TPP will remain lodged in 24 the nail polish/lacquer polymers, it can be considered that only negligible amounts will 25 penetrate the nail plate.

- It is as yet unknown whether filing or sanding ('roughening') of the nails before applicationwill lead to enhanced penetration of TPP.
- 28
- 29 *Exposure through the skin adjacent to the nails.*

As explained in 3.2.1, the SCCS will use a skin penetration of 50%. Therefore, a systemic exposure dose (SED) of 0.04 mg/kg bw/d will be used for MoS calculation.

- 32
- 33 Inhalation exposure
- 34 A few studies have attempted to assess the exposure to TPP via ambient air.
- The concentration of TPP in bulk air in one nail salon was reported to be 43.7 ng/m³ (Kim 2019).
- 37 A study using urine metabolites as a proxy for inhalation exposure in volunteers who applied
- 38 nail polish on gloved fingers (to eliminate dermal exposure) showed no difference with 39 controls (Mendelsohn 2016).
- 40 The USA National Institute for Occupational Safety and Health (NIOSH) measured TPP in the
- 41 ambient air in 4 nail salons for 12 workers in nail salons. The geometric mean of TPP in air
- 42 was 7.39 ng/m³ (max 21.85 ng/m³) (Fairfield-Estill 2021)
- Based on this, the SCCS agrees that exposure from inhalation is also likely to be negligible.
- 45 In occupational settings, the 8-hr time weighted inhalation exposure limit for the inhalable
- 46 fraction is 3 mg/m3 (OECD-SIDS 2002). The German Technical Guidelines of the Ministry of
 47 Labour and Social Affairs has set the limit in respirable air at 12.5 mg/m3 (TRGS-900, 2023).
- 48

TOXICOLOGICAL EVALUATION 1 3.4

2

3 In conformity with the ban on animal studies after 2013, the applicant has not submitted such 4 data in its dossier. When such data were available from other sources, the SCCS took it into

consideration for this Opinion. 5

6 According to ECHA 2021, the self-classification indicates hazard statements H400 and H410: 7 very toxic to aquatic life.

8

9

3.4.1. Irritation and corrosivity

10 11 12

3.4.1.1 Skin irritation

13 Undiluted TPP was not irritating to the skin in several studies. See the Table below for an 14 overview.

15 16 17

Table 1. Skin irritation studies (Adapted from CIR, 2018)

Test system	Exposure (Concentration/ Dose/Vehicle	Method	Results	Reference
3 New Zealand White rabbits; sex not reported	99.7% pure; 500 mg; in water	Dermal irritation/ corrosion study in accordance with OECD TG 404; test substance applied to shaved rabbit skin for 4 hours and semi- occlusive; test area = 6 cm ²	Not irritating	(OECD SIDS, 2002)
6 Albino rabbits; sex not reported	500 mg; concentration and vehicle not reported	Dermal irritation/ corrosion study; test substance applied to shaved intact and abraded skin for 24 hours and semi-occlusive	Not irritating	(OECD SIDS, 2002)
6 New Zealand White rabbits; 3/sex	50 mg/mL suspension in 1.0 mL/patch; 50% aqueous solution of polyethylene glycol	Dermal irritation/ corrosion study; test substance applied to shaved intact and abraded skin for 24 hours and occluded	Not irritating	(OECD SIDS, 2002)
25 male CF-1 mice	70% solution in alcohol	Dermal irritation study; semi- occluded patch for 24 to 72 hours; no further details provided	Not irritating	(Sutton <i>et al.,</i> 1960)

18 19

- 20
- 21

22 23

According to the applicant, undiluted TPP is minimally irritating to the eye.

3.4.1.2 Mucous membrane irritation / eye irritation

Table 2. Eye irritation studies (Adapted from CIR, 2018)

Test system	Exposure (Concentration/ Dose/Vehicle	Method	Results	Reference
3 New Zealand White rabbits; sex not specified	99.7% pure; 70 mg; neat	Ocular irritation study in accordance with OECD TG 405 ; test substance applied for 24 hours; eyes washed after 24 hours and examined for 7 days post- application	Not irritating; Mild reactions of the mucous membranes and the cornea observed immediately after exposure was considered mechanically induced effects	(OECD SIDS, 2002)
6 New Zealand White rabbits; 3/sex	100 mg; neat	Ocular irritation study according to the US FDA Hazardous Substances guideline; test substance was washed in 3/6 eyes after 30 seconds	Minimally irritating; Mild conjunctival effects (slight redness in all rabbits) observed 24 hours post instillation which cleared in all but 1 unwashed eye by 72 hours (remaining eye cleared by day 6); slight corneal opacity observed in 1 unwashed eye at 24 hours which cleared by 48 hours	(OECD SIDS, 2002)
9 albino rabbits; sex not specified	100 mg/eye; neat	Ocular irritation study; 3 eyes washed 4 seconds after instillation; eyes examined 24, 48, 72 hrs and 7 days post installation.	Minimally irritating; Mild conjunctival effects (slight redness 6/6, slight discharge 4/6) at 24 h ours in unwashed eyes which cleared by 72 hrs, no effects in washed eyes	(OECD SIDS, 2002)

3 4

5

6

7 8

9

3.4.2 Skin sensitisation

The skin sensitization potential of TPP was assessed based on a GLP compliant Guinea Pig Maximisation Test (GPMT). No evidence of skin sensitisation was observed following application of 75% test substance in arachis oil.

- 12 Magnusson & Kligman Guinea Pig Maximisation test
- 13 Guideline: OECD Test Guideline 406
- 14 Species/strain: Guinea pig/ Dunkin-Hartley (Hsd Poc:DH (SPF)
- 15 Group size: 5 male animals in the control, 10 male animals in the test groups
- 16 Test substance: Triphenyl phosphate
- 17 Purity Not specified
- 18 Batch F21022
- 19Vehicle:(for intradermal) Arachis oil or FCA / 0.9% aqueous NaCI solution (1:1)
- 20 Induction: intradermal, 5% w/w in arachis oil or FCA / 0.9% saline (1:1)
- 21 Induction: epicutaneous, 75% w/w in arachis oil, occlusive
- 22 Challenge: 75 and 50% in arachis oil, epicutaneous, occlusive
- 23 Positive control: 2-Mercaptobenothiazole
- 24 GLP: Yes
- 25 Study period: 2001

Results: The challenge with the 75 and 50% w/w test substance on the flanks did not cause
any skin reactions in either the control or test group animals. No data were available on the
treatment related impact on body weight gain and signs of toxicity.

- 5 Conclusion: Under the conditions of the study, TPP did not trigger any skin reactions indicative 6 of a skin sensitisation response.
- 7 (OECD SIDS, 2002)

9 In a non-validated mouse ear swelling test, dose-dependent elicitation responses were 10 observed at concentrations of 3 or 10%. This study was not considered reliable because of an 11 insufficient description of procedure & results and because of deviations from accepted 12 procedures regarding challenge concentrations (OECD-SIDS 2002).

13

8

14 On the basis of the available results, TPP is not considered to have a skin sensitisation 15 potential.

16

17 SCCS comment

18 The SCCS agrees with the Applicant's conclusion regarding the lack of skin sensitisation 19 potential of TPP. This is also in view of the absence of any published reports that convincingly 20 show sensitisation in humans.

21

22 **3.4.3 Acute toxicity**

23 24

3.4.3.1 Acute oral toxicity

Acute oral toxicity studies with TPP are available in the rat, mouse, and guinea pig. The database comprises six non-guideline studies, as summarised in the Table below. According to the applicant, with oral LC50 values consistently above 3000 mg/kg, the available information suggests that TPP has a low potential for acute toxicity.

Table 3. Acute oral toxicity studies (Adapted from CIR, 2018; ECHA, 2021)

31

Species	Exposure	Results	LD50 (mg/kg bw)	Reference
Rat	20000 mg/kg bw (25% aqueous solution); 5 animals/sex; Wistar rats via intragastric intubation	No premature deaths observed; gross examination revealed sporadic visceral haemorrhages	>20000	(OECD SIDS, 2002)
Rat	Maximum dose level 15800 mg/kg bw administered in corn oil; male and female Sprague Dawley rats via gastric intubation; Number of animals and concentration not reported	Mortality and systemic toxicity data not provided	10800	(OECD SIDS, 2002)
Rat	2500, 5000 mg/kg in 20% emulsion with gum Arabic; 5 animals/sex/group; gavage; strain not reported	No premature deaths and no clinical symptoms observed	5000	(OECD SIDS, 2002)

Rat	3000 mg/kg bw; 11 male Holtzman rats; Concentration and vehicle not reported	1 death recorded within a month of exposure, no clinical symptoms observed	>3000	(Sutton <i>et al.</i> , 1960)
Mouse	20% emulsion with gum Arabic; 2500, 5000 mg/kg; 5 animals/sex/group; gavage; strain not reported	Slight stupor observed; no premature deaths reported	>5000	(OECD SIDS, 2002)
Guinea pig	3000, 4000 mg/kg bw in corn oil; 5 male albino guinea pigs; Concentration not reported	No premature deaths and no clinical symptoms observed	>4000	(Sutton <i>et al.</i> , 1960)

1

3.4.3.2 Acute dermal toxicity

6 The acute dermal toxicity of triphenyl phosphate (purity not specified) was evaluated via the 7 dermal route of exposure. A single dose of 10000 mg/kg bw was occlusively applied to the 8 intact or abraded skin of 10 albino rabbits and the animals were observed for mortality and 9 clinical signs for 14 days. Necropsy with gross pathological examinations were performed 10 after sacrificing the animals at study Day 14.

11 No mortalities, clinical signs of systemic toxicity or skin irritation were observed at 10000 12 mg/kg bw.

13 Under the conditions of the study, the acute dermal LD50 of TPP was considered to 14 be greater than 10000 mg/kg bw in rabbits (OECD SIDS, 2002).

15 16 The acute dermal toxicity of triphenyl phosphate (purity not specified) was evaluated in 17 New Zealand White rabbits. A single dose of 7900 mg/kg bw was occlusively applied to 18 the intact skin of male and female rabbits for 24 hours and the animals were observed for 19 mortality, and clinical signs for 14 days. Necropsy with gross pathological examinations were 20 performed after sacrificing the animals at study Day 14.

No mortalities, clinical signs of systemic toxicity or skin irritation were observed at 7900
 mg/kg bw.

The acute dermal LD50 of TPP was determined to be greater than 7900 mg/kg bw in male and female rabbits (OECD SIDS 2002).

25 26

27

3.4.3.3 Acute inhalation toxicity

Triphenyl phosphate (purity not specified) was evaluated for acute inhalation toxicity in Wistar rats. The rats (5 males and 5 females) were exposed to the test substance in dust form for 1 hour at a nominal concentration of 200000 mg/m³. The animals were observed for signs of toxicity during the exposure period.

- No mortality and clinical signs of systemic toxicity were observed during the study. The acute
- 33 inhalation LC50 of TPP in rats can be considered to be greater than 200000 mg/ m^3
- 34 (ref: OECD SIDS, 2002).
- 35

36 3.4.4 Repeated dose toxicity

37

The USA National Toxicology Program (NTP) conducted a 5-day study on triphenyl phosphate in rats (see 3.4.10, Special investigations). The goal of this study was to provide a rapid assessment of *in vivo* biological potency by evaluating a combination of traditional

1 toxicological endpoints and transcriptomics analysis to broadly query the biological space for 2 any dose-related change. The report stated that as the LOEL for the study, cholinesterase 3 inhibition appeared to be the most sensitive apical measure; further studies are warranted to 4 assess cholinesterase effects at concentrations <55 mg/kg to obtain an accurate point of 5 departure (NTP 2018).

- 6
- 7 8

3.4.4.1 Repeated dose (21-28 days) oral / dermal / inhalation toxicity

- 9 10 1.
- 11 Dermal

12 A dermal subacute toxicity of triphenyl phosphate (purity not specified) was investigated in a GLP compliant study similar to an OECD Test Guideline 410 in New Zealand White rabbits. 13 14 Ten male and ten female animals per group were treated on clipped, intact (half of the 15 animals) and abraded skin (half of the animals), 6 hours/day, five times/week for three weeks 16 with doses of 0, 100 and 1000 mg/kg bw/day under open conditions for 21-23 days. Samples 17 of the test substance were taken one week pre-test and on the last day of the study and sent 18 to the sponsor for analytical confirmation of the test substance. The test substance was 19 applied as a 50% (w/v) solution in ethanol. Control animals were treated with 2 mL/kg bw/day ethanol alone. During the treatment period, animals were observed for clinical signs, 20 21 mortality, body weight and food consumption. Haematological, biochemical, ophthalmological examination and urinalysis were performed. At termination of treatment, all animals were 22 23 sacrificed and macroscopically examined, organs were weighed, and comprehensive 24 histopathology was performed.

25 Results:

No mortalities, clinical signs, body weight and food consumption changes were observed 26 27 during the study. No changes in haematological, biochemical, ophthalmological examination 28 and urinalysis were observed up to high dose. Depression of acetyl cholinesterase in plasma, 29 ervthrocytes, and brain was observed in males and females of treated rabbits. No clinical or 30 histological correlation was found. No quantitative data were reported for this endpoint. This

- effect was not considered as a toxicologically relevant effect. 31
- 32 Conclusion:
- 33 Under the conditions of the study, the NOAEL for TPP was established by the study authors 34 at 1000 mg/kg bw/day in rabbits
- 35 (ref: OECD SIDS, 2002).
- 36
- 37

38 2.

39 Oral

40 The oral subacute toxicity of triphenyl phosphate (Disflamoll TP; purity: 99.6%) was 41 investigated in a 28-days GLP compliant OECD Test Guideline 407 feeding study. Wistar rats 42 (5/sex/group) were dosed daily via the diet at 0, 250, 1000 and 4000 ppm (equivalent to 43 23/39, 104/161 or 508/701 mg/kg bw/day in males/females) for 4 weeks. The doses or 44 concentration of the dietary test substance preparations was analysed. During the treatment 45 period, animals were observed for clinical signs, mortality, body weight and food consumption 46 at defined intervals. Samples for haematological and clinical-chemical examination were taken 47 on day 29 of treatment. Neurobehavioral parameters, functional observational battery (FOB) 48 was performed on day 26. At termination of treatment, all animals were sacrificed and 49 macroscopically examined, organs were weighed, and comprehensive histopathology was 50 performed.

51 Results:

52 The test substance was stable and homogenously distributed in the diet for the duration of

- 53 use. No mortalities or clinical signs of toxicity were observed during the study. There were no
- 54 remarkable changes in body weights or body weight gain in males at 23 mg/kg bw/day and
- 55 females receiving up to high dose. At 104 mg/kg bw/day and 701 mg/kg bw/day body weight 56

1 food intake were observed up to 104 and 161 mg/kg bw/day in males and females, 2 respectively.

There were no toxicologically relevant changes in red blood or in blood coagulation up to 508 and 701 mg/kg bw/day in male and females, respectively. A statistically increased mean for the monocytes was observed at 701 mg/kg bw/day in females, is considered incidental, because correlations to this finding are lacking. Mean ASAT activities decreased at 104 and 508 mg/kg bw/day in males. Mean cholesterol concentration increased in 508 mg/kg bw/day males.

- 10 No statistically significant changes were observed in the functional observation battery up to 11 high dose. There was no indication of test substance related changes in motor activity up to 12 high dose.
- 13

14 At necropsy, statistically significant increase in absolute and relative liver weights were observed in high dose males and females and the frequency of enlarged liver was increased 15 in males. These findings correlated with minimal to slight hypertrophy/cytoplasmic change of 16 17 periportal hepatocytes at 104 and 508 mg/kg bw/day in males and at 701 mg/kg bw/day in females. A swollen eosinophilic appearance with a homogenous dust like granulated 18 19 cytoplasm was observed in the periportal and partly midzonal areas of hepatocytes. Taken 20 together, indications of distinct changes in liver function were observed at 104 and 508 mg/kg bw/day in males and at 701 mg/kg bw/day in females. No toxicologically relevant organ 21 22 weight differences, gross and histopathological findings was observed in the remaining organs up to high dose group. Under the conditions described the NOEL for test substance was 23 24 established at 23 mg/kg bw/day for male and 161 mg/kg bw/day for female rats. The NOAEL 25 was established at 23 mg/kg bw/day for male based on effects on body weights and 701 26 mg/kg bw/day for female rats. 27

28 Conclusion:

Under the conditions of the study, the NOAEL for TPP was established by the study authors
at 250 ppm in males and 4000 ppm in females (i.e., 23 and 701 mg/kg bw/day in males and
females, respectively)

- 32 (Ref: ECHA, 2021)
- 33
- 34 35 **3.**

In a 30-day study on neurotoxicity (see also 3.4.10 Special investigations) internal lesions on 36 37 brain tissue due to TPP exposure were examined by a histopathological test. Weaned male 38 mice were exposed to 0, 50 or 150 mg/kg bw/d by oral gavage. According to the authors, no 39 remarkable neuronal lesions, were observed in the brain of the control group. Neurons in the 40 CA2 region of the hippocampus of the high TPP dosed group were arranged neatly and tightly, 41 but neural cell loss and karyopyknosis occurred in the DG region in the high dose group. The 42 same phenomenon was evident in the cortex. Both treatment groups showed a microglial invasion. In the thalamus, the tissue was slightly edematous in the high-dose group, and 43 44 blood vessels were slightly dilated and congested. 45 (Ref: Liu 2020)

46

47 SCCS comment on study 3

The number of animals in each dosing group in this study is not clear, and neither is number of animals subjected to histopathological examination: it seems to be one animal per group.

