

AMR in the environment

Research results and policy dilemma's in the Netherlands

One Health Network AMR 26 October 2018

Introduction

- NAP AMR 2015-2019
- actions in all domains
- research in domain environment largely finalised

Where are the threats coming from?

Spread of resistant bacteria

Background

- <2015 policy advice reports highlight uncertainties
- Message `more research needed’ not desirable
- Therefore commisioned RIVM to:
- Conduct baseline / 'zero' measurements in wastewater and manure
- Advice on effective no-regret policy measures

Selection of Wastewater Treatment Plants

- Selection of 100 WWTP (approx. $1 / 3$ of all Dutch WWTP)
- Inventory of water volumes across NL

Concentrations of E. coli, ESBL and CPE

- $\log 2-\log 3$ removal of bacteria
- No selection for ESBL or CPE
- CPE detected in 89% of the WWTP (87% of the influents, 55% of the effluents)

Loads to the aquatic environment

Residues: around 900 kg/a for 4 most prevalent substances

	Volume	ESBL E.coli	CRE	ermB	sul1
	$\begin{aligned} & {\left[10^{6}\right.} \\ & \left.\mathrm{m}^{3} / \text { year }\right] \end{aligned}$	Load [CFU / year]		Load [copies / year]	
WWTP	1900	$3,2 \times 10^{15}$	$1,8 \times 10^{13}$	$1,9 \times 10^{19}$	$2,4 \times 10^{20}$

Other sources of resistant bacteria in surface water

- WWTP effluent
- Sewage overflows
- Separated sewers (rain to surface water, faulty connections: wastewater to surface water)
- Animal husbandry (manure, stables)

Loads to the aquatic environment

Overflows and separate sewer systems possibly equally important

	Volume	$\begin{aligned} & \text { ESBL } \\ & \text { E.coた } \end{aligned}$	CRE	ermB	sul1
	$\begin{gathered} {\left[10^{6}\right.} \\ \mathrm{m} 3 / \text { year }] \end{gathered}$	Load [CFU / year]		Load [copies / year]	
WWTP	1900	3×10^{15} (8×1014 - 2×10^{16})	$1,8 \times 10^{13}$	$1,9 \times 10^{19}$	$2,4 \times 10^{20}$
Overflows	29	$\begin{aligned} & 1 \times 10^{15} \\ & \left(1 \times 10^{15}\right. \\ & \left.5 \times 10^{15}\right) \end{aligned}$	$\begin{array}{r} 2,8 \times 10^{11}- \\ 1,4 \times 10^{14} \end{array}$	$\begin{aligned} & 2,9 \times 10^{17} \\ & 9,2 \times 10^{19} \end{aligned}$	$\begin{aligned} & 3,7 \times 10^{18} \\ & 2,9 \times 10^{20} \end{aligned}$
Separate sewer systems	2,7	$\begin{gathered} 3 \times 10^{15} \\ \left(1 \times 10^{15}-\right. \\ \left.5 \times 10^{15}\right) \end{gathered}$	$1,3 \times 10^{13}$	$8,5 \times 10^{18}$	$2,7 \times 10^{19}$

Manure - loads to the terrestrial environment

- Less precise estimates
- All, volumes, concentrations and prevalence matters
- Overall similar to wastewater (but: human exposure to manured soil?)

	Volume	ESBL E.coli
	[106 m³/year]	[CFU load year]
Dairy cattle	44.9	$\begin{gathered} 10^{15} \\ (\pm 1 \mathrm{log}) \end{gathered}$
Veal calves	3.9	$\begin{gathered} 10^{15} \\ (\pm 1 \mathrm{log}) \end{gathered}$
Pork	10	$\begin{gathered} 10^{15} \\ (\pm 1 \mathrm{log}) \end{gathered}$
Layers / broilers	0.15	$\begin{gathered} 10^{14} \\ (\pm 1 \mathrm{log}) \end{gathered}$

Knowledge gaps?

- Environmental exposure to AMR and health outcomes
- Efficiency management options
- Horizontal gene transfer and selection of resistance traits

Possible interventions - Advanced treatment

 processes and ABR- Less data on AMR removal than on removal of pharmaceuticals
- Efficiency of treatment in lab studies > pilot / field
- Techniques that are currently considered for removal of pharmaceuticals differ in their removal efficiency for bacteria
 (GAC lower than O_{3})

ABR in hospital wastewater

- Separated treatment of hospital wastewater?
- 7 (4) hospital / WWTP pairs, 3-4 samplings
- Contribution of hospital wastewater to ESBL and CPE mostly <10\%
E. coli

C	1.9	5.3	$\mathbf{1 0 . 8}$	$\mathbf{1 1 . 4}$
C	0.5	9.1	3.4	3.0
C	0.4	9.6	7.1	7.0
C	1.9	7.6	$\mathbf{1 4 . 7}$	$\mathbf{1 5 . 9}$
Da	0.4	0.4	5.5	$\mathbf{1 0 . 6}$
Da	0.0	0.0	<0.1	<0.1
Da	0.6	1.8	3.3	1.0
Da	0.1	0.5	1.0	0.4
Db	0.3	0.6	<0.1	<0.1
Db	0.1	0.8	<0.1	<0.1
E	0.4	0.3	4.7	4.9
E	1.0	0.8	7.0	$\mathbf{1 1 1 . 2}$
E	0.7	1.0	$\mathbf{1 6 . 9}$	$\mathbf{2 6 . 3}$
E	1.8	5.8	$\mathbf{1 8 . 8}$	$\mathbf{3 4 . 8}$
G	1.4	14.0	<0.1	<0.1
G	0.6	8.3	8.5	1.1
G	1.5	10.4	1.8	$\mathbf{3 4 . 9}$

Exposure to ABR through the environment

Possible transmission routes

- Recreation (swimming, surfing,

Exposure probability to ESBL-EC from modelled concentrations (Inactivation~0.6 $\log _{10}$, after 10 days at $20^{\circ} \mathrm{C}$)

- Occupational exposures

Estimates of ESBL E. coli uptake (NL):

- Uptake through swimming likely
- Uptake through meat consumption and swimming possibly lower than direct human-human contact
- UK: 3GC-resistant E. coli increased in surfers (9\%) versus controls
($3 \%, n=140$)

Current studies NL

JPI AWARE-WWTP (2017-2020)
ESBL E. coli in WWTP workers as compared to controls
"Zwemmersstudie" (2017-2019)
ESBL E. coli in participants of city swims before / after participation ($\mathrm{n}=300$)

RIVM O Divem - 1 das
Doe je mere san cen fecityswim? Help ons bij onderzoek nast antitioticweesistente bacterien fiven nl/ivernmerstud

Conclusions

- Prevalence of resistant bacteria and antibiotic residue in wastewater and manure is now known
- In contradiction to what we expected, hospitals do not contribute more than residential areas
- AMR loads in wastewater and manure are equal
- Effective measures are possible
- Certain techniques to treat wastewater and manure are more effective than those currently applied
- Manure is not often treated, and if treated has another purpose
- Possible measures are expensive and for manure even not realistic

Dilemma's

- End of current NAP
- decide on policy development environmental domain
- is it necessary and realistic to reduce spread of AMR via the environment?
- On the one hand
- Exposure of humans to AMR in the environment likely occurs
- precautionary principle
- international attention AMR in the environment
- On the other hand:
- NL takes extensive measures at source (health care and veterinary domain)
- disease burden probably low
- exposure to specific resistant pathogens largely unquantified
- no clear indication where to start (wastewater or manure)
- measures are expensive
- responsibility of others than Ministry of Health

