

Ministry of Health, Welfare and Sport

AMR in the environment

Research results and policy dilemma's in the Netherlands

One Health Network AMR 26 October 2018

Introduction

- NAP AMR 2015-2019
- actions in all domains
- research in domain environment largely finalised

Spread of resistant bacteria

Background

- <2015 policy advice reports highlight uncertainties
- Message 'more research needed' not desirable
- Therefore commissioned RIVM to:
 - Conduct baseline / 'zero' measurements in wastewater and manure
 - Advice on effective no-regret policy measures

Selection of Wastewater Treatment Plants

- Selection of 100
 WWTP (approx. 1/3 of all
 Dutch WWTP)
- Inventory of water volumes across NL

Concentrations of *E. coli*, ESBL and CPE

- log2 log3 removal of bacteria
- No selection for ESBL or CPE
- CPE detected in 89% of the WWTP (87% of the influents, 55% of the effluents)

Loads to the aquatic environment

Residues: around 900 kg/a for 4 most prevalent substances

	Volume	ESBL E.coli	CRE	ermB	sul1
	[10 ⁶ m³/year]	Load [CFU / year]		Load [copies / year]	
WWTP	1900	3,2×10 ¹⁵	1,8×10 ¹³	1,9×10 ¹⁹	2,4×10 ²⁰

Other sources of resistant bacteria in surface water

- WWTP effluent
- Sewage overflows
- Separated sewers (rain to surface water, faulty connections: wastewater to surface water)
- Animal husbandry (manure, stables)

Loads to the aquatic environment

Overflows and separate sewer systems possibly equally important

	Volume	ESBL E.coli	CRE	ermB	sul1
	[10 ⁶ m³/year]	Load [CF	FU / year]	Load [cop	ies / year]
WWTP	1900	3x10 ¹⁵ (8x10 ¹⁴ – 2x10 ¹⁶)	1,8×10 ¹³	1,9×10 ¹⁹	2,4×10 ²⁰
Overflows	29	1x10 ¹⁵ (1x10 ¹⁵ - 5x10 ¹⁵)	2,8×10 ¹¹ - 1,4×10 ¹⁴	$2,9\times10^{17}$ $9,2\times10^{19}$	$3,7\times10^{18}$ $2,9\times10^{20}$
Separate sewer systems	2,7	3x10 ¹⁵ (1x10 ¹⁵ – 5x10 ¹⁵)	1,3×10 ¹³	8,5×10 ¹⁸	2,7×10 ¹⁹

Manure – loads to the terrestrial environment

- Less precise estimates
- All, volumes, concentrations and prevalence matters
- Overall similar to wastewater (but: human exposure to manured soil?)

	Volume	ESBL <i>E.coli</i>	
	[10 ⁶ m ³ /year]	load [CFU / year]	
Daimeastla		10 ¹⁵	
Dairy cattle	44.9	(± 1 log)	
Week eak ea		10 ¹⁵	
Veal calves	3.9	(± 1 log)	
Pork	40	10 ¹⁵	
T OIK	10	(± 1 log)	
Lovero / broilero	0.45	10 ¹⁴	
Layers / broilers	0.15	(± 1 log)	

Knowledge gaps?

- Environmental exposure to AMR and health outcomes
- Efficiency management options
- Horizontal gene transfer and selection of resistance traits

Possible interventions – Advanced treatment processes and ABR

- Less data on AMR removal than on removal of pharmaceuticals
- Efficiency of treatment in lab studies > pilot / field
- Techniques that are currently considered for removal of pharmaceuticals differ in their removal efficiency for bacteria (GAC lower than O₃)

ABR in hospital wastewater

- Separated treatment of hospital wastewater?
- 7 (4) hospital / WWTP pairs, 3-4 samplings
- Contribution of hospital wastewater to ESBL and CPE mostly <10%

	E. coli	ESBL E. coli	CPE E. coli totaal	Non OXA-48 CPE E. coli
C	1.9	5.3	10.8	11.4 3.0
C	0.5	9.1	3.4	
C	0.4	9.6	7.1	7.0
C	1.9	7.6	14.7	15.9
Da	0.4	0.4	5.5	10.6 < 0.1
Da	0.0	0.0	<0.1	
Da	0.6	1.8	3.3	1.0
Da	0.1	0.5	1.0	
Db Db	0.3	0.6	< 0.1	< 0.1
Е	0.1 0.4	0.8	<0.1 4.7	<0.1 4.9
E	1.0	0.8	7.0	11.2
E	0.7	1.0	16.9	26.3
E	1.8	5.8	18.8	34.8 < 0.1 1.1
G	1.4	14.0	<0.1	
G	0.6	8.3	8.5	
G	1.5	10.4		34.9

Exposure to ABR through the environment

Possible transmission routes

- Recreation (swimming, surfing,
- Occupational exposures

Estimates of ESBL E. coli uptake (NL):

- Uptake through swimming likely
- Uptake through meat consumption and swimming possibly lower than direct human-human contact
- UK: 3GC-resistant E. coli increased in surfers (9%) versus controls (3%, n=140)

Current studies NL

JPI AWARE-WWTP (2017-2020) ESBL *E. coli* in WWTP workers as compared to controls

"Zwemmersstudie" (2017-2019) ESBL E. coli in participants of city swims before / after participation (n=300)

Conclusions

- Prevalence of resistant bacteria and antibiotic residue in wastewater and manure is now known
 - In contradiction to what we expected, hospitals do not contribute more than residential areas
 - AMR loads in wastewater and manure are equal
- Effective measures are possible
 - Certain techniques to treat wastewater and manure are more effective than those currently applied
 - Manure is not often treated, and if treated has another purpose
 - Possible measures are expensive and for manure even not realistic

Dilemma's

- End of current NAP
 - decide on policy development environmental domain
 - o is it necessary and realistic to reduce spread of AMR via the environment?
- On the one hand
 - Exposure of humans to AMR in the environment likely occurs
 - o precautionary principle
 - o international attention AMR in the environment
- On the other hand:
 - NL takes extensive measures at source (health care and veterinary domain)
 - disease burden probably low
 - exposure to specific resistant pathogens largely unquantified
 - no clear indication where to start (wastewater or manure)
 - measures are expensive
 - responsibility of others than Ministry of Health