3 4 3.4.4.2 Sub-chronic (90 days) oral toxicity

- Taken from ANSES 2019 and ECHA 2021):
- 5 6 **1**.

In an unpublished study report according to OECD 408 (Unpublished report: Van Otterdijk FM, 2015, summarized in the registration report), Wistar rats (10/sex/dose) were treated during 90 days with TPP for 90 consecutive days by dietary administration at dose levels of 0, 300, 1500 and 7500 ppm. The mean estimated dose over the study period was 0, 20, 105, and 583 mg/kg bw/d for males and 0, 22, 117, and 632 mg/kg bw/d for females. According to the authors (no other precision given):

- No treatment-related mortality occurred, and no toxicologically relevant clinical signs
 were noted;
- The magnitude of liver weight was increased at 7500 ppm (approximately 30 and 21% for males and females, respectively).
- Histopathological findings in the liver consisted of centrilobular hepatocellular hypertrophy of the liver in males at 1500 and 7500 ppm and in females at 7500 ppm, accompanied by enlargement and red brown discolouration of the liver and higher liver weight at necropsy at 7500 ppm;
- Changes in clinical biochemistry parameters consisted of higher total proteins and
 calcium levels in males at 7500 ppm, and higher cholesterol concentration in males and
 females at 7500 ppm, and in males also at 1500 ppm.
- Morphological findings in the thyroid gland consisted of increased incidence and/or
 severity of follicular cell hypertrophy in males at 1500 and 7500 ppm (up to slight
 degree), which might be secondary to the hepatocellular hypertrophy and is not
 considered to be adverse. Necropsy of males at 7500 ppm showed enlargement and
 higher weight of the thyroid gland.
- 29

Based on the liver effects, particularly centrilobular hypertrophy observed at 1500 ppm in line with the increase in liver weight at 7500 ppm, a no observed adverse effect level (NOAEL) of 20 and 22 mg/kg (for males and females respectively) was established. In the particular case of this dossier, the reporters considered that the centrilobular hypertrophy identified, as the first effect impacting the liver, is significative, especially when considering the other effects observed on rodents in fish.

36 (Ref: ANSES 2019, ECHA 2021). 37

38 39 **2**.

The subchronic oral toxicity of triphenyl phosphate (purity not specified) was investigated in a 1986 non-guideline dietary study in male rats. Sprague-Dawley rats (10 males/group) were fed a diet containing 0.25, 0.5, 0.75 or 1% (equivalent to 161, 345, 517, 711 mg/kg bw/day) of test substance for four months. During the treatment period, animals were observed for clinical signs, mortality, body weight and food consumption. The neurotoxicity was assessed at the end of every month in open field, accelerating rotarod, forelimb grip strength and negative geotaxis examinations.

47 Results:

48 There were no toxicologically relevant clinical signs observed or deaths reported during the

49 study. Change in the body weight was observed in animals at 0.5% (345 mg/kg bw/d). At 50 the dose level of 0.5 to 1% slight but statistically significant reduction in growth rate was

50 the dose level of 0.5 to 1% slig 51 detected as the only change.

52 Only limited data are reported and several standard parameters of repeated dose toxicity 53 such as organ weight measurement and histopathology of organs as well as haematology and 54 clinical chemistry other than serum proteins were not determined.

- 55 Under the conditions of the study, the NOAEL for TPP was established by the study authors
- 56 at 161 mg/kg bw/day in male rats.

57

Ref: Sobotka 1986

4

9

SCCS comment

The SCCS will use the NOAEL of 20 mg/kg bw/d, derived from the above-mentioned (1) 90day guideline study for the calculation of the margin of safety (MoS).

3.4.4.3 Chronic (> 12 months) toxicity

10 / 11

3.4.5 Reproductive toxicity

13 14 15

12

3.4.5.1 Fertility and reproduction toxicity

16 Taken from ANSES 2019, based on Welsh et al 1987:

17 Fertility and developmental toxicity were examined in a dietary study in Sprague- Dawley rats 18 at doses of 0, 166, 341, 516 or 690 mg/kg bw/day (Welsh et al. 1987). Forty males and 40 19 females per group were treated for 3 months. Upon completion of the subchronic phase of 20 the experiment, animals receiving identical diets were cohabitated in a 1:1 sex-ratio in the 21 afternoon. The following morning, females were examined for the presence of sperm. The day 22 of finding sperm was designated as day 0 of gestation. The animals continued to receive the 23 test diets throughout mating and gestation. On day 20 of gestation, dams were examined 24 externally and then sacrificed by carbon dioxide asphyxiation.

25 Body weights were measured and food cups were weighed on days 7 and 14 and before 26 cesarean sections on day 20 of gestation. Daily observations were made on the dams and any 27 changes in the general appearance, health or behaviour of the animals were noted. A 28 laparotomy was performed on each followed by an examination of the major organs. Ovaries 29 were removed and examined for numbers of corpora lutea. Uterine blood vessels were 30 clamped off and the entire gravid uterus was excised and weighed. The number and the 31 position of fetuses (viable or dead) and resorption sites (early or late) were recorded. Fetuses 32 were examined individually for gross abnormalities. For each fetus, uterine position, sex, 33 weight and crown-rump were recorded. Runts were defined as any fetus weighing less than 34 70% of the average weight of the male or female controls. No significant signs of parental 35 toxicity were detected. There were no effects on pregnancy rate, number of viable fetuses 36 and implants, corpora lutea, implants, implantation efficiency, number of early and late 37 deaths, or average percent resorbed. There were no significant differences between treated 38 groups and controls in the incidence of specific sternebral variations or in the average number 39 of sternebral variations per litter.

40 It should be noted that male and female pups from all treated groups tended to weigh more 41 than their respective controls. However, the difference was significant only for males in the 42 341 and 690 mg/kg bw/day groups. Furthermore, all treated groups had significantly more 43 fetuses exhibiting moderate hydroureter and enlarged ureters (in the region adjacent to the 44 kidney) than the control group, but the incidence of these variations seems not related to 45 dose since a greater proportion of fetuses were affected in the two lowest dose levels than in 46 the two highest levels. The authors explained this by the fact that the reference incidence in 47 the controls was also high and there was no clear dose response. The significance of these 48 effects remains unclear.

49 (Ref: ANSES 2019)

50

3.4.5.2 Developmental Toxicity

3 4 1.

5 Taken from ANSES 2019, based on Unpublished report 2015-a:

6 A prenatal developmental toxicity study was conducted in rabbits by oral gavage. In a dose-7 range-finding study doses of 0, 83, 250 and 750 mg/kg bw/day TPP were administered. All 8 females at 750 mg/kg bw/day died. Therefore, no litters at this dose level were available for 9 fetal examination. At 250 mg/kg bw/day, one female (euthanized) died; showing no food 10 intake and reduced faeces production during the last week, body weight loss, pale appearance 11 and pale faeces production. Another female at 250 mg/kg bw/day was noted with reduced 12 production of (pale) faeces and a pale appearance. These two females were the most sensitive 13 to treatment based on data on body weight and food consumption. There were no fetal 14 findings up to 250 mg/kg bw/day that were considered to be toxicologically relevant (raw 15 data not available).

16 Based on this range-finding study, doses of 32, 80 and 200 mg/kg bw/day were selected for 17 the main study. At these doses, the only sign of maternal toxicity reported was a reduction

18 in body weights and (corrected) body weight gain at 200 mg/kg/day mainly due to a marked

19 effect in two females. A reduction of faeces production and food consumption were also noted 20 but without a dose- response relationship.

21 The premature loss of 1 litter (litter 78 with 11 dead foetuses) at 200 mg/kg bw/day was 22 considered to be related to maternal toxicity. This animal showed severely reduced food 23 consumption during the week prior to delivery (21 g /day on days 23-26 and 7 g/day on days

- 26-29 compared with 112 g/day at the start of the study). The only other dead foetuses in 24 25 this study were one fetus in litter 23 at 32 mg/kg bw/day and one fetus in litter 70 at 200
- 26 mg/kg bw/day. A higher incidence of lungs with absent accessory lung lobe(s) was reported
- 27 in the 200 mg/kg bw/day group. Only one foetus in the low-dose and control groups had this 28 malformation, but the occurrence in the high-dose group was 3 (3) foetuses (litter) making a
- 29 litter incidence rate of 1.6%. Furthermore, two of the dead foetuses from the prematurely 30 delivered litter (litter 78) had also presented with the malformation, thus making the total 31 5(4) foetuses (litter). This increased the litter incidence rate to 2.4% which is above the 32 historical control maximum of 1.7%. The historical control data from this laboratory consisted
- 33 of 17 developmental studies with this strain in which in total 2787 (315) control fetuses 34 (litters) were examined. In 10 of these studies fetuses with absent accessory lung lobe(s) 35 were found, i.e. in total 20 (17) control fetuses (litter). The highest occurrence of this finding 36 in the historical control data was 3 (3) rabbits (litters) from two studies. Therefore, the 37 incidence rate in the 200 mg/kg bw/day group was slightly above the relevant historical

control range thus ANSES considers this finding toxicologically relevant. In the high-dose 38 39 group there was an increase in the following parameters (which could potentially indicate 40 delayed development): unossified tarsals, metacarpals and pubis; these changes were slight,

- 41 not of statistical significance and could often be explained by lower foetal body weights. There 42 were no other findings of concern for developmental toxicity. A NOAEL for maternal and
- 43 developmental toxicity could be set at 80 mg/kg bw/day.
- 44 (Ref: ANSES 2019)
- 45
- 46

47 2.

- 48 Gestational TPP exposure in mice
- 49 Guideline:
- / 50 Species: pregnant C57B1/6 mice
- 51 Exposure: intraperitoneal triphenylphosphate on gestational day 8, 10, 12 and 14
- 52 Dose: 0, 5, 25 or 50 mg/kg bw/d
- 53 Timing: Dams euthanized on GD19, fetuses euthanized after 1 hour in incubator 54 Target in dams: Weight of organs. Tissue analysis of liver

1 Target in fetus: Weight, litter size, sex ratio, gross morphological defects, AGD

- 2 Year: 2018 (publication)
- 3 4

Teratogenic outcome was the second aim of this study. The first aim was to investigate whether TPP exposure results in Insulin-like growth factor signaling (see 3.4.12 Special investigations: metabolism).

6 7

5

According to the authors, maternal weight gains as well as maternal organ weights of each of
the exposure groups showed no statistically significant treatment effects, suggesting that
these doses of TPP are not acutely toxic to the dams.

The effects of increasing doses of TPP on resorptions, gross morphological defects, skeletal 11 12 defects fetal weights, crown rump length, placental weights and anogenital index showed no 13 statistical differences across all exposure groups, except for placental weights. A significant increase in placental weights of mice exposed to 25 mg/kg compared to the unexposed 14 15 controls was found. When normalized to fetal weight, as measured by the fetus to placenta weight ratio, there was a significant decrease in this ratio in mice exposed to 25 mg/kg 16 17 compared to unexposed controls, indicating that this increase in placenta size did not coincide 18 with an increase in fetal weight.

19 The authors concluded that TPP does not cause overt structural developmental toxicity.

- 20 (Ref: Philbrook 2018)
- 21 22
- 23 **3.**

Two generation 28-day study in rats.

In the context of a larger flame-retardant program of the US National Toxicology Program
(NTP) program the study was conducted to evaluate the short-term perinatal toxicity of
Triphenyl phosphate (TPHP or TPP) and Isopropylated phenyl phosphate (IPP) as an initial
step.

30 31 In their abstract, the authors state that currently there are no data to evaluate potential risk from exposure to either TPHP or IPP during fetal development. Their short-term 32 33 perinatal studies in rats aim to provide preliminary toxicity data for TPP and IPP, including 34 information on transfer to fetus/offspring and across the pup blood brain barrier. In 35 separate experiments, TPP or IPP were administered via dosed feed at concentrations 0, 1000, 3000, 10,000, 15,000 or 30,000 ppm to time-mated Hsd:Sprague Dawley® SD® rats 36 37 from gestation day (GD) 6 through postnatal day (PND) 28; offspring were provided dosed 38 feed at the same concentration as their dam (PND28-PND 56). TPHP and IPP-related toxicity 39 resulted in removal of both 30,000 ppm groups on GD12 and 15,000 ppm IPP group after 40 parturition. Body weight and organ weights were impacted with exposure in remaining 41 dams. Reproductive performance was perturbed at \geq 10,000 ppm TPHP and all IPP exposure 42 groups. In offspring, both TPP and IPP-related toxicity was noted in pups at $\geq 10,000$ ppm 43 as well as reduction in bodyweights, delays in pubertal endpoints, and/or reduced 44 cholinesterase enzyme activity starting at 1000 ppm TPHP or IPP. Preliminary internal dose 45 assessment indicated gestational and lactational transfer following exposure to TPHP or IPP. 46 These findings demonstrate that offspring development is sensitive to 1000 ppm TPHP or 47 IPP exposure.

48

According to the authors, dose selection was intended to sufficiently challenge exposed
animals and capture dose-response information for maternal and pup toxicity including a
high enough top-dose level to be conclusive for hazard classification. The authors state that
due to effects observed in all exposure groups, a no observed adverse effect level (NOAEL)
could not be determined in the current studies.

- 54 (Ref: Witchey 2023)
- 55

1 SCCS comment on study 3

2 The publication does not state the above-mentioned feed intakes in terms of intake of TPHP

- 3 in mg/kg bw/d. However, from a graphical presentation of the food consumption it can be 4 deduced that in the 1000 ppm administered dose feeding the exposure to TPP in the dams 5 during gestation was approximately 80 mg/kg bw/d to approximately 200 mg/kg bw/d during
- 6 lactation.

7 For the higher-administered dose groups the TPP intake was, respectively, in the order of 300 8 to 600 mg/kg bw/d, 1000 to 2000 mg/kg bw/d and 1500 to 3000 mg/kg bw/d.

9 The cholinesterases activity in the blood from dams decreased in a dose-dependent manner, reaching significance at \geq 3000 ppm TPP, corresponding to an intake of approximately 300 10

(gestation phase) to 600 (lactation phase) mg/kg bw/d. The reduction in offspring 11 12 cholinesterases activity only reached significance in the BChE of 15000ppm (i.e. 1500 to 3000 mg/kg bw/d) TPHP exposed females. In the offspring, in general a reduction of brain AChE 13 and BChE activity occurred as the TPHP concentration increased. 14

15 16

17 SCCS overall comment

18 The SCCS accepts the NOAEL for maternal and developmental toxicity of 80 mg/kg bw/d, as 19 set by ANSES.

- 20
- 21

22

23

24

3.4.6 Mutagenicity / genotoxicity

3.4.6.1 Mutagenicity / genotoxicity in vitro

25 26

Gene mutation (Ames test and mammalian cell gene mutation assays)

27 Several studies have been reported in the literature on gene mutation and are summarised 28 in Table 4.

- 29
- Table 4. Summary of gene mutation tests reported on TPP. 30

Concentrations	Strains	Method	Result	Reference
plate incorporation assay: 0, 50, 160, 500,	<i>S. typhimurium</i> TA 1535, TA 1537, TA	-/+ S9 mix	Negative	ECHA AMES
1000, 5000 µg/plate	102	0ECD 471		
preincubation assay: 0, 50, 160, 500, 1600, 5000 µg/tube		GLP compliant		
plate incorporation: 1 -	<i>S. typhimurium</i> TA 98. TA 100. TA	-/+ S9 mix	Negative	OECD SIDS, 2002
1000 µ3, place	1535, TA 1537, TA 1538	OECD 471		
plate test and preincubation test: 50 -	<i>S. typhimurium</i> TA 98, TA 100	-/+ S9 mix	Negative	OECD SIDS, 2002
5000 µg/plate		OECD 471		
preincubation assay: up to 10000 µg/plate	<i>S. typhimurium</i> TA 98, TA 100, TA	-/+ S9 mix	Negative	Zeiger <i>et al.</i> , 1987
	1535, TA 1537	OECD 471		
-S9 mix: 3.13 - 50 µg/mL	Mouse lymphoma L5178Y cells	-/+ S9 mix	Negative	ECHA 2021
		OECD 476		OECD SIDS, 2002

+S9 mix: 6.25 - 75		
µg/mL		

SCCS comment on gene mutations

Several *in vitro* experimental mutagenicity tests show that TPP is not mutagenic in bacterial cells or mammalian cells.

In vitro Chromosomal damage

Study #1- chromosomal aberrations

The clastogenic potential of the test item was evaluated in a chromosome aberration test in vitro according to OECD TG 473. For the short treatment, Chinese hamster V79 cells were exposed in the absence of S9 mix during 4 hours to concentrations of 3.5, 7, 14, 17.5 and 21 µg/mL of the test item, media were changed and cultures from all concentrations were harvested after 18 hours of treatment. In addition, cultures exposed to 14, 17.5 and 21 µg/mL were harvested 30 hours after treatment. In the presence of S9 mix, cultures were exposed for 4 hours to concentrations of 10, 20, 40, 50 and 60 µg/mL. C None of the cultures treated with the test item in the presence and absence of S9 mix exhibited biologically relevant or 18 19 statistically increased numbers of aberrant metaphases. The positive controls induced 20 clastogenic effects and demonstrated the sensitivity of the test system and the activity of the 21 used S9 mix. Based on this study, triphenyl phosphate was considered by the Applicant not 22 to be clastogenic for mammalian cells in vitro.

23 (Ref: ECHA 2021)

25 SCCS comment on Study #1

26 The SCCS, after having examined the full study report, identified the following limitations:

- No information is provided about the cell cycle, which is particularly relevant to long exposure. In view of the average doubling time of V79 cells (usually at least 12-14 h; https://www.atcc.org/products/ccl-93), the time of harvesting might be too short to yield an adequate number of duplicated cells, harvest after 18h incubation might not be appropriate for V79 cells.
- For the 4h exposure and harvesting at 30h, the level of cytotoxicity observed at the
 concentrations tested (survival index of 34,2 or 30,6% corresponding to cytotoxicity 65 69%) do not adequately justify the top dose-selection for the micronucleus analysis.
- The current version of OECD TG 473 (adopted in 2016) recommends that at least 300
 well-spread metaphases should be scored per concentration, but in this study, 200
 metaphases were analysed. The study was in accordance with TG 473 at the time it was
 conducted, but according to current standards, the lower number of metaphases scored
 may imply that the test was not sensitive enough to detect a weak mutagenic effect.
- 41

42 Study #2 - Micronucleus test 43

In a study published in 2023 (after the submission of the applicant's dossier), the genotoxicity
of TPP in several mammalian cell lines and its relevance to CYP/ sulfotransferase (SULT)
activities were investigated (Xie *et al.*, 2023).

The results indicate that TPP induced micronucleus formation at $\geq 1 \ \mu$ M concentrations in a human hepatoma (C3A, endogenous CYPs being substantial) cell line, which was abolished by the CYPs inhibitor 1-aminobenzotriazole. In the cell line HepG2 (parental to C3A with lower CYP expression) TPP was inactive up to 10 μ M, while pretreatment with ethanol (CYP2E1 inducer), PCB 126 (CYP1A inducer), or rifampicin (CYP3A inducer) led to micronucleus

52 formation by TPP. In V79-Mz and V79-derived cells expressing human CYP1A1, TPP was

24

1 inactive (up to 32 µM), and in cells expressing human CYP1B1, 2B6 and 3A4 it induced 2 micronucleus weakly (positive only at 32 μ M). 3

Ref.: Xie 2023

6 SCCS comment on Study #2

4

5

22

34

36 37

7 Although the study by Xie et al., 2023 is not fully compliant with OEDC TG 487, its 8 experimental design to a great extent follows the recommendations for MN test without using 9 cytochalasin B. Therefore, the SCCS analysed the study with due attention.

The cell lines established from human liver may show some variability in expression and 10 11 activity of metabolising enzymes, however if they originate from well recognised cell repositories and were propagated under reproducible laboratory conditions, they may provide 12 relevant results. In this study, the HepG2 cell line (human hepatoma) was obtained from the 13 Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China) and the C3A 14 15 cell line (human hepatoma) was purchased from the American Type Culture Collection (ATCC). The analysis of the response of C3A cells to TPP exposure indicates increased frequency of 16 17 MN without S9. The results were supported by staining for centromere protein B (for which relevant positive control substances were used) and by staining for γ -H2AX. 18

19 The SCCS is of the opinion that the results suggest a clastogenic potential of TPP, i.e. TPP 20 induced micronucleus formation at concentration >1 μ M (0.33 μ g/mL), with human CYP1A2 21 and 2E1 being major activating enzymes and SULT1A1 being involved in detoxification.

23 Study #3 – Micronucleus test 24

25 Syrian hamster embryonic fibroblast Cells (SHE) were tested in an in vitro mammalian cell micronucleus test after exposure to TPP at concentrations: 10^{-6} to 10^{-4} M (0.33 – 33 µg/mL). 26 27 The exposure was for 5 h with harvesting after 6, 12, 18, 24, 30 h post exposure. Two 28 thousand cells per concentration were scored for MN.

29 The following MN frequencies were calculated for different harvesting time:

- 30 background: 14.45±4.3/2000 cells
- 18 h: 28.7 \pm 4/2000 cells after exposure to 16.3 μ g/mL vs. 18 \pm 4.9/2000 cells in control 31
- 32 24 h: 17±4.5/2000 cells after exposure to 0.33 µg/mL vs. 17.5±2.1/2000 cells in 33 controls (larger decreases at all other concentrations).

35 Ref.: Schmuck 1989, cited in OECD-SIDS 2002 and in ECHA 2021.

38 SCCS comment on Study #3

39 Although the reliability of the study is limited, the results indicate an equivocal response in 40 SHE cells. 41

42	
43	3.4.6.2 Mutagenicity / genotoxicity in vivo
44	
45	
46	
47	
48	
49	SCCS overall comment on TPP genotoxicity testing
50	In the opinion of the SCCS, after analysis of the currently available data, TPP has been shown
51	not to induce gene mutations. However, the evidence for the lack of induction of chromosomal
52	damage is questionable and recent data from the study by Xie et al. (2023) raises concerns

on TPP clastogenicity in vitro. Hence, genotoxicity concern cannot be excluded based on the 53

54 available information.

1 The SCCS requested additional evidence via an *in vitro* study of TPP to exclude genotoxicity 2 potential. This was not provided by the Applicant. Hence, the genotoxic potential of TPP cannot 3 be excluded.

4

3.4.1 3.4.7 Carcinogenicity

5 6

7 Theiss et al. (1977) studied the occurrence of lung adenomas in strain A/St male mice, 6 to 8 8 weeks old, using doses of 80, 40, or 20 mg TPP/kg injected intraperitoneally 1, 3, and 18 9 times, respectively, into groups of 20 mice. TPP purity: 95-99.9%. Twenty-four weeks after 10 the first injection, the animals were sacrificed, and the frequency of lung tumours was 11 compared with that in the control group of 50 animals treated with tricaprylin (vehicle). The pulmonary adenoma response at the highest dose of TPP was not significantly greater than 12 13 the response of the control mice. Positive control (urethane) induced tumors in mouse with 14 100% survival, attesting sensitivity of the biological model. 15

(Ref: Theiss 1977)

17 SCCS comment

This study is considered inadequate due to the low survival of animals in two of the three 18 19 experimental groups and the short duration of the study.

20

16

21 Several recent research studies that used cancer cells were identified, implicating TPP in the 22 carcinogenic process (Zhang, Huang, Huang, Zhang et al., 2023; Hong et al., 2022; Zhang and Song 2022; Kwon et al., 2022; Ye et al., 2022). In one study, animal experiments 23 24 suggested that TPP treatment significantly enhanced tumour growth in the xenograft hepatocellular carcinoma mouse model (Ye et al., 2022). In the study by Zhang et al. (2023), 25 the application of bioinformatics tools to a bladder cancer cohort indicated a strong correlation 26 27 between TPP exposure and bladder cancer.

- 28
- 29

30 Overall, the SCCS regards that these studies, carried out in cancer cells or animal cancer models, do not provide sufficient evidence to draw a conclusion on carcinogenicity. 31

32

33 **3.4.8 Photo-induced toxicity**

34

35 According to the Applicant, no photo induced toxicity studies on TPP could be identified. 36 However, considering its maximum UV-absorption spectrum of 233-241 nm², TPP is not 37 expected to be phototoxic.

- 38
- 39

40 3.4.9 Human data

41

42 The applicant provided studies from the public literature containing information on presence 43 or absence of endocrine activity of TPP in humans (Meeker 2010, Preston 2017, Tao 2021, 44 Doherty 2019, Messerlian 2018). Because the studies are based on urine metabolites, which 45 may originate from exposure to other organophosphates, these studies cannot be used for 46 the risk assessment in this opinion. 47

2

3.4.10 Special investigations: Endocrine disruption (ED) properties

34 From the Applicant:

5 Relevant data for the assessment of the potential ED properties of TPP is available in the form 6 of *in vitro* and *in vivo* studies. In addition, the US EPA ToxCast database was consulted for 7 existing high throughput screening (HTS) results. A Table (with one minor text-edit by the 8 SCCS) summarising the available scientific information is presented in Annex 1.

9

<u>ANSES 2019 and ANSES/ECHA 2023</u> also performed evaluations of the potential endocrine
 active properties. While the ANSES/ECHA 2023 evaluation had a focus on environment,
 several studies were selected from its evaluation as being relevant for this opinion.

13

14 Level 1 Existing data and non-test information

15

According to the Applicant, no existing data and non-test information for TPP were identifiedfrom the literature.

18

22

19 From ANSES 2019 summary:

TPP is predicted to be a non-binder to the oestrogen receptor because of its cyclical structure without a hydroxyl or amino group according to OECD QSAR Toolbox Version 3.4.

23 Level 2 In vitro assays

24 <u>From the Applicant:</u>

25 A)

26 In vitro high throughput screening (HTS) assays from the US EPA ToxCast program:

TPP has been tested as part of the ToxCast program of US EPA, which currently contains 105 27 ED-specific in vitro high throughput screening (HTS) assays, addressing the E (estrogen), A 28 29 (androgen), **T** (thyroid) and **S** (steroidogenesis) modalities and are being used as part of the US EPA's Endocrine Disruptor Screening Program (EDSP-21). TPP was found to be active in 30 31 21 (E=10; A=4; T=3; S=4) out of 58 ED relevant assays (accessed in August 2021) out of which 12 (57%) have been flagged as potentially 'false positive' by the automated analysis 32 tool from the US EPA (ToxCast pipeline (tcpl) package5). A closer review of the dose response 33 34 curves was performed for each of the modalities, showing that:

- Estrogen receptor (ER) assays no or only very weak agonistic and no antagonistic
 activity
 - Androgen receptor (AR) assays no specific or significant agonistic or antagonistic activity
- 39 Thyroid assays- not considered to have specific activity
- Steroidogenesis assays only one out of 24 assay was truly active, which therefore
 does not fulfil the US EPA criterion for the interpretation of an active result
- Overall, the applicant concluded that except for no or weak estrogenic activity, TPP does not
 have significant ED activity in the other *in vitro* HTS assays considered under the EDSP-21
 screening program of US EPA (CompTox/EDSP-21, accessed Aug 2021).
- 45 46 B)

37

38

47 In vitro endocrine mechanistic assays identified in the public literature:

TPP was found to have weak estrogenic activity which was >90,000 to 1×10^8 -fold less potent as compared to standard agonists. The EC₅₀ of the ER agonistic assays were determined to range from 5.3×10^{-3} to 10μ M. TPP also showed weak anti-estrogenic activity with potency in the range of >900 to 700,000-fold lower compared to standard antagonist. AR receptor binding potential of TPP was reported to be 4000 times less potent compared to R1881 ligand. TPP showed anti-androgenic activity 600-fold lower than that of AR antagonist hydroxyflutamide (IC50 >10 μ M).

1 TPP showed neither thyroid agonist nor antagonist properties in reporter gene assay and T-2 screen assay. Also, TPP was shown not to have thyroid transport protein transthyretin (TTR)-3 binding property. TPP was not concluded to have glucocorticoid agonistic activity but have 4 weak antagonistic activity in the glucocorticoid pathways (75-fold lower than that of 5 antagonist). TPP (10 μ M) was not found to have agonistic or antagonistic activity towards 6 progesterone and glucocorticoid receptors in luciferase and β - galactosidase reporter assays. 7 Furthermore, TPP was reported to decrease the cell viability, induce oxidative stress, and 8 disrupt the steroidogenesis in TM3 cells by altering the underlying gene expressions; however, 9 these effects were observed at higher cytotoxic concentrations, i.e., $\geq 60 \ \mu g/mL$ ($\geq 184 \ \mu M$). 10 TPP however showed PXR agonistic activity but at 7-9-fold less potent compared to 11 rifampicin).

12

Not referenced by the Applicant, but included in ANSES 2019: Kojima 2013 (with results in
agreement with Kojima 2016) and Liu 2012.

- 16 From ANSES 2019 summary:
- 17 EDSP21 screening database:
- 18 7 out of 8 assays showed no androgenic activity and 1/7 showed some activity but at cytotoxic
- 19 concentrations. 8 out of 16 assays showed no oestrogenic activity but 8/16 showed some
- 20 weak activity for oestrogenic effects but at high concentrations, 3/3 assays showed no thyroid
- 21 related activity.
- 22 Androgenic activity:
- 23 Triphenyl phosphate in two assays showed a close to weak binding activity to the androgen
- 24 receptor in micromolar concentrations, partly in cytotoxic concentrations. The overwhelming
- 25 majority of assays showed no specific binding activity. Based on this information there is no
- 26 indication of a specific androgenic potential of triphenyl phosphate.
- 27 Estrogenic activity:
- TPP shows positive results in some of the estrogenicity screening assays in the micromolar range.
- 30

The SCCS identified a recent study (Wang, Lee, Hales 2023) in the context of a publication on transcriptomic investigations of expression of genes involved in steroidogenesis in KGN human ovarian granulosa cells. The study showed that TPP increased basal production of Estradiol and Progesterone (see section 3.4.12 Special Investigations: metabolism).

35

A steroidogenic effect of TPP was demonstrated in an *in vitro* study on a human adrenal cell line, indicating decrease of basal production of cortisol and aldosterone (Lee, Robaire, Hales 2023 - see 3.4.12 Special investigations: metabolism). The study also indicated an altered expression of rate-limiting enzymes involved in cholesterol and steroid biosynthesis. In a transcriptional assay, triphenyl phosphate had weak inhibitory effects on the GR-mediated transcriptional activity induced by hydrocortisone (Kojima 2016).

42

43 Level 3 In vivo assays providing data about selected endocrine mechanisms/ 44 pathways

45

According to the Applicant, no Level 3 *in vivo* assays providing data about the selected ED
mechanisms with TPP prior to 2013 could be identified.

The ANSES 2019 summary mentions a metabolic study on the impact of a perinatal exposure to TPP on type 2 diabetes onset and adipose accumulation in UCD-type 2 diabetes mellitus rats (Green *et al.*, 2017). For a short description see in this Opinion 3.4.12 - Special investigations: metabolism.

53

54 The SCCS identified from the public literature several recent publications which are a 55 combination of *in-vivo* and *in-vitro* studies, with a focus on metabolic transcriptomics and metabolomics data. These studies are briefly described in this opinion the section 3.4.12 and
3.4.13 - Special investigations: Metabolism (for a brief overview see Annex 2). Overall, these
studies point to an effect on metabolism of glucose and lipids.

4 5

Level 4: *In vivo* assays providing data on adverse effects on endocrine relevant endpoints

- 9 According to the Applicant, three subacute repeated doses (ECHA, 2021; OECD SIDS, 2002;
- 10 Sutton *et al.*,1960) and an OECD Test Guideline equivalent one generation reproductive and
- developmental toxicity study (Welsh et al, 1987) conducted before 2013 are available as Level
 4 studies on TPP.
- 13 The Applicant concluded that based on the *in vivo* studies that were described in his dossier, 14 the available range of OECD Level 4 *in vivo* studies do not provide any evidence that TPP
- 15 exerts adverse human health effects via an endocrine mode of action.
- 16 The studies are briefly described in this Opinion in the paragraphs 3.4.4.1 and 3.4.5.1.
- 17

18 From ANSES 2019 summary:

- The following *in vivo* studies were considered, with conclusions similar to those by the applicant and also described in section 3.4.4.1, 3.4.4.2, 3.4.5.1 and 3.4.5.2:
- 28-day repeated dose toxicity study (rat) Liver effects only, no effects on any other organs
 or tissues (including reproductive) (ECHA 2021).
- 90-day repeated dose toxicity study (rat) Liver effects and increase in thyroid weights, no
 effect on reproductive organs or tissues (Unpublished report 2015 –b).
- One-generation reproductive toxicity study (rat) No effects on fertility (Walsh 1987).
- Prenatal developmental toxicity study (rabbit) No effects on fertility or development
 (Unpublished report 2015-a).

29 From ANSES/ECHA 2023

- Relevant academic studies published from 2018 to June 2022 were retrieved. Endocrine
 relevant endpoints related to Human health were not evaluated by FR-MSCA in the context of
 this SEV.
- 33

Level 5: *In vivo* assays providing more comprehensive data on adverse effects on ED related endpoints over more extensive parts of the life cycle of the organism

- 36
- 37 From ANSES 2019 summary:
- No level five data is available, but a 'modified one- generation reproductive toxicity study' is
 currently being undertaken under the auspices of the US NT.
- 40
- 41 From the Applicant:
- 42 No OECD Level 5 *in vivo* assays conducted prior to 2013 were identified for TPP.
- 43
- For studies in humans see 3.4.9: these studies cannot be used for risk assessment in the context of this Opinion.
- 45 (46

47 **Overall Conclusion of the Applicant on Endocrine Activity:**

For the ED assessment in humans, the available weight of evidence combining results of *in vitro* screens from ToxCast and *in vivo* testing (repeated dose and reproduction and developmental toxicity studies) shows no evidence of adverse effects of TPP due to an endocrine-related mechanism and no human health-related EATS-mediated adversity or endocrine activity.

- 53 The available weight of evidence, combining results of *in vitro* screens from ToxCast, *in vitro* 54 and *in vivo* mechanistic testing together with *in vivo* repeated dose toxicity studies with TPP,
- 55 suggests that there is weak agonistic and/or antagonistic activity in estrogen and androgen

- 1 receptor binding assays with a potency in the range of $>9 \times 10^2$ to 1×10^8 -fold lower compared
- 2 to standard agonist and/or antagonists. However, TPP did not show any activity on thyroid
- 3 and progesterone receptors. Similarly, TPP did not show any glucocorticoid activity however
- 4 it was shown to have antagonistic activity which was about 75 times less potent than the 5 known antagonist.
- 6 The effects described in the available studies appear to be limited in rodents and do not allow
- 7 to draw definitive conclusions on potential hazards of TPP on human health. Nevertheless,
- 8 these data are insufficient to conclude that TPP is an endocrine disruptor according to the
- 9 OECD conceptual framework for testing and assessment of endocrine disruptors (data allow
- to reach the level 3 of the OECD conceptual framework on endocrine disruptor (ANSES, 2019;OECD, 2012).
- Taken together and in the absence of the clear evidence for co-relating any of the adverse effects with the ED activity, which is a requirement as per the WHO definition, TPP is not considered to pose a hazard due to endocrine disrupting properties. Further, the selected POD for risk assessment is concluded to be protective of the observed adverse effects on gonads
- and/or the reproductive parameters.

18 ANSES 2019 and 2023

- 19 Based on the studies that were available for its report, ANSES (ANSES 2019) concluded that
- 20 the effects described in the available studies appear to be limited in rodents and do not allow 21 to draw definitive conclusions on potential hazards of TPP on human health. Environmental
- 22 data show endocrine disruptor potential of TPP. Nevertheless, these data are insufficient to
- conclude that TPP is an endocrine disruptor according to the OECD conceptual framework for
- testing and assessment of endocrine disruptors (data allow to reach the level 3 of the OECD conceptual manework for
- conceptual framework on endocrine disruptor (OECD 2012)).
- In the ANSES/ECHA evaluation of 2023 (ANSES/ECHA 2023), it was concluded that TPP shows endocrine activity on non-target organisms with adverse effects on fertility and reproduction in academic studies. Endocrine relevant endpoints related to Human health were not evaluated in the context of this SEV.
- 30

31 SCCS overall comment on ED activity

- In addition to the studies that were used by the Applicant to assess an ED modality, more *in vitro and in vivo* toxicity studies were identified by the SCCS.
- 34 In level 2 *in vitro* assays, some estrogenic activity was observed in a few of the studies. This 35 estrogenic activity was also demonstrated in a recent study on KGN human ovarian granulosa 36 cells. In addition, that study showed a stimulation of secretion of progesterone.
- The submitted studies do not indicate an androgenic potential of TPP. Although a short-term *in vivo* study in mice (see section 3.4.13) noted a decreased serum testosterone level, it cannot be derived from that study whether this could be attributed to an anti-androgenic effect.
- 41
- 42 No level 3 *in vivo* studies were submitted. From the published literature, the SCCS identified
- 43 several recent *in vivo* and *in vitro* studies, with a focus on metabolic transcriptomic assays
- 44 (see section 3.4.12 and 3.4.13 Special investigations; a brief overview can be found in 45 Annex 2). The studies point towards an effect of TPP on changes in glucose and lipid
- 46 metabolism mainly taking place in the liver.
- However, due to the design of the studies and the reporting of the results, no conclusion
 could be drawn on an exposure dose that could be used for a point of departure for risk
 assessment in this Opinion.
- 50
- 51 Two *in vitro* studies indicated a steroidogenic effect of TPP: one study showed a decrease of 52 basal production of cortisol and aldosterone and one study with a transcriptomic assay

indicated weak inhibitory effects on the GR-mediated transcriptional activity induced by
 hydrocortisone.
 3

- 4 In level 4 *in vivo* (OECD TG408, 421/422 and 443) studies, estrogenic effects were not observed.
- 6

Based on the available data regarding thyroid and thyroid hormones, the T modality did not
seemed to be affected. Although some scattered effects were observed, including increased
follicular cell hypertrophy (most likely due to hepatocellular hypertrophy) in males in the 90day repeated dose toxicity, the results were not considered sufficient to establish effects on
T modality.

- From the *in vivo* studies that included weight gain as parameter, an obesogenic effect of TPPcannot be clearly established.
- 15

12

16 The Applicant provided studies from the published literature containing information on the 17 presence or absence of endocrine activity of TPP in humans. Because the studies are based 18 on urine metabolites, which may also originate from exposure to other organophosphates, 19 these studies cannot be used for the risk assessment in this Opinion.

- 20
- 21 22

24

23 **3.4.11 Special investigations: neurotoxicity and immunotoxicity.**

25 Neurotoxicity

26 27 **1**

The neurotoxicity of TPP was investigated as part of a subchronic dietary toxicity study in male rats. Sprague-Dawley rats (10 males/group) were fed a diet containing 0.25, 0.5, 0.75 or 1% TPP (equivalent to 161, 345, 517, 711 mg/kg bw/day) for four months (see also 3.4.4.2). At the end of each month, evaluations of motility, exploratory behaviour, balance and general motor coordination, and muscular strength were performed.

No significant neurobehavioral changes (open field, accelerating rotarod, forelimb grip
 strength and negative geotaxis examinations) were observed. From the study results, a NOEL
 of TPP for neurotoxicity can be derived at 711 mg/kg bw/day in rats.

(Sobotka 1986)

37 38 **2**

36

In their review of the studies on neurotoxicity, ANSES (ANSES 2019) concluded that a decrease of cholinesterase activity has been reported, but no other neurotoxicity effect has been recorded in these (old) studies. However, the relevance of the available data to assess the delayed neuropathy of TPP is questioned due to the few endpoints assessed and the too short duration of assays in neurotoxicity studies available.

45 **3**

The USA National Toxicology Program (NTP) conducted a short-term study (4 days) on triphenylphosphate in male Harlan Sprague Dawley rats. The goal of this study was to provide a rapid assessment of *in vivo* biological potency by evaluating a combination of traditional toxicological endpoints and transcriptomics analysis to broadly query biological space for any dose-related change. Exposure to TPP dissolved in corn oil was once daily for 4 days by oral gavage; on Day 5, animals were sacrificed. TPP (>99%) was tested at six doses: 0, 55, 110,

52 220, 441, and 881 mg/kg body weight.

53 Cholinesterase inhibition was observed at all doses including the lowest tested dose of 55 54 mg/kg. The report stated that as the LOEL for the study, cholinesterase inhibition appeared 55 to be the most sensitive apical measure; cholinesterase inhibition was so marked at all doses that a BMD value could not be determined due to poor model fit. Further studies are warranted
to assess cholinesterase effects at concentrations <55 mg/kg to obtain an accurate point of
departure.

4

5 In the same study, transcriptional changes in the liver following TPHP exposure occurred at 6 dose levels below that for which changes in circulating cholinesterase and cholesterol levels 7 were observed. The most sensitively affected gene sets for which a reliable BMDL could be 8 estimated were cellular polysaccharide biosynthetic process and oligodendrocyte 9 development, both with a BMDL median value of 11 mg/kg. Fourteen Gene Ontology Biological 10 Processes were potently affected below the lower limit of extrapolation from the dose curve 11 (BMD < 18.3 mg/kg). This finding suggests that further testing at doses lower than 55 mg/kg 12 would be useful toward refining estimates of the transcriptional point of departure.

13

(Ref: NTP 2018)

14 15 **4**

In a 30-day study weaned male mice were exposed to 0, 50, or 150 mg/kg TPP daily by oral gavage for 30 days (see also 3.4.4.1 Repeated dose (21-28 days) oral toxicity). The blood brain barrier permeability of TPP and its metabolite diphenyl phosphate (DPP) in the brain, and TPP induced metabolomic and transcriptomic changes of the brain were investigated. The number of exposed animals and the numbers used for sampling are not clearly specified in the publication.

22 According to the authors, untargeted metabolomic results showed that the changed level of 23 glutamic acid, N-acetyl CoA metabolites, and organic acid in the brain of treated mice, suggest that amino acid and lipid metabolism was interfered. RNA-seq data indicated that neuronal 24 25 transcription processes and cell apoptosis pathway (forkhead box (FOXO), and mitogen-26 activated protein kinase (MAPK) signaling pathways) were significantly affected by TPP 27 exposure. RT-PCR showed proinflammation cytokine tumor necrosis factor alpha (TNF-a) and 28 interleukin-6 (IL-6)) levels were increased, while antioxidant genes including nuclear factor-E2-related factor 2 (Nrf2), heme oxygenase1 (HO-1) and superoxide dismutase (SOD1) 29 30 decreased. These results suggest that TPP could cause a degree of neurotoxicity by inducing 31 neuroinflammation and neuronal apoptosis, which are related to oxidative stress. The

potential implications for neurophysiology and behavioral regulation cannot be ignored.
 (Ref: Liu 2020)

34 35

36 SCCS comment

The SCCS agrees with ANSES that inhibition of cholinesterase has been observed, but that the studies do not indicate overt neurotoxicity. Inhibition of cholinesterase activity was also noted in a recent 28-day developmental toxicity study in rats from an oral exposure to 300 mg/kg bw/d and higher. (See 3.4.5.2: Developmental Toxicity – ref: Witchey 2023).

41 42

43 Immunotoxicity

44 45 **1**

46 The potential for immunotoxicity of TPP was investigated in a 120-day non-guideline study in rats. Spartan Spraque-Dawley rats (10 males/group) were fed a diet containing 0, 0.25, 0.5, 47 48 0.75 or 1% (equivalent to 0, 161, 345, 517, 711 mg/kg bw/day) of test substance. 49 Immunization (initial, secondary, and tertiary) with sheep red blood cells in rats was 50 performed at 60 (initial), 81 (secondary), and 102 (tertiary) days. At termination of 51 treatment, all animals were sacrificed and macroscopically examined. Lymphoid organs were 52 weighed, total protein analysis and electrophoretic analyses of serum proteins were 53 performed, and comprehensive immuno-histochemical evaluation of spleen, thymus and 54 lymph nodes using immunoperoxidase staining was conducted.

55 Reduced growth rate was observed at 711 mg/kg bw/day. Lymphoid organ weights varied in 56 a non-dose dependent manner, and no significant changes were found in these organs and

57 lymph nodes during histopathologic examinations. No significant effects were reported in

1 serum protein. There was an increase in the levels of alpha- and beta-globulin in male and 2 female rats but effects were similar at all dose levels, relative to the control group. There 3 were no significant differences between animals immunized with sheep red blood cells and 4 nonimmunized animals. Non-dose-dependent variation was found in the humoral immune 5 6 response to sheep red blood cells rats. Under the conditions of the study, the NOAEL for immunotoxicity was set at 711 mg/kg bw/day.

(Ref: OECD SIDS, 2002)

8 9

7

10 2

11 The immunotoxicity of TPP was also assessed in rabbits in a 3-week repeated dermal toxicity 12 test (see 3.4.4.1). New Zealand White rabbits (10/sex/dose) were dosed topically at 0, 100 and 1000 mg/kg bw/day in 50% solution in ethanol. At the end of study, gross and 13 14 microscopic effects on the spleen, thymus, or lymph nodes were recorded. There were no 15 effects on the immune function parameters. 16

Ref: (OECD SIDS, 2002)

18 19

3

17

23

24 25 26

27

28 29

20 An in-vitro study with 12.5, 25 and 50 microMol TPP on a mouse-derived macrophages cell line showed induction of macrophages accompanied by upregulation of mRNA for 21 22 inflammatory mediators.

(Lin, 2023)

3.4.12 Special investigations: metabolism (with transcriptomics)

(For a brief overview, see Annex 2)

In vitro

30 31 1

32 In the context of the EU Horizon 2020 projects, in vitro assays measuring key events linked to hepatic steatosis, such as lipid accumulation, mitochondrial dysfunction, gene expression, 33 34 were applied in human hepatocellular carcinoma cells, HepG2, treated with 0.1, 5, 10 or 25 35 μ M of TPP for 24 h. Cytotoxic effects were observed only at the highest concentration. TPP 36 induced lipid accumulation in a dose-dependent manner and affected mRNA levels of lipid metabolism-related genes, namely induced DGAT2 and SCD1 and SREBP-1c (up to 2-fold 37 inductions) involved in triglyceride or lipid synthesis, but did not affect the expression of 38 39 CPT1a, ACLY, APOB, and ACCA. In addition, TPP decreased the cellular ATP production at 10 40 μ M by 25–40 %; for TMPP, the effects were already observed at 2 μ M. This suggests compromised ATP production in mitochondria, which may further propagate steatosis in liver 41 42 cells. In silico analysis suggested that TPP formed a conventional hydrogen bond with Ser 342 43 and pi-donor hydrogen bonds with Ser 247 of the active binding sites of selected receptors, 44 PPARy and PXR, respectively. Overall, TPP was considered to induce lipid accumulation and 45 enhance hepatic steatosis. 46

(Ref: Negi, 2021)

- 47 48 2
- 49 (Also referenced in ANSES 2019)
- 50 In-vitro study on cultured adipocytes.

51 The main objectives of this study were to assess the *in vitro* effect of TPhP and its metabolite 52 diphenyl phosphate (DPhP) on the adipogenic differentiation of 3T3-L1 cells, as well as glucose 53 uptake and lipolysis in differentiated 3T3-L1 adipocytes. TPhP increased pre-adipocyte proliferation and subsequent adipogenic differentiation of 3T3-L1 cells, co- inciding with 54 55 increased transcription in the CEBP and PPARG pathway. Treatment of mature adipocytes with 56 TPhP increased the basal- and insulin stimulated- uptake of the glucose analog 2-[N(-7-

57 nitrobenz-2-oxa1, 3- diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG). This effect was ablated by inhibition of PI3K, a member of the insulin signaling pathway. DPhP had no significant effect on cell proliferation and, compared to TPhP, a weak- er effect on adipogenic differentiation and on 2-NBDG uptake. Both TPhP and DPhT significantly enhanced the isoproterenol-induced lipolysis, most likely by increasing the expression of lipolytic genes during and after differentiation. This *in vitro* study suggests that TPhP increases adipogenic differentiation, glucose uptake, and lipolysis in 3T3-L1 cells through endocrine and noradrenergic mechanisms.

(Ref: Cano-Sancho 2017)

9 10 **3**

8

11 Short-term NTP study in rats.

In the abovementioned NTP 2018 study (see 3.4.11, Neurotoxicity) the most sensitive apical endpoint for which a BMD could be determined was HDL cholesterol with a BMDL (BMD) of 39 (79) mg/kg. Dose-dependent increases in absolute and relative liver weight [48 (136) mg/kg and 71 (103) mg/kg] and cholesterol [90 (142) mg/kg] for BMDL (BMD) were the next most sensitive apical endpoint changes.

17 Ref: NTP 2018

18 19 **4**

Hepatotoxicity of TPP was investigated in a culture of human L02 liver cells, exposed to 10⁻¹⁰, 10⁻⁹, 10⁻⁸, 10⁻⁷, 10⁻⁶, 10⁻⁵, 10⁻⁴ and 10⁻³ M. According to the authors, transcriptomic analysis showed that TPP exposure markedly affected cell apoptosis, oncogene activation, REDOX homeostasis, DNA damage and repair. Metabolomic analysis verified that the related metabolic pathways, such as glycolysis, citrate cycle, oxydative phosphorylation, lipid and protein metabolism were also significantly disrupted.

(Ref: Wang, Li 2020)

28 29 **5**

26 27

Transcription of genes involved in hepatic glucose and lipid metabolism was also examined within a study in mice with once daily oral dosing of 25 and 50 mg/kg bw during 5 weeks.

According to the authors, TPP induced AdipoR1 in males while it reduced the expression of AdipoR1 and -R2 in females.

The picture for the up- or downregulation of genes related to glucose and lipid metabolism
was mixed. See for a further description on glucose and lipid metabolism paragraph 3.4.12
Special investigations: metabolism – *in vivo*.

(Ref: Wang, Le 2020)

37 38

39

40 **6**

41 *In vitro* study on HepG2 cells.

The study investigated the adverse effects of triphenylphosphate (TPHP), OH-TPHP, and DPHP 42 43 in HepG2 cells in terms of cell proliferation, lactate dehydrogenase release, reactive oxygen 44 species generation, and mitochondrial membrane potential. Transcriptomic changes were 45 measured using RNA sequencing, and bioinformatics characteristics including biological 46 functions, signal pathways and protein- protein interaction were analysed to explore the 47 potential molecular mechanisms. According to the authors, the order of cytotoxicity was OH-TPHP> TPHP> DPHP. The prioritized biological functions changes induced by TPHP and OH-48 49 TPHP were correlated with lipid metabolism. Significant lipid accumulation was observed as

50 confirmed by increased total cholesterol and triglycerides contents, and enhanced oil red O

51 staining.

52 Enrichment of PPARa/ γ and down-stream genes suggested the participation of PPARs signal 53 pathway in lipid metabolism disorder. In addition, TPHP and OH-TPHP induced endoplasmic

54 reticulum stress (ERS), which was further confirmed by an ERS inhibitor experiment.

According to the authors, PPARs signal pathway and endoplasmic reticulum stress may be involved in the lipid metabolism disorder induced by TPHP and OH-TPHP. 1 The authors stated that regarding the complex metabolic responses to TPHP in organisms, 2 the exposure doses selected in this study (0, 40 and 80 μ M), are generally higher than the *in* 3 *vivo* concentrations of TPHP and its hydroxylated form.

- 4 (ref: An, Jiang, Tang 2023)
- 5
- 6 7

7

8 *In vitro* study on KGN ovarian granulosa cells.

9 It was hypothesized that OPEs alter the steroidogenic ability of kGN ovarian granulosa cells by dysregulating the expression of transcripts involved in steroid and cholesterol biosynthesis. 10 11 KGN cells were exposed for 48 hours to 1 of 5 OPEs $(1-50\mu M)$: triphenyl phosphate (TPHP), 12 tris(methylphenyl) phosphate (TMPP), isopropylated triphenyl phosphate (IPPP), tert-13 butylphenyl diphenyl phosphate (BPDP), and tributoxyethyl phosphate (TBOEP), or to a polybrominated diphenyl ether flame retardant (BDE-47), in the presence or absence of 14 Bu₂cAMP. OPEs increased the basal production of progesterone (P4) and 17β -estradiol (E2) 15 16 in a dose-dependent manner) and had either no effect or inhibited Bu2cAMP-stimulated P4 17 and E2 synthesis.

18 Quantitative real-time polymerase chain reaction analyses revealed that OPEs ($\geq 5\mu$ M) 19 increased the basal expression of critical genes (STAR, CYP11A1, CYP19A1, HSD3B2, and 20 NR5A1) involved in steroidogenesis; upon stimulation, the expression of all genes tested was downregulated. An overall inhibition in cholesterol biosynthesis was induced by OPEs, 21 22 characterized by a downregulation in HMGCR and SREBF2 expression. TBOEP consistently 23 showed the least effect. The authors concluded that OPEs perturbed steroidogenesis in KGN 24 granulosa cells by targeting the expression of steroidogenic enzymes and cholesterol 25 transporters.

- 26 (ref: Wang, Lee, Hales 2023)
- 27
- 28
- 29 **8**
- 30 *In vitro* and *in vivo* study on placental trophoblast cells.

In a study using the trophoblast cell line JEG-3, it was found that exposure to 33µM 31 32 triphenylphosphate (TPhP) altered gene and protein expression in the tryptophan metabolism 33 pathway, inhibited the tryptophan-serotonin pathway, and activated the tryptophankynurenine pathway. TPhP was found to induce oxidative stress by activating monoamine 34 35 oxidase A (MAOA), promoting inflammatory factors including nuclear factor kappa-B (NF κ B), 36 interleukin-6, and tumor necrosis factor a. The NFkB inhibitor sulfasalazine could alleviate the 37 effects of TPhP on tryptophan metabolism disturbance. The MAOA inhibitor clorgyline or the 38 antioxidant N-acetylcysteine can mitigate oxidative stress and eliminate TPhP-induced 39 inflammatory factors and tryptophan metabolism disturbances. Accordig to the authors, the 40 data suggest that TPhP disturbed tryptophan metabolism by activating NFkB through MAOA-41 mediated oxidative stress.

- 42 For the *in vivo* component of this study see the *In vivo* section further below.
- 43 (ref: Lu, Hong, Zhang 2023)
- 44
- 45
- 46 **9**
- 47 *In vitro* study on human adrenal cells.

A high-content screening approach was used to elucidate the effects of organophosphate esters (OPEs) on H295R human adrenal cell phenotypic endpoints and function. The effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a legacy brominated flame retardant, on H295R cell cytotoxicity, oxidative stress, mitochondria, lysosomes, and lipid droplets were compared with those of 6 OPEs (including triphenylphosphate [TPP]). Most OPEs reduced oxidative stress, increased the numbers of mitochondria, decreased lysosomes, and increased

54 lipid droplets.

1 Two potency ranking approaches (lowest benchmark concentration/administered equivalent 2 dose methods and Toxicological Prioritization Index analyses), showed that the triaryl-OPEs 3 (including triphenyl phosphate [TPP]) were more potent than BDE-47.

4 The basal production of cortisol and aldosterone was increased by IPPP but decreased by TPP 5 or TMPP exposure; the response to forskolin (a steroidogenic inducer) was not affected by 6 these OPEs. All 3 triaryl OPEs (including TPP) altered the expression of rate-limiting enzymes 7 involved in cholesterol and steroid biosynthesis; CYP11B1 and CYP11B2 were the most 8 prominently affected targets. The OPE chemical-specific effects on cortisol and aldosterone 9 production was best explained by alterations in steroidogenic acute regulatory protein (STAR) 10 expression.

11

The authors included an administered equivalent dose (AED) analysis for phenotypic 12 13 endpoints. To estimate the AEDs (mg/kg body weight/day), in vitro to in vivo extrapolation modelling was done based on the benchmark concentrations (BMCs) and the steady-state 14 concentration for each compound. The AED analyses predicted that the bioactive doses of TPP 15 16 were in the order of 0.1 - 1 mg/kg bw/d for cytotoxicity and oxidative stress; for total area 17 of lipid droplets this was approximately 0.05 mg/kg/day.

- 18 (ref: Li, Robaire, Hales 2023)
- 19
- 20

21 22 10

23 *In vitro* study on mouse spermatocytes.

24 Mouse spermatocyte GC-2spd (GC-2) cells were selected as an in vitro model. The impact of 25 oxidative stress, mitochondrial impairment, DNA damage, cell apoptosis and the related 26 molecular mechanisms were investigated using high content screening (HCS) system.

27 According to the authors, the study indicated that cell viability was decreased significantly in 28 a dose-dependent manner after triphenylphosphate (TPhP) treatment with the half lethal 29 concentration (LC50) at 105.8, 61.61 and 53.23 µM for 24, 48 and 72 h. A concentration-30 related apoptosis occurrence was observed in GC-2 cells after TPhP exposure for 48 h. In 31 addition, the elevated intracellular reactive oxygen species (ROS) and the total antioxidant

32 capacity (T-AOC) was also observed after exposing to 6, 30 and 60 μ M of TPhP.

33 The authors stated that, based on the enhancement of pH2AX protein and alteration of nuclear morphology or DNA content, DNA damage might be induced by higher concentration of TPhP 34 treatment. Simultaneously, alteration of mitochondrial structure, enhancement of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) 35 36 content, altered expression of Bcl-2 family proteins, release of cytochrome c and increase of 37 38 caspase-3 and caspase-9 activity demonstrated that caspase-3 dependent mitochondrial 39 pathway might play a key role in the process of GC-2 cell apoptosis. According to the authors, these results showed that TPhP was a mitochondrial toxicant and apoptotic inducer, which 40 might trigger alike responses in human spermatogenic cells and that therefore the potential 41 42 reproductive toxicity of TPhP could not be ignored.

- 43 (ref: Feng, Shi, Li 2023)
- 44 45

- 47 In vitro study on human liver cell line.
- 48 In an *in vitro* study human cultured liver cell line L02 cells were exposed to various 49 concentrations (0-400 μ M) of either TPP or its major metabolite DPHP.
- 50 For RNA-seq analysis the cells were treated with 50 µM TPP to screen differentially expressed 51 genes.
- For the glucose uptake assay the L02 cells were treated with TPP (or DPHP) and cultured in 52
- 53 the presence or absence of insulin followed by exposure to2-deoxy-d- glucose. After lysis, 54
- fluorescence intensities were measured. For a glycogen synthesis assay L02 cells were
- 55 exposed to TPP with or without insulin. After lysis glycogen levels were measured. According 56 to the authors insulin stimulated glucose uptake was decreased by exposure to 10, 50 and

1 100 µM TPP. Insulin-stimulated glycogen synthesis was also decreased at these doses. Co-2 exposure to the ER stress antagonist restored glucose uptake and glycogen synthesis.

- 3 For a TR-PCR assay, after exposure to TPP the mRNA levels of target genes were quantified. 4 According to the authors, among the enriched pathways from TPP exposure the aminoacyl 5 biosynthesis, steroid biosynthesis, insulin resistance and MAPK signaling pathways were the 6 most prominent.
- 7 (ref: Yue, Sun, Duan 2023)
- 8
- 9

10 12

- 11 In vitro study on mouse Leydig cell line.
- 12 (taken from ANSES 2019)

13 In a Leydig cell line TM3, a significant induction of oxidative stress and a reduction in expression of genes related to testosterone synthesis was retrieved, however this was only 14 observed at the high and moderately cytotoxic TPP concentration of 60 µg/mL (according to 15 16 about 180 µM) (see Tegethoff report, 2017 quoting results from Chen et al., 2015). In order to determine the effects of several OPFRs on testosterone production (which is synthetized 17 mainly by Leydig cells in the testis), Schang et al., 2016, studied the in vitro effects of OPFRs, 18 including TPP, and of BDE-47, on MA-10 mouse Leydig tumors cells. The results showed that 19 20 TPP significantly reduced MA-10 cell mitochondrial activity, significantly increased superoxide production, and had no effect on basal progesterone production nor on steroidogenesis 21 22 (Schang, Robaire, and Hales 2016). 23

(ref: ANSES 2019)

In vivo

28 29 1

30 (Also referenced in ANSES 2019)

A single dose metabolic study on the impact of a perinatal exposure to TPP on type 2 diabetes 31 32 onset and adipose accumulation was studied in UCD-type 2 diabetes mellitus rats. This rat model mimicks the pathophysiology and progression of type 2 diabetes mellitus (T2DM) in 33 34 humans. TPP 170 microgram/day was administered to pregnant (GD) 8.5 to PND 21. This 35 study highlights that perinatal exposure to TPP triggers metabolic disturbances characterized 36 by enhanced weight gain and enhanced adiposity connected with enhanced plasma levels of leptin, the hormone of satiety, and possibly with leptin resistance explaining enhanced food 37 38 intake.

39 No significant differences were observed in the length of gestation, litter size, sex ratio, or 40 the body weight of the dams or pups at weaning. This suggests that exposure to TPP was not overtly toxic with respect to these parameters. 41

(Ref: Green, 2017)

43 44

42

45 2

46 In an *in vivo* study, mice with or without a high-fructose and high-fat (HFF) diet were exposed to 10 µg/kg bw/day) or 1000 µg/kg bw/day of TPP, for 12 weeks. The HFF diet was used to 47 48 construct an obesity model. Compared with the controls, mice on the normal diet and 49 receiving TPP 10 µg/kg bw/day showed changes in blood cholesterol and triglyceride levels. 50 The 1000 µg/kg bw/d TPP exposure caused liver function and glucose sensitivity 51 abnormalities, induced liver histopathological damage and lipid accumulation and also 52 impaired the biological function of the mouse liver. TPP activated the protein expression related to immune and lipid metabolism. In summary, the authors stated that subchronic 53 54 dietary exposure to TPP in the presence or absence of a HFF diet can induce the immune 55 system damage and lipid metabolism disorders in mouse liver, inducing the potential health 56 risk associated with infectious disease, cardiovascular disease and endocrine system. 57

(Ref: Cui, 2022)

- 1 2
- 3

4 **3**

5 In mice (both female and male) orally administrated with different doses of TPP during 6 pubertal, endpoints such as fasting insulin and glucose, glucose intolerance, lipid and glucose 7 metabolism in both liver and skeletal muscle were investigated. Animals (10 males, 10 8 females per group) received for 5 weeks once a day by gavage with olive oil (control group) 9 25 and 50 mg/kg bw TPP.

10 The authors reported that there were no differences in weight and liver gain. The 50 mg TPP 11 dose increased the serum glucose level, cholesterol, triglycerides and slightly decreased the 12 LDL-cholesterol. The 50 mg TPP decreased serum adiponectin in females and increased it in

13 males.

In addition, the study showed a difference between males and females regarding the up- or downregulation of the two adiponectin receptors (AipoR1/R2) in adolescent mice after TPP treatment.

(Ref: Wang, Le 2020)

- 17 18
- 18
- 19
- 20 **4**

The effects of *in utero* and lactational exposure to TPP on obesity, non-alcoholic fatty liver disease and diabetes in adult male mice were investigated *in vivo*. In one part of the experiment, pregnant mice were exposed from gestational day 6 to lactational day 21, with different concentrations of TPP corn oil solutions (0, 10, 100, and 1000 microgram/kg bw) by oral gavage every morning. The authors stated that in the male offspring they found the promotional effects of TPHP exposure (10, 100, and 1000 microgram/kg bw on body weight in the treatment groups.

In the second part of the experiment, primigravida pregnant ICR mice (six pregnant mice per group) were administrated with corn oil solution or TPP corn oil solution (1000 microgram/kg bw, the dose that had the most significant effects on body weight) from gestational day 6 to lactational day 21 by oral gavage. After weaning at 21-day old, male offspring were divided into two groups (six mice per group and one mouse from each dam), provided with either a low-fat diet (LFD: 10% calories from fat) or a high-fat diet (HFD) for 10 weeks. Body weights were measured weekly, and blood samples were collected at 14 weeks.

In the low fat and the high fat diet group, 1000 microgram/kg bw increased the body weight, liver weight and gonadal fat weight. It also had an impact on the glucose tolerance test, insulin level, gut microbiome and expression of genes involved in lipid metabolism.

(Ref: Wang, Yan 2019)

- 39 40
- 41
- 42 **5**

43 A study investigated the effect of neonatal TPP (and also DPP) exposure in mice.

After delivery from primigravida ICR mice, foster females were randomly assigned eight newborns to ensure the growth of pups. The neonatal pups were subcutaneously injected on post-natal days 1 -10 with TPP and DPP. Dosing of TPP was subcutaneous with 2 or with 200 microgram in corn oil. Ovarian histopathology (at day 19), estradiol levels (at 12 weeks, glucose tolerance (10 weeks) and serum metabolomes (at 12 weeks) were analysed.

49 In an apparently separate uterotrophic assay, female ICR mice or SD rats (17-days-old) that

had not undergone any previous treatment were subcutaneously injected once daily for three
 consecutive days with solutions of corn oil (control), 200 or 600 mg/kg TPP, 200 or 600 mg/kg

52 DPP, or 100 mg/kg ethinyloestradiol.

According to the authors, the results showed that neonatal exposure to TPP has no negative effects on uterine weight, glucose tolerance and serum estradiol levels. Metabolomics analyses revealed a dose- and sex-specific response of adult mice to TPP and DPP exposures. The authors state that although the findings showed perturbations of metabolic profiles induced by neonatal TPP (or DPP) exposure, the underlying mechanisms of action for these changes remain unknown.

(Ref: Wang, Zhu 2018)

3 4

1

2

- 5
- 6
- 7
- 8
- 9 **6**
- 10 Gestational TPP exposure in mice

In a gestational study in C57BI/6 mice, dams were exposed to TPP on gestational days (GD)
8, 10, 12, and 14 to 0, 5, 25, or 50 mg/kg bw via the intraperitoneal route.

13 Dams were euthanized on GD19, their fetuses euthanized after 1 hour in an incubator.

Samples extracted from both maternal and fetal liver were assessed for mRNA transcript
levels of Insulin growth factor (Igf) and various genes involved in the Igf signaling pathway
(Igf1r, Insr: receptors for Igf1 and insulin), and Igf1/insulin signaling molecules).

17 Maternal Igf1 levels were significantly decreased in maternal liver samples extracted from 18 dams exposed to 5 mg/kg compared to unexposed controls. While a significant increase in 19 Igf1 transcript levels were detected in TPH exposed fetal livers, there was no corresponding 20 statistically significant increase in Igf1 protein levels in fetal livers.

In maternal liver samples, 5, 25 and 50 mg/kg gestational TPH exposure resulted in a statistically significant decrease in transcript levels of Igf1 and Irs2 (insulin receptor substrate). No difference was detected in transcript levels of levels of Igf1 receptor, Insulin receptor or Igf binding protein 1.

In fetal livers, a significant treatment effect was detected for the transcript levels of all genes
measured in the Igf signaling pathway. An increase in transcript levels was detected in livers
of the 5 mg and 25 mg exposure groups, but not in the 50 mg exposed group.

28 29

7

30

(ref: Philbrook, 2018)

31 *In vivo* study on the placenta of pregnant mice.

In the context of the abovementioned *in vitro* transcriptomic study in placental trophoblasts (Lu, Hong Zhang 2023) two female mice and one male were placed together to mate. Female mice were considered pregnant when a vaginal plug was observed; this was counted as embryonic day 0 (E0). Afterward, dams were randomly selected for each group: control group (corn oil); low-dose treatment group (0.5 mg/kg TPP); middle-dose treatment group (1 mg/kg TPP); high-dose treatment group (2 mg/kg TPP).

38 Starting from E0, pregnant mice were given 0.1 mL/20 g body weight TPP (0, 0.5, 1,

and 2 mg/kg) by gavage at 9 am daily. Considering that the serotonin need for fetal

neurodevelopment was mainly from tryptophan-serotonin metabolism in the placentae until
E14.5, on day E12, six dams were selected from each group and dissected, and placental
samples were collected for further analysis. One placenta was collected from each dam as
one replicate.

- According to the authors, consistent with the results of their concomitant cellular experiments,
- 45 TPP induced oxidative stress, promoted the secretion of inflammatory factors, and altered the
- 46 expression of tryptophan metabolic enzymes. The result of targeted tryptophan metabolomic
- 47 analysis showed that TPP reduced the level of tryptophan in the placenta and affected the
- levels of metabolites along the tryptophan-serotonin or tryptophane-kynurenine pathways tovarying degrees.
- 50

(ref: Lu, Hong, Zhang 2023)

- 51 52
- 52 853 *In vivo* study in mice on insulin, glucose and liver.

54 In the context of an abovementioned *in vitro* study (Yue, Sun, Duan 2023), four groups of 10 55 mice each were dosed by gavage daily for 8 weeks with corn oil (control) or 40 or 80 mg/kg 56 by TPP, or 80 mg/kg by TPP plus 200 mg/kg by 4-PBA. Blood was collected from mice of

56 bw TPP, or 80 mg/kg bw TPP plus 200 mg/kg bw 4-PBA. Blood was collected from mice of

1 fasted overnight or 2 h after refeeding for the fasting glucose and postprandial blood glucose 2 levels analysis. For the insulin tolerance test (ITT), after fasting for 6 h, the mice were 3 intraperitoneally injected with 0.75 U/kg insulin and blood collected at designed time points. 4 At the end of the exposure period, mice were sacrificed and the livers dissected.

5 Exposure to triphenyl phosphate induced nuclear enlargement, cytoplasmatic vacuolation, 6 congestion of central vein and blood sinusoids and inflammatory cell infiltration. The 7 expression of XBP1, CHOP and ATF4 in the liver were all upregulated, indicating that liver 8 endoplasmic reticulum (ER) stress occurred under TPP exposure in vivo.

9 A significant increase of post-prandial blood glucose level was observed in both 40 mg/kg and 10 80 mg/ kg of TPP-treated mice, whereas the fasting blood glucose levels remained unchanged According to the authors, the results indicate that TPP disrupted hepatic insulin sensitivity in 11 12 mice. Compared with the control group, the AUC value of blood glucose levels for TPP treated 13 group was increased significantly, indicating the insulin tolerance was impaired by TPP 14 exposure. Both the postprandial blood glucose level and insulin sensitivity were all restored 15 partially by the ER stress inhibitor 4-PBA. 16

(ref: Yue, Sun, Duan 2023)

17 18

19 9

20 In vivo study in mice.

Five weeks old male mice (n=35) received 100, 300 mg/kg/bw oral exposure to TPP and TCEP 21 daily for 35 days. The body and testis weights decreased in 300 mg/kg TPP and TCEP treated 22 23 groups. Hepatic malondialdehyde (MDA) contents increased significantly in both TPP treated 24 groups, while the contents of glutathione (GSH) decreased significantly in 300 mg/kg TPP and 25 both TCEP treated groups. In addition, the hepatic activities of antioxidant enzymes including 26 glutathione peroxidase (GPX), catalase (CAT) and glutathione S-transferase (GST) as well as 27 their related gene expression were affected by TPP or TECP exposure. On the other hand, 300 28 mg/kg of TPP or TECP treatment resulted in histopathological damage and the decrease of 29 testicular testosterone levels. Moreover, the expression of main genes related to testosterone synthesis including steroidogenic acute regulatory protein (StAR), low-density lipoprotein 30 31 receptor (LDL-R), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and 32 cytochrome P450 17a-hydroxysteroid dehydrogenase (P450-17a) in the testes also decreased after the exposure to 300 mg/kg TPP or TCEP for 35 days. According to the authors, combined 33 with the effects on physiology, histopathology and the expression of genes, TPP and TCEP can 34 35 induce oxidative stress and endocrine disruption in mice.

(ref: Chen, Jin, Wu 2015)

36 37

38 39

40 3.4.13 Special investigations: other

41 42 1.

43 Combined in vivo (mice) and in vitro study on mouse Leydig cell line.

In an *in vitro* study mouse Leydig TM3 cells were exposed to 0, 50, 100 and 200 µM triphenyl 44 45 phosphate (TPHP).

In the same study, C57BL/6J male mice were exposed to 0, 5, 50, and 200 mg/kg B.W. of 46 47 TPHP for 30 d by gavage.

48 The authors reported that after the third week of TPHP exposure, the body weight of mice in 49 the 200 mg/kg B.W. group was significantly lower than that in the control group. HE staining 50 of the testes from the control group showed no significant structural abnormalities in the 51 seminiferous tubules and Leydig cells. However, in the TPHP-treated groups, the germ cells

52 in the seminiferous tubules are loose arrangement with reduced layers were observed, sperm

- 53 in the lumen of seminiferous tubules and Leydig cells in the interstitial connective tissue were 54 decreased. TPP treatment significantly decreased sperm count in cauda epididymidis
- 55 compared with the control group. The result is consistent with the decreased sperm density
- 56 in epididymal tubules of the cauda epididymidis. Abnormal sperm morphology, such as
- 57 deformed heads, folded and/or twisted tails, was observed in the TPP-treated groups. The

- levels of serum testosterone were markedly decreased in the 50 and in the 200 mg/kg bw
 group compared with the control group.
- 3

4 According to the authors, TPP can cause apoptosis in testicular Leydig cells and TM3 cells.

- Moreover, TPHP disrupted mitochondrial ultrastructure of testicular Leydig cells and TM3 cells,
 reduced healthy mitochondria content and depressed mitochondrial membrane potential of
 TM3 cells.
- 8 Pretreatment with the mitochondrial fusion promoter M1 alleviated the above changes and 9 further mitigated TM3 cells apoptosis and testosterone levels decreased.
- 10 According to the authors, the results showed that TPP induced testes damage, including
- spermatogenesis disorders and testosterone synthesis inhibition. The authors summarized that the data revealed that apoptosis is a specific mechanism for TPP-induced male
- reproductive toxicity, and that ROS-mediated mitochondrial fusion inhibition is responsible for
- 14 Leydig cells apoptosis caused by TPP.
- 15 (ref: Wang, Xu, Zhao 2023)
- 16
- 17 **2**.
- 18 *In vitro* study on MCF7R cells, hepatoma HuH-7 cells, HEC-BCRP cells, HepaRG cells and 19 primary human hepatocytes.
- A series of *in vitro* experiments with these different cultured cells and 7 common organophosphates, including TPP, investigated the effects on the main drug transporters involved in pharmacokinetics. According to the authors, the data show that transporters may be targeted by some OPFRs, including TPP, with possible consequences in terms of inhibition of hormone transport and endocrine disruptive effects.
- In a prediction model for *in vivo* inhibition of transporter activity, TPP was not predicted to inhibit the activity of drug transporters at plasma concentrations expected from environmental or dietary exposure.
- 28 (ref: Tastet 2023)
- 29 30

31 SCCS overall comments on metabolism studies

- 32 It appears that the main target organ of TTP is the liver, where TPP is known to interfere with 33 the metabolism. This is in line with the liver effects that were observed in the 90-day guideline 34 study, from which a NOAEL of 20 mg/kg bw/d could be derived (see 3.4.4.2).
- A few studies reported some metabolic consequences after exposure to TPP, such as cortisol decrease *in vitro* (human cell line).
- The above-mentioned published non-guideline studies also point towards an effect of TPP on body weight, modulated through changes in glucose and lipid metabolism mainly taking place in the liver. However, due to the design of the studies and the reporting of the results, no conclusions could be drawn on an exposure dose that could be used for a different point of
- 41 departure for risk assessment in this Opinion.
- 42
- There are several other studies addressing the effects of TPP on metabolism, but these investigations are based on exposure to mixtures with other compounds or based on metabolites that may have originated from sources other than TPP. Because the observed effects cannot directly be linked to TPP, these studies were not considered in this Opinion.
- 47 48

49 **3.5 SAFETY EVALUATION (INCLUDING CALCULATION OF THE MOS)**

50 51

51 Because of the concern over genotoxicity, the MoS calculation is not included.

2 **3.6 DISCUSSION**

3

4 Exposure

The applicant has based the calculation of the dermal exposure on study in the publicly
available literature. However, the study was not in accordance with the SCCS basic criteria
for dermal absorption. The tested concentration (in a mixture of organophosphate esters)
was much lower than the intended use concentration. Considering these aspects, the default
dermal absorption of 50% was used in this opinion for the skin adjacent to the nails.
In view of the low vapour pressure and the publicly available studies, the SCCS regarded
the exposure by inhalation as negligible.

12 13 14

15 16

20

23 24

29

Toxicological Evaluation

Irritation and corrosivity

Several studies indicate absence of skin irritating potential and a mildly irritating potential
to the eyes.

Skin sensitisation

A guideline-compliant study and the absence of reports on sensitisation in humans indicate that the risk of sensitisation is negligible.

Acute toxicity

The acute dermal LD50 of TPP was determined to be greater than 7900 mg/kg bw and the acute inhalation LC50 of TPP in rats can considered to be greater than 200000 mg/ m3. No clinical signs of systemic toxicity were observed in the underlying studies.

Repeated dose toxicity

30 Because organophosphate (OP) esters can inhibit acetylcholinesterase (AChE), TPP has been 31 investigated for neurotoxicity. More recent studies could not confirm the neurotoxicity that 32 was found in the older studies, possibly because there was contamination of TPP with other 33 neurotoxic organophosphate esters. In the short term (4-day) NTP study in rats and the 28-34 day 2-generation developmental toxicity study, cholinesterase inhibition was observed at 35 doses equal or above 55 mg/kg bw/d and, respectively, 100 mg/kg bw/d. These doses are 36 above those that show effects on the liver. The *in vivo* studies, including a 90-day study up 37 to about 600 mg/kg bw day, do not indicate overt neurotoxicity. 38

- The 28-day developmental toxicity study in rats (see 3.4.5.2, ref: Witchey 2013) showed an increase in relative liver weight of the dams at TPH exposure at and above approximately 300 mg/kg bw/d.
- 42 Based on the liver effects reported in the 90-day guideline study in rats, centrilobular
- 43 hypertrophy observed at 1500 ppm in line with the increase in liver weight at 7500 ppm, a
- 44 no observed adverse effect level (NOAEL) of 20 and 22 mg/kg (for males and females
- respectively) can be derived. A NOAEL of 20 mg/kg bw/d can be used as point of departurefor the safety evaluation.

Reproductive toxicity

The ANSES 2019 report derived for maternal and developmental toxicity a NOAEL of 80 mg/kg bw/d. While ANSES 2019 stated that the available studies indicate that TPP do not have overt developmental toxic properties, the recent 28-day 2-generation study points towards perturbed reproductive performance at \geq 1000 mg/kg bw/d. In offspring, TPP-related toxicity was noted in pups at \geq 1000 mg/kg bw/d

54 55

1 *Mutagenicity / genotoxicity* 2 After analysis of the currently available data, TPP has been shown not to induce gene 3 mutations. However, the evidence for the lack of induction of chromosomal damage is 4 questionable and recent data from the study by Xie et al. (2023) raise concerns on TPP 5 clastogenicity in vitro. 6 7 The SCCS also requested additional evidence via an in vitro study of TPP to exclude a 8 genotoxicity potential. This was not provided by the Applicant. Hence, the genotoxic potential 9 of TPP cannot be excluded based on the currently available information. Safety assessment 10 of TPP will only be possible if genotoxicity potential could be excluded through further 11 evidence. 12 13 14 Carcinogenicity 15 Several recent research studies that used cancer cells were identified in the public literature, 16 implicating TPP in the carcinogenic process. 17 Overall, the SCCS regards that these studies, carried out in cancer cells or animal cancer 18 models, do not provide sufficient evidence to draw a conclusion on carcinogenicity. 19 20 Human data 21 22 The human data are based on urinary metabolites resulting from exposure to a combination 23 of several organophosphates and can therefore not be used for risk assessment in the 24 context of this opinion. 25 26 27 Endocrine effects 28 In addition to the studies that were used by the Applicant to assess an ED modality, further 29 in vitro and in vivo toxicity studies were noticed by the SCCS. 30 In level 2 in vitro assays, some estrogenic activity was observed in a few of the studies. This 31 estrogenic activity was also demonstrated in a recent study on KGN human ovarian granulosa 32 cells. In addition, that study showed a stimulation of secretion of progesterone. 33 The submitted studies do not indicate an androgenic potential of TPP; although a short-term in vivo study in mice (see section 3.4.13) noted a decreased serum testosterone level, it 34 35 cannot be derived from that study whether this could be attributed to an anti-androgenic 36 effect. 37 No level 3 in vivo studies were submitted. From the public literature the SCCS identified 38 several recent publications which are a combination of in-vivo and in-vitro studies, with a focus on metabolic transcriptomic assays (see section 3.4.12 and 3.4.13 - Special 39 investigations; a brief overview is in Annex 2). The studies point towards an effect of TPP on 40 41 changes in glucose and lipid metabolism mainly taking place in the liver. 42 However, the design of the studies and the reporting of the results do not allow drawing 43 conclusions on an exposure dose that could be used for a point of departure for risk 44 assessment in this opinion. 45 46 Two in vitro studies indicate a steroidogenic effect of TPP: one study showing a decrease of basal production of cortisol and aldosterone and one study with a transcriptomic assay 47 48 indicating weak inhibitory effects on the GR-mediated transcriptional activity induced by 49 hydrocortisone. 50 51 In level 4 in vivo (OECD TG408, 421/422 and 443) studies, estrogenic effects were not 52 observed. 53 54 Based on the available data regarding thyroid and thyroid hormones, the T modality was not 55 clearly affected. Although some scattered effects were observed, including increased follicular

cell hypertrophy (most likely due to hepatocellular hypertrophy) in males in the 90-days
 repeated dose toxicity, the results were not considered sufficient to establish a T modality.

From the *in vivo* studies that included weight gain as parameter, an obesogenic effect of TPP
cannot clearly be established. The 28-day developmental toxicity study (see 3.4.5.2)
indicated in dams a decrease in weight gain at and above 1000 mg/kg bw/d.

8 The Applicant provided studies from the public literature containing information on the 9 presence or absence of endocrine activity of TPP in humans. Because the studies are based 10 on urine metabolites, which may originate from exposure to other organophosphates, these 11 studies cannot be used for the risk assessment in this Opinion.

12 13

14

Other special investigations

15 Recently several non-guideline studies appeared in the public literature. These studies are *in* 16 *vitro*, *in vivo* and combinations of this, addressing a variety of endpoints including 17 transcriptomic data.

18 It appears that the main target organ is the liver, where TPP is known to interfere with the 19 metabolism. This is in line with the liver effects that were observed in the 90-day guideline 20 study, from which a NOAEL of 20 mg/kg bw/d could be derived (see 3.4.4.2).

The published non-guideline studies also point towards an effect of TPP on body weight, modulated through changes in glucose and lipid metabolism mainly taking place in the liver. However, the design of these studies and the reporting of the results do not allow drawing conclusions on an exposure dose that could be used for a point of departure for risk assessment in this Opinion.

There are several other studies addressing the effects of TPP on metabolism, but these investigations are based on exposure to mixtures with other compounds or based on metabolites that may have originated from other sources than TPP. Because the observed effects cannot directly be linked to TPP, these studies were not considered for this opinion's purpose.

2 4. CONCLUSION

- 1. In the light of the data provided and taking under consideration the concerns related to potential endocrine disrupting properties of Triphenyl Phosphate, does the SCCS consider Triphenyl Phosphate safe when used as a plasticiser in nail products up to a maximum concentration of 5%?
- Based on the currently available information, it is not possible for the SCCS to conclude
 on the safety of Triphenyl phosphate because the genotoxicity potential cannot be
 excluded.
- 11

1

3 4

5

6

7

- Alternatively, what is according to the SCCS the maximum concentration considered safe for use of Triphenyl Phosphate in nail products?
- 14 /
- 15

Joes the SCCS have any further scientific concerns with regard to the use of Triphenyl Phosphate in nail products?

- 18 The SCCS mandate does not address environmental aspects. Therefore, this assessment 19 did not cover the safety of Triphenyl phosphate for the environment.
- 20
- 21

22 **5. MINORITY OPINION**

23

/

6. REFERENCES

1 2

- An J, Jiang JJ, Tang W Zhong Y, Ren G, Shang Y, Yu Z (2023) Lipid metabolic disturbance
 induced by triphenyl phosphate and hydroxy metabolite in HepG2 cells. Ecotoxicol Environ
 Saf 22;262:115160. doi: 10.1016/j.ecoenv.2023.115160.
- ANSES 2019. Analysis of the most appropriate risk management option (RMOA) for Triphenyl
 phosphate (TPP) EC n° 204-112-2. Authority: France.
 <u>https://echa.europa.eu/documents/10162/24222797/ec204-112</u>
 <u>2 tpp rmoa 13147 en.pdf/a6ce7a90-9c01-d3cf-f2c8-04382d7807f9</u>
- ANSES-ECHA 2023. Substance evaluation conclusion as required by REACH Article 48 and
 EVALUATION REPORT for Substance name: Triphenyl phosphate (TPP) EC No. 204-112-2,
 CAS RN 115-86-6
- Bittner GD, Denison MS, Yang CZ, Stoner MA, He G (2014) Chemicals having estrogenic
 activity can be released from some bisphenol a-free, hard and clear, thermoplastic resins.
 Environmental Health 13:1-18.
- Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, Tong W, Shi L, Perkins R,
 Sheehan DM (2000) The estrogen receptor relative binding affinities of 188 natural and
 xenochemicals: structural diversity of ligands. Toxicological Sciences 54:138-153.
- Bremmer H, Prud'homme de Lodder LCH, JGM vE. 2006. RIVM Cosmetics fact sheet. To assess
 the risks for the consumer updated version for ConsExpo 4. Report No. RIVM report
 320104001/2006,
- Brown M, Khengar RH, Turner RB, Forbes B, Traynor M, Evans C, Jones S. 2009. Overcoming
 the nail barrier: a systematic investigation of ungual chemical penetration enhancement.
 International journal of pharmaceutics 370:61-67.
- Cano-Sancho G, Smith A, La Merrill MA. 2017. Triphenyl phosphate enhances adipogenic
 differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms.
 Toxicology in Vitro 40:280-288.
- Chen G, Jin Y, Wu Y, Liu L, Fu Z. 2015. Exposure of male mice to two kinds of organophosphate
 flame retardants (OPFRs) induced oxidative stress and endocrine disruption. Environmental
 toxicology and pharmacology 40:310-318.
- 41 CIR. 2018. Safety Assessment of Triphenyl Phosphate as Used in Cosmetics.
 42 <u>https://www.cir-safety.org/sites/default/files/tripho062018FR.pdf</u>
- 43

- Cui H, Chang Y, Cao J, Jiang X, Li M. 2022. Liver immune and lipid metabolism disorders in
 mice induced by triphenyl phosphate with or without high fructose and high fat diet.
 Chmosphere. 2022;308:136543. doi: 10.1016/j.chemosphere.2022.136543. PMID:
 36150489
- 48
 49 Cutrín-Gómez E, Anguiano-Igea S, Delgado-Charro MB, Gómez-Amoza JL, Otero-Espinar FJ.
 50 2018. Effect of penetration enhancers on drug nail permeability from cyclodextrin/poloxamer51 soluble polypseudorotaxane-based nail lacquers. Pharmaceutics 10:273.
- 52
 53 Danish EPA. 2008. Survey and safety assessment of chemical substances in artificial nails and
 54 nail hardeners. Survey of Chemical Substances in Consumer Products, No. 95 2008.
- 55

1 Doherty BT, Hoffman K, Keil AP, Engel SM, Stapleton HM, Goldman BD, Olshan AF, Daniels 2 JL. 2019. Prenatal exposure to organophosphate esters and behavioral development in young 3 children in the Pregnancy, Infection, and Nutrition Study. Neurotoxicology 73:150-160. 4 5 ECHA 2021. Registered substances database: Triphenyl phosphate, EC NO. 204-112-2. CAS 6 No. 115-86-6. 7 https://Echa.europa.eu/pl/registration-dossier/-/registered-dossier/15972/7/1 8 9 Fairfield-Estill C, Mayer A, Slone J et al (2022) Assessment of Triphenyl Phosphate (TPhP) Exposure to Nail Salon Workers by Air, Hand Wipe, and Urine Analysis. Int J Hyg Environ 10 11 Health 231;113630 12 13 Fang H, Tong W, Shi LM, Blair R, Perkins R, Branham W, Hass BS, Xie Q, Dial SL, Moland CL, DM S. 2003. Structure-Activity Relationships of 202 Natural, Synthetic and Environmental 14 Chemicals Binding to Androgen Receptors. Chem Res Tox 16:1338-1358. 15 16 17 Feng Y, Shi J, Li M, Duan H, Shao B (2023) Evaluation of the cytotoxic activity of triphenyl 18 phosphate on mouse spermatocytes cells. Toxicol In Vitro. 2023 Aug;90:105607. doi: 19 10.1016/j.tiv.2023.105607. 20 21 Ficheux A, Morisset T, Chevillotte G, Postic C, Roudot A. 2014. Probabilistic assessment of 22 exposure to nail cosmetics in French consumers. Food and Chemical Toxicology 66:36-43. 23 24 Frederiksen M, Stapleton HM, Vorkamp K, Webster TF, Jensen NM, Sørensen JA, Nielsen F, 25 Knudsen LE, Sørensen LS, Clausen PA. 2018. Dermal uptake and percutaneous penetration 26 of organophosphate esters in a human skin ex vivo model. Chemosphere 197:185-192. 27 Green AJ, Graham JL, Gonzalez EA, La Frano MR, Petropoulou S-SE, Park J-S, Newman JW, 28 29 Stanhope KL, Havel PJ, La Merrill MA. 2017. Perinatal triphenyl phosphate exposure 30 accelerates type 2 diabetes onset and increases adipose accumulation in UCD-type 2 diabetes 31 mellitus rats. Reproductive Toxicology 68:119-129. 32 33 Hoffman K, Garantziotis S, Birnbaum LS, Stapleton HM. 2015. Monitoring indoor exposure to 34 organophosphate flame retardants: hand wipes and house dust. Environmental health 35 perspectives 123:160-165. 36 37 Hong Z, Li Y, Deng X, Chen M, Pan J et al (2022) Comprehensive analysis of triphenyl 38 phosphate: An environmental explanation of colorectal cancer progression. Ecotoxicology and 39 Environmental Safety 241 (2022) 113778. 40 Honkakoski P, Palvimo JJ, Penttilä L, Vepsäläinen J, Auriola S. 2004. Effects of triaryl 41 42 phosphates on mouse and human nuclear receptors. Biochemical pharmacology 67:97-106. 43 44 Jackson E. 2008. Subungual penetration of dibutyl phthalate in human fingernails. Skin 45 pharmacology and physiology 21:10-14. 46 47 Ji X, Li N, Ma M, Rao K, Wang Z (2020) In vitro estrogen-disrupting effects of 48 organophosphate flame retardants. Science of The Total Environment 727:138484. 49 50 Kim UJ, Wang Y, Li W, Kannan K (2019) Occurrence of and human exposure to 51 organophosphate flame retardants/ plasticizers in indoor air and dust from various 52 microenvironments in the United States. Environm Internat 125:342-349 53 54 Kobayashi Y, Komatsu T, Sumi M, Numajiri S, Miyamoto M, Kobayashi D, Sugibayashi K, 55 Morimoto Y. 2004. In vitro permeation of several drugs through the human nail plate: 56 relationship between physicochemical properties and nail permeability of drugs. European 57 journal of pharmaceutical sciences 21:471-477.

- 1 2 Kobayashi Y, Miyamoto M, Sugibayashi K, Morimoto Y. 1999. Drug permeation through the 3 three layers of the human nail plate. Journal of pharmacy and pharmacology 51:271-278. 4 5 Kojima H, Takeuchi S, Itoh T, Iida M, Kobayashi S, Yoshida T (2013) In vitro endocrine 6 disruption potential of organophosphate flameretardants via human nuclear receptors. 7 Toxicology 314:76-83 8 9 Kojima H, Takeuchi S, Van den Eede N, Covaci A. 2016. Effects of primary metabolites of 10 organophosphate flame retardants on transcriptional activity via human nuclear receptors. 11 Toxicology letters 245:31-39. 12 13 Kojima M, Fukunaga* K, Sasaki M, Nakamura M, Tsuji M, Nishiyama T. 2005. Evaluation of 14 estrogenic activities of pesticides using an in vitro reporter gene assay. International journal of environmental health research 15:271-280. 15 16 Kreutz T, de Matos SP, Koester LS. 2019. Recent patents on permeation enhancers for drug 17 delivery through nails. Recent patents on drug delivery & formulation 13:203-218. 18 19 20 Kwon HY, Park SB, H M, Park JW, Lee Y et al (2022) Triphenyl phosphate activates estrogen receptor α /NF-21 κB/cyclin D1 signaling to stimulate cell cycle progression in human Ishikawa endometrial cancer cells. 22 Obstet Gynecol Sci 2022;65:531-541. doi.org/10.5468/ogs.22108 23 24 Li Z, Robaire B, Hales BF (2023) The Organophosphate Esters Used as Flame Retardants and 25 Plasticizers Affect H295R Adrenal Cell Phenotypes and Functions Endocrinology, 2023 Aug 1;164(9):bqad119. doi: 10.1210/endocr/bqad119. PMID: 37522340; PMCID: PMC10424175 26 27 28 Lin Z, Zhang W, Li X et al (2023) Triphenyl phosphate induced macrophages dysfunction by 29 activation TLR4-mediated ERK/NRF-kB pathway. Envrionm Toxicol 38:1484-1494. DOI 30 10.1002/tox.23778 31 32 Liu X, Ji K, Choi K (2012) Endocrine Disruption Potentials of Organophosphate Flame 33 Retardants and Related Mechanisms in H295R and MVLN Cell Lines and in Zebrafish. Aquatic 34 Toxicology 114-115: 173-81. doi:10.1016/j.aguatox.2012.02.019. 35 36 Liu X, Zhao X, Wang Y, Hong J, Shi M, Pfaff D, Guo L, Tang H. 2020. Triphenyl phosphate 37 permeates the blood brain barrier and induces neurotoxicity in mouse brain. Chemosphere 38 252:126470. 39 Lu X, Hong J, Zhang J, Liu Q, Liao G, Shi Y, Tang H, Liu X (2023) Triphenyl phosphate disrupts 40 placental tryptophan metabolism by activating MAOA/ROS/NFkB. Sci Total Environ. 2023 Sep 41 42 1;904:166688. doi: 10.1016/j.scitotenv.2023.166688. 43 44 McAuley W, Jones S, Traynor M, Guesné S, Murdan S, Brown M. 2016. An investigation of 45 how fungal infection influences drug penetration through onychomycosis patient's nail plates. 46 European Journal of Pharmaceutics and Biopharmaceutics 102:178-184. 47 48 Meeker JD, Stapleton HM. 2010. House dust concentrations of organophosphate flame 49 retardants in relation to hormone levels and semen quality parameters. Environmental health 50 perspectives 118:318-323. 51 Mendelsohn E, Hagopian A, Hoffman K, Butt CM, Lorenzo A, Congleton J, Webster TF, 52 53 Stapleton HM. 2016. Nail polish as a source of exposure to triphenyl phosphate. Environment
- 54 international 86:45-51.
- 55

1 Mertin D, Lippold BC. 1997. In-vitro permeability of the human nail and of a keratin membrane 2 from bovine hooves: penetration of chloramphenicol from lipophilic vehicles and a nail 3 lacquer. Journal of pharmacy and pharmacology 49:241-245. 4 5 Negi CK, Bajard L, Kohoutek J, Blaha L (2021). An adverse outcome pathway based in vitro 6 characterization of novel flame retardants-induced hepatic steatosis. Environmental Pollution 7 2021;289:117855. doi: 10.1016/j.envpol.2021.117855 8 9 NICNAS. 2018. Phosphoric acid, triphenyl ester: Human health tier II assessment. https://www.industrialchemicals.gov.au/sites/default/files/Phosphoric%20acid%2C%20triph 10 enyl%20ester Human%20health%20tier%20II%20assessment.pdf 11 12 13 NTP. 2018. NTP Research report on in vivo repeat dose biological potency study of Triphenyl Phosphate (CAS No. 115-86-6) in male Sprague Dawley rats (HSD: Sprague Dawley SD) 14 15 (Gavagestudies). 16 https://www.ncbi.nlm.nih.gov/books/NBK535511/pdf/Bookshelf NBK535511.pdf 17 18 OECD. 2012. Guidance document on standardised test guidelines for evaluating chemicals for 19 endocrine disruption. Report No. ENV/JM/MONO(2012)22 20 21 OECD. 2018. Revised guidance document 150 on standardised test guidelines for evaluating 22 chemicals for endocrine disruption, OECD Series on testing and assessment. OECD Publishing, 23 Paris, https://doi.org/10.1787/9789264304741-en 24 25 OECD SIDS. 2002. Triphenyl Phosphate: CAS No. 1115-86-6. Last Updated 2002 (last 26 accessed 30-01-2024). <u>http://webnet.oecd.org/HPV/UI/handler.axd?id=e23395dc-ed57-</u> 27 4822-b9c4-7178045c3c97 28 29 Palliyil B, Lebo DB, Patel PR. 2013. A preformulation strategy for the selection of penetration 30 enhancers for a transungual formulation. AAPS PharmSciTech 14:682-691. 31 32 Philbrook NA, Restivo VE, Belanger CL, Winn LM. 2018. Gestational triphenyl phosphate 33 exposure in C57BI/6 mice perturbs expression of insulin-like growth factor signaling genes in 34 maternal and fetal liver. Birth defects research 110:483-494. 35 36 Phillips AL, Chen A, Rock KD, Horman B, Patisaul HB, Stapleton HM. 2016. Editor's highlight: 37 transplacental and lactational transfer of Firemaster® 550 components in dosed Wistar rats. 38 Toxicological Sciences 153:246-257. 39 40 Preston EV, McClean MD, Henn BC, Stapleton HM, Braverman LE, Pearce EN, Makey CM, Webster TF. 2017. Associations between urinary diphenyl phosphate and thyroid function. 41 42 Environment international 101:158-164. 43 44 45 Sasaki K, Suzuki T, Takeda M, Uchiyama M. 1984. Metabolism of phosphoric acid triesters by 46 rat liver homogenate. Bulletin of environmental contamination and toxicology 33:281-288. 47 48 SCCS. 2021. The SCCS notes of guidance for the testing of cosmetic ingredients and their 49 safety evaluation 11th revision. 50 Schang G, Robaire B, Hales BF. 2016. Organophosphate flame retardants act as endocrine-51 52 disrupting chemicals in MA-10 mouse tumor Leydig cells. Toxicological Sciences 150:499-509. 53 54 Schmuck G (1989) Beziehungen zwischen neurotoxischer, mutagener und kanzerogener 55 Wirkung organischer Phosphorverbindungen - Entwicklung und Validierung eines 56 Zellkulturverfahrens zur Voraussage neurotoxischer Effekte. Thesis; University of Wuerzburg;

1 Germany Cited in: OECD-SIDS 2002 and in ECHA Registered substances database Triphenyl 2 phosphate 2021 3 4 Sobotka TJ, Brodie RE, Arnold A, West GL. 1986. Neuromotor function in rats during 5 subchronic dietary exposure to triphenyl phosphate. Neurobehavioral Toxicology & Teratology 6 7 Sutton W, Terhaar C, Miller F, Scherberger R, Riley E, Roudabush R, Fassett D. 1960. Studies 8 on the industrial hygiene and toxicology of triphenyl phosphate. Archives of Environmental 9 Health: An International Journal 1:33-46. 10 Tastet V, Le Vée M, Kerhoas M, Zerdoug A, Jouan E, Bruyère A, Fardel O (2023) Interactions 11 12 of organophosphate flame retardants with human drug transporters. Ecotoxicol Environ Saf. 13 2023 Aug 17;263:115348. doi: 10.1016/j.ecoenv.2023.115348 14 15 Tao Y, Hu L, Liu L, Yu M, Li Y, Li X, Liu W, Luo D, Covaci A, Xia W. 2021. Prenatal exposure to organophosphate esters and neonatal thyroid-stimulating hormone levels: A birth cohort 16 17 study in Wuhan, China. Environment International 156:106640. 18 19 Thatai P, Tiwary A, Sapra B. 2016. Progressive development in experimental models of 20 transungual drug delivery of anti-fungal agents. International journal of cosmetic science 21 38:1-12. 22 23 Theiss JC, Stoner GD, Shimkin MB, Weisburger EK (1977) Test for carcinogenicity of organic 24 contaminants of United States drinking water by pulmonary tumor response in strain A mice. 25 Cancer Research 37: 2717-2720 26 27 Guidance ToxCast Owner's Manual. 2018. for Exploring Data. 28 https://www.epa.gov/sites/default/files/2018-29 04/documents/toxcastownermanual4252018.pdf 30 31 Unpublished report, 2015-a. Prenatal developmental toxicity study of triphenylphosphate in 32 rabbits by oral gavage. Project 505944, Substance 205677. Ciited in ANSES 2019 33 34 Unpublished report 2015-b. Van Ottterdijk: 90-day oral toxicity study with triphenyl 35 phosphate by dietary administration in the rat. WIL Research, project 505940. Summarised 36 in ANSES 2019 and ECHA 2021. 37 38 39 Van den Eede N, De Meester I, Maho W, Neels H, Covaci A. 2016. Biotransformation of three phosphate flame retardants and plasticizers in primary human hepatocytes: untargeted 40 metabolite screening and quantitative assessment. Journal of Applied Toxicology 36:1401-41 42 1408. 43 44 Van den Eede N, Maho W, Erratico C, Neels H, Covaci A. 2013. First insights in the metabolism 45 of phosphate flame retardants and plasticizers using human liver fractions. Toxicology letters 46 223:9-15. 47 48 Wang XQ, Li f, Liu JL, Ji CL, Wu HF (2020) Transcriptomic, proteomic and metabolomic 49 profiling unravel the mechanisms of hepatotoxicity pathway induced by triphenyl phosphate 50 (TPP). Ecotoxicology and Environmental Safety 205; 111126 51 52 Wang C, Le Y, Lu D et al. (2020) Triphenyl phosphate causes a sexually dimorphic metabolism 53 dysfunction associated with disordered adiponectin receptors in pubertal mice. J Hazardous Materials 2020;388:12173. doi: 10.1016/j.jhazmat.2019.121732) 54 55 56 Wang, Lee, Hales, Robaire (2023). Organophosphate Esters Disrupt Steroidogenesis in KGN 57 Human Ovarian Granulosa Cells.

1 Endocrinology 164;7 doi.org/10.1210/endocr/bqad089 2 3 Wang D, Yan S et al. (2019) Effects of triphenyl phosphate exposure during fetal development 4 on obesity and metabolic dysfunctions in adult mice: Impaired lipid metabolism and intestinal 5 dysbiosis. Environmental Pollution 2019;246:630-638. doi: 10.1016/j.envpol.2018.12.053. 6 7 Wang D, Zhu W, Chen L, Yan J, Teng M, Zhou Z (2018) Neonatal triphenyl phosphate and its 8 metabolite diphenyl phosphate exposure induce sex-and dose-dependent metabolic 9 disruptions in adult mice. Environmental Pollution 2018;237:10-17. 10 doi.org/10.1016/j.ecoenv.2020.111126 11 12 Wang M, Xu J, Zhao Z, Gong L, Su Y, Fang Z, Chen P, Liu Y, Zhang L, Xu F (2023) Triphenyl phosphate induced apoptosis of mice testicular Leydig cells and TM3 cells through ROS-13 mediated mitochondrial fusion inhibition. Ecotoxicol Environ Saf. 2023 May;256:114876. doi: 14 15 10.1016/j.ecoenv.2023.114876. 16 17 Weiss JM, Andersson PL, Zhang J, Simon E, Leonards PE, Hamers T, Lamoree MH. 2015. 18 Tracing thyroid hormone-disrupting compounds: database compilation and structure-activity 19 evaluation for an effect-directed analysis of sediment. Analytical and bioanalytical chemistry 20 407:5625-5634. 21 22 Welsh JJ, Collins TF, Whitby KE, Black TN, Arnold A. 1987. Teratogenic potential of triphenyl 23 phosphate in Sprague-Dawley (Spartan) rats. Toxicology and industrial health 3:357-369. 24 25 WHO INCHEM. 1992. Environmental health criteria for triphenyl phosphate. United Nations 26 Environment Programme, International Labour Organisation, Organization WH, 27 https://inchem.org/documents/ehc/ehc/ehc111.htm 28 29 WHO/IPCS. 2002. Global assessment of the state-of-the-science of endocrine disruptors. 30 http://www.who.int/ipcs/ publications/new issues/endocrine disruptors/en/ 31 32 Witchey SK, Sutherland V, Collins B, Roberts G, Roberts G, Shockley KR, Vallant M et al. 33 (2023) Reproductive and developmental toxicity following exposure to organophosphate ester flame retardants and plasticizers, triphenyl phosphate and isopropylated phenyl phosphate, 34 35 374-386. in Sprague Dawley rats. Toxicological Sciences 191(2),36 doi.org/10.1093/toxsci/kfac135 37 38 Xie J, Tu H, Chen Y, Chen Z, Yang Z, Liu Y (2023) Triphenyl phosphate induces clastogenic 39 effects potently in mammalian cells, human CYP1A2 and 2E1 being major activating enzymes. 40 Chemico-Biol Interactions 369.110259. 41 42 Ye L, Zhang X, Wang P, Zhang Y, He S et al (2022) Low concentration triphenyl phosphate fuels proliferation 43 and migration of hepatocellular carcinoma cells. Environmental Toxicology 2022;37:2445-2459. DOI: 44 10.1002/tox.23609 45 Yue J, Sun X, Duan X, Sun C, Chen H, Sun H, Zhang L (2023) Triphenyl phosphate proved 46 47 more potent than its metabolite diphenyl phosphate in inducing hepatic insulin resistance 48 through endoplasmic reticulum stress. Environ Int. 2023 Feb;172:107749. doi: 49 10.1016/j.envint.2023.107749. Epub 2023 Jan 13. 50 Zeiger E, Anderson B, Haworth S, Lawlor T, Mortelmans K, Speck W (1987) Salmonella 51 52 mutagenicity tests: III. Results from the testing of 255 chemicals. Environmental mutagenesis 53 1987;9:61-109. 54 55 Zhang X, Huang W, Huang T, Zhang J, Xu A et al (2023) Integrative analysis of triphenyl phosphate : 56 contextual interpretation of bladder cancer cohort. Front Oncol 2023; 13:1260114.

1 doi: 10.3389/fonc.2023.1260114

Zhang Q, Ji C, Yin X, Yan L, Lu M, Zhao M (2016) Thyroid hormone-disrupting activity and
ecological risk assessment of phosphorus-containing flame retardants by in vitro, in vivo and
in silico approaches. Environmental Pollution 210:27-33.

Zhang Q, Lu M, Dong X, Wang C, Zhang C, Liu W, Zhao M (2014) Potential estrogenic effects
of phosphorus-containing flame retardants. Environmental science & technology 48:69957001. Doi.org/10.1016/j.cbi.2022.110259

Zhang W, Song G (2022) A comprehensive analysis-based study of triphenyl phosphate—
 environmental explanation of glioma progression. Ecotoxicology and Environmental Safety
 248 (2022) 114346

7. GLOSSARY OF TERMS

See SCCS/1647/22, 12th Revision of the SCCS Notes of Guidance for the Testing of Cosmetic
 Ingredients and their Safety Evaluation – Appendix 15 - from page 158.

21 8. LIST OF ABBREVIATIONS

See SCCS/1647/22, 12th Revision of the SCCS Notes of Guidance for the Testing of Cosmetic
 Ingredients and their Safety Evaluation – Appendix 15 - from page 158.

1 **ANNEX 1**

2 Applicant's overview of studies on endocrine disruption properties.

Studies available	Cell line / species doses / duration	Results	Reference
Level 1: Existing d	lata and non-test	information (not related to a specifie	c receptor)
No data available			
Level 2: In vitro m	nechanistic assays	5	
<i>In vitro</i> high throughput screening (HTS) assays	Various human and rat cell lines / from 0.0005 to 200 µM / 0.5 to 80 hours	TPP was found to be active in 21 $(E=10; A=4; T=3; S=4)$ out of 58 ED relevant assays. However, 12 (57%) have been flagged as potentially 'false positive' by the automated analysis tool from the US EPA.	CompTox/EDSP- 21 (accessed August 2021)
<i>In vitro,</i> (anti)estrogenic activity	Uterine cytosol preparation / 20 hours	TPP was found to be a non-binder to the ER at doses up to > 10-4 M (>100 μ M)	(Blair <i>et al.</i> , 2000)
In vitro luciferase reporter gene expression assay / estrogenic activity	a-positive human breast cancer cell line (MCF-7) cells and human ovarian cancer cell line BG1Luc luciferase assay	TPP increased proliferation in a dose- dependent manner (at concentrations that were about six orders of magnitude higher when compared to that of E2). TPP was found to exhibit significant estrogenic activity in both BG1Luc and MCF-7 assays with an EC50 of 4.7 and 2.2μ M, respectively.	(Bittner <i>et al.</i> , 2014)
In vitro luciferase reporter gene expression assay / (anti)estrogenic activity	Chinese Hamster Ovary cell line (CHO-K1) and yeast two-hybrid reporter assay and cell proliferation assay using a- positive MCF-7 cells / 24 hours	TPP was found to have potent estrogenic activity with the relative effective concentration (REC20) value of 0.27 and 0.65 μ M in dual luciferase reporter and yeast two-hybrid assay indicating estrogenic activity. However, TPP did not exert any antiestrogenic activity	(Zhang <i>et al.</i> , 2014)
In vitro, gene reporter and cell proliferation assay / (anti)estrogenic activity	Yeast two-hybrid reporter gene and MVLN ERE- luciferase reporter gene assay and the MCF7 cell proliferation assay / 1.5 × 104 cells/ 72 hours	TPP showed agonistic activity in MVLN ERE-luciferase reporter gene assay (>700,000 fold lower than E2) and agonistic activity in the MCF7 cell proliferation assay (at >90,000 fold lower than E2) and antiestrogenic activity in yeast two-hybrid reporter gene assay (>80,000 fold lower than E2)	(Ji <i>et al.</i> , 2020)
<i>in vitro</i> estrogen ɑ(ERɑ) activity	COS-1 cells	TPP was not found to have agonistic or antagonistic activity towards ERa receptor	(Honkakoski et al., 2004)

Opinion on Triphenyl Ph	osphate (CAS No.	204-112-2, 1	EC No. 115-86-6)
-------------------------	------------------	--------------	------------------

In vitro, luciferase reporter gene expression assay / (anti)estrogenic activity	CHO-K1 and COS-7 cell lines / 3× 10-5 M/24 hours	Metabolites3-Hydroxylphenyldiphenyl phosphate (HO-m-TPP) and4-Hydroxylphenyl diphenyl phosphate(HO-p-TPP) showed ERa and ERβmediated estrogenic activity withREC20 values for ERa and ERβagonistic activity were, 4.6 µM and 7.3µM for TPP, 1.7 µM and 3.8 µM for HO-m-TPP, 0.29 µM and 0.30 µM for HO-p-TPP.HO-m-TPP and HO-p-TPP showed noantagonistic ERa activity but inhibitedER-β mediated estrogenic activity.RIC20 values for ERβ antagonisticactivity were >1 ×10-5 µM for TPP, 15µM for HO-m-TPP, 5.4 µM for HO-p-TPP.Overall, TPP was concluded to haveERa as well as ERβ estrogen agonisticactivity (>100,000 fold lower than E2)and ERβ antagonistic activity (>900-fold lower concentration thantamoxifen)	(Kojima <i>et al.</i> , 2016)
<i>In vitro,</i> flow- cytometric proliferation assay / (anti)estrogenic activity	a-positive MCF-7 cells	TPP increased cell proliferation. The relative proliferative potency (RPP) was found to be 9×10 -9 however, potency was many orders of magnitude lower when compared to that of E2. The EC20 in MCF-7 cells were 88 μ M for TPP versus 8 x 10-6 μ M for E2. Overall, TPP was shown to induce cell proliferation and exhibit estrogenic activity (1 x 108 fold lower than that of E2.)	(Krivoshiev <i>et al.</i> , 2016)
<i>In vitro,</i> AR receptor binding assay / (anti)androgenic activity	Recombinant AR protein of rats expressed in <i>Escherichia coli</i>	TPP showed an IC50 of 15 μ M, RBA of 0.021 and logRBA of -1.69 to the androgen receptor suggesting that TPP showed moderate binding (4000 times less potent than R1881) towards androgenic receptors.	(Fang H <i>et al.</i> , 2003)
In vitro, luciferase reporter gene assay / (anti)androgenic activity	CHO-K1 and COS-7 cell lines / 30 µM / 24 hours	Metabolites of TPP ((HO- <i>m</i> -TPP and HO- <i>p</i> -TPP) did not show agonist androgenic activity. However, TPP and its hydroxy metabolites (HO- <i>m</i> -TPP and HO- <i>p</i> -TPP) were found to have some antagonist activity at high concentrations (RIC20 – 650-fold lower than that of AR antagonist hydroxyflutamide), suggesting that TPP showed slight anti-androgenic activity at higher concentrations.	(Kojima <i>et al.</i> , 2016)
<i>In vitro</i> androgenic activity	COS-1 cells	TPP was shown to decrease the AR activity by 40–50%. TPP also reduced the testosterone-induced AR-dependent activity by 30–40%. TPP	(Honkakoski et al., 2004)

		was shown to inhibit AR-dependent activity	
In vitro luciferase reporter gene assay and T- screen cell proliferation assay thyroid hormone- disrupting activity	Thyroid receptor β (TR β) in CHO-K1 cells and T-screen cell proliferation assay in GH3 cell	TPP showed no agonistic or antagonistic activity in both assays (data not shown).	(Zhang <i>et al.</i> , 2016)
In vitro thyroid transport protein transthyretin (TTR)-binding potency	Human TTR- binding potency bioassay	TPP was shown to have IC50 >25 μ M and determined not to have a binding potential to the TTR	(Weiss <i>et al.</i> , 2015)
In vitro luciferase reporter gene expression assay / (anti) progesterone activity	MA-10 mouse Leydig tumour cells	TPP showed no significant effect on basal progesterone production nor on steroidogenesis up to 10 μ M. Overall, TPP had no effect on Leydig cell survival and steroidogenesis	(Schang <i>et al.</i> , 2016)
In vitro luciferase reporter gene assay / glucocorticoid receptor activity	CHO-K1 and COS-7 cell lines / 30 µM / 24 hours	TPP and its metabolites HO- <i>m</i> -TPHP and HO- <i>p</i> -TPHP showed slight antagonist glucocorticoid activity (induced by 3×10 -8 M of hydrocortisone) with RIC20 values of 4.3 to 12 µM suggesting glucocorticoid antagonistic activity of HO- <i>p</i> -TPHP (75-fold lower than that of RU-486). TPP and its metabolites showed to have no agonistic activity but have slight antagonistic activity.	(Kojima <i>et al.</i> , 2016)
<i>in vitro,</i> β- galactosidase reporter assay/ Glucocorticoid (GR) activity	COS-1 cells / 10 µM	TPP was shown to inhibit human GR by 20% in the absence of agonist. TPP was not found to affect GR activity	(Honkakoski et al., 2004)
<i>In vitro</i> β- galactosidase reporter assay, Progesterone- induced receptor (PR) activity	COS-1 cells/ 10 μΜ	TPP was not shown to affect human PR activity. TPP was not shown to have agonistic or antagonistic activity towards PR receptor	(Honkakoski et al., 2004)
<i>in vitro</i> steroidogenesis disruption in TM3 cells	Leydig cell line TM3 cells / 24 hours / 61 or 184 µM	TPP decreased the cell viabilities significantly at 60 μ g/mL, being 41.4% lower than that of the control group. TPP has the potential to decrease cell viability, induce oxidative stress and disrupt the steroidogenesis in TM3 cells; however, these effects were observed at higher	(Chen <i>et al.</i> , 2015)

		cytotoxic concentrations, i.e., $\geq 60 \ \mu g/mL (\geq 184 \ \mu M)$	
<i>vitro</i> luciferase reporter gene expression assay / (anti) pregnane activity	CHO-K1 and COS-7 cell lines / 30 µM /24 hours	TPP and its metabolites HO- <i>m</i> -TPHP and HO- <i>p</i> -TPHP showed agonistic pregnane activity with REC20 values in the range of 2.2 to 4.7μ M (7-15 fold lower compared to rifampicin)	(Kojima <i>et al.</i> , 2016)
<i>In vitro</i> adipogenicity, CEBP and PPARG pathway	3T3-L1 cells	TPP was shown to increase pre- adipocyte proliferation (at the low concentration 0.1 μ M; p < 0.001) and adipogenic differentiation of 3T3-L1 cells along with induced transcription in the CEBP and PPARG pathway. Short term exposure of TPP at concentration of 50 μ M, enhanced insulin-stimulated GLUT4 translocation. TPP was concluded to mimic or enhance the effects of insulin signalling on adipocyte glucose uptake	(Cano-Sancho et al., 2017)
Level 3: <i>In vivo</i> m	echanistic assays		
No level-3 <i>in vivo</i> m		ould be identified	
Level 4: In vivo as			(
Subacute toxicity study (OECD TG 407; GLP)	Rat / 0, 250, 1000 and 4000 ppm. Equivalent to 23/39, 104/161 or 508/701 mg/kg bw/day in males/females / 28 days	TPP-related effects in liver were observed at dose levels of 1000 ppm and above in males. No effects on any other organs or tissues (including reproductive). The NOAEL was established at 23 mg/kg bw/day for male based on effects on body weights and liver and at 701 mg/kg bw/day for female rats.	(ECHA, 2021)
Subacute toxicity study (No guideline followed; non- GLP)	Rat (male)/ 0, 0.1 or 0.5% in feed (equivalent to 0, 70 and 350 mg/kg bw/day / 35 days	Slight decrease in body weight gain and increase of liver weights was observed at a level of 0.5% (i.e., 350 mg/kg bw/day) in the diet. No effects on any other organs or tissues (including reproductive). The NOAEL was established at 70 mg/kg bw/day	(Sutton <i>et al.,</i> 1960)
Subacute dermal toxicity study (Similar to OECD TG, 410; GLP)	Rabbit/ 100 and 1000 mg/kg bw/day / 21-23 days	No treatment-related effects were observed up to highest tested dose of 1000 mg/kg bw/day.	(OECD SIDS, 2002)
Subacute toxicity study (OECD TG 407; GLP)	Rat / 0, 250, 1000 and 4000 ppm. Equivalent to 23/39, 104/161 or 508/701 mg/kg bw/day in	TPP-related effects in liver were observed at dose levels of 1000 ppm and above in males. No effects on any other organs or tissues (including reproductive). The NOAEL was established at 23 mg/kg bw/day for male based on effects on body weights	(ECHA, 2021)

	males/females / 28 days	and liver and at 701 mg/kg bw/day for female rats.			
One-generation reproductive toxicity study (Similar to OECD TG 415; non GLP)	Rat/ 0.25, 0.5, 0.75 or 1 % in feed (equivalent to 166, 341, 516, 690 mg/kg bw/day) / 4 months	No findings indicating adverse effects on fertility or the development of the foetus up to the highest tested dose of 690 mg/kg bw/day	(Welsh 1987)	et	al.,
Level 5: <i>In vivo</i> assays providing more comprehensive data on adverse effects on ED related endpoints over more extensive parts of the life cycle of the organism					

No Level 5 in vivo mechanistic assays could be identified.

ANNEX 2

Additional studies with TPP, identified by the SCCS and commented in Section 3.4.12

3 4 5

Г

]	
]
IN VITRO		
HepG2 cells	Measuring key events linked to hepatic steatosis	Negi 2021
Human LO2 liver cells	Transcriptomic study and metabolomic analysis	Wang, Li 2020
HepG2 cells	Multiple parameters to explore molecular mechanisms.	An, Jiang Tan 2023
KGN ovarian granulosa cells	Expression of transcripts involved in steroids and cholesterol synthesis.	Wang, Lee, Hales 2023
Placental trophoblast cells	Gene and protein expression in tryptophan metabolism pathway. Also <i>in vivo</i> component: see below.	Hong, Zhang 2023
Human adrenal cells	High-content screening approach and potency ranking on several parameters, including expression of enzymes involved in cholesterol and steroid biosynthesis. Also production of cortisol and aldosterone.	Li, Robaire, Hales 2023
Mouse CG-2 spermatocytes	High-content screening system. Multiple parameters, including mitochondrial toxicity and apoptosis induction.	Feng, Shi, Li 2023
Human LO2 liver cells	Several parameters, including insulin-stimulated glucose uptake and glycogen.	Yue, Sun, Duan 2023
MCFR7, HuH-7, HEC-BCRP, HEPARG and primary human hepatocytes	Focus on drug transporters in pharmacokinetics.	Tastet 2023
Mico with or without high	Soveral parameters induding	
fructose and high-fat diet	cholesterol and triglyceride levels, glucose sensitivity, lipid accumulation.	Cui 2022
Mice	Fasting insulin and glucose, glucose intolerance, lipid and glucose metabolism.	Wang, Le 2020
Mice	Exposure of pregnant mice, with focus on male offspring, study on glucose tolerance, body weight and liver weight.	Wang, Yan 2019
Mice	Neonatal mice, subcutaneous. Several parameters, including glucose tolerance and serum estradiol, as well as separate	Wang, Zhu 2018

	uterotrophic assay and metabolomics analysis.	
Mice	Study on transcripts in maternal and fetal liver tissues, with focus on insulin growth factor.	Philbrook 2018
Mice	<i>In vivo</i> component of abovementioned <i>in vitro</i> study. Study on tryptophan metabolic pathway in the placenta.	Lu, Hong, Zhang 2023
Mice	<i>In vivo</i> component of abovementioned <i>in vitro</i> study. Study on insulin tolerance and gene expression and glycogen in liver.	Yue, Sun, Duan 2023
Mice	Several parameters, mainly enzyme activity and gene expression in liver and testicular tissues.	Chen, Jin, Wu 2015
Mice, combined <i>in vitro</i> (Leydig TM3 cells) and <i>in vivo</i> .	Study on apoptosis and sperm in testis and epidydimis. <i>In vivo</i> also serum testosterone.	Wang, Zhu, Zhao 2023