

Scientific Committee on Consumer Safety

SCCS

OPINION ON

the mixture of 5-chloro-2-methylisothiazolin-3(2H)-one and 2-methylisothiazolin-3(2H)-one

COLIPA nº P56

The SCCS adopted this opinion at its 5th plenary meeting of 8 December 2009

About the Scientific Committees

Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat.

They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) and are made up of external experts.

In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Evaluation Agency (EMEA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA).

SCCS

The Committee shall provide opinions on questions concerning all types of health and safety risks (notably chemical, biological, mechanical and other physical risks) of non-food consumer products (for example: cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).

Scientific Committee members

Jürgen Angerer, Ulrike Bernauer, Claire Chambers, Mohammad Chaudhry, Gisela Degen, Gerhard Eisenbrand, Corrado Galli, Thomas Platzek, Suresh Chandra Rastogi, Vera Rogiers, Christophe Rousselle, Tore Sanner, Kai Savolainen, Jacqueline Van Engelen, Maria Pilar Vinardell, Rosemary Waring, Ian R. White

<u>Contact</u> European Commission Health & Consumers Directorate C: Public Health and Risk Assessment Unit C7 - Risk Assessment Office: B232 B-1049 Brussels <u>Sanco-Sc6-Secretariat@ec.europa.eu</u>

© European Commission 2009 (ISSN)

The opinions of the Scientific Committees present the views of the independent scientists who are members of the committees. They do not necessarily reflect the views of the European Commission. The opinions are published by the European Commission in their original language only.

http://ec.europa.eu/health/ph_risk/risk_en.htm

ACKNOWLEDGMENTS

Prof. J. Angerer	
Dr. U. Bernauer	
Dr. C. Chambers	(rapporteur)
Dr. M. Chaudhry	
Prof. G. Degen	
Dr. S.C. Rastogi	
Prof. V. Rogiers	
Prof. T. Sanner	(chairman)
Dr. J. van Engelen	
Prof. R. Waring	
Dr. I.R. White	

Keywords: SCCS, scientific opinion, preservative, P56, mixture of 5-chloro-2methylisothiazolin-3(2H)-one and 2-methylisothiazolin-3(2H)-one, directive 76/768/ECC, CAS 26172-55-4, 55965-84-9, EINECS 247-500-7

Opinion to be cited as: SCCS (Scientific Committee on Consumer Safety), Opinion on the mixture of 5-chloro-2-methylisothiazolin-3(2H)-one and 2-methylisothiazolin-3(2H)-one, 8 December 2009

TABLE OF CONTENTS

ACK	NOWLEDGMENTS	 3
1.	BACKGROUND	 5
2.	TERMS OF REFERENCE	 5
3.	OPINION	 6
4.	CONCLUSION	 36
5.	MINORITY OPINION	 36
6.	REFERENCES	 37

1. BACKGROUND

Submission I for the mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one in a ratio of 3:1 was submitted in January 1983 by COLIPA¹.

Submission II –VII was delivered in the year 1984.

The Scientific Committee on Cosmetology expressed on the 1 July 1986 an opinion concerning certain preservatives. The preservative mixture of 5-chloro-2-methyl-isothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one with magnesium chloride and magnesium nitrate was evaluated amongst the preservatives "whose use in cosmetic products can be maintained for the time being, but concerning which the Committee would like to obtain additional data".

Submission VIII was submitted in September 2001 and Submission IX was submitted in May 2002. These two submissions were mainly concerned obtaining permission to use other stabilisers than magnesium chloride and magnesium nitrate mentioned in the current regulation.

The Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers (SCCNFP) adopted its opinion (SCCNFP/0670/03) at the 24th plenary meeting of 24-25 June 2003 with the conclusion, that "the replacement of magnesium chloride and magnesium nitrate by copper sulphate or any other authorised cosmetic ingredient as a stabiliser system in the mixture of 5-chloro-2-methylisothiazolin-3(2H)-one and 2-methylisothiazolin-3(2H)-one does not alter the toxicological profile of this mixture."

The term "*authorised"* raised some problems in implementing the opinion and the SCCP was asked for a clarification, which was given in the opinion (SCCP/0849/04) adopted at the 2nd plenary meeting the 7th December 2004.

Meanwhile, the Commission was requested by the Member states to ask Industry for a complete new dossier more in line with modern standards.

The current submission X, submitted in April 2006 is a full and updated dossier for the preservative mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one in a ratio of 3:1.

The preservative is currently regulated as a preservative in the cosmetic directive (76/768/EEC) in annex VI, part 1, entry 39 with the maximum authorized concentration 0.0015% (15 ppm) of a mixture in the ratio 3:1 of 5-chloro-2-methylisothiazolin-3(2H)-one and 2-methylisothiazolin-3(2H)-one.

2. TERMS OF REFERENCE

Does the SCCP consider, with the scientific data provided that the preservative mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one in a ratio of 3:1 is safe for the consumers, when used as a preservative up to a maximum authorised concentration of 0.0015 % in rinse-off cosmetic products?

¹ COLIPA - European Cosmetics Toiletry and Perfumery Association

3. OPINION

3.1. Chemical and Physical Specifications

Several physicochemical properties are derived from earlier analyses of Kathon 886 and Acticide 14. Many of the studies were conducted using higher percentage CMI/MI mixtures than the 1.5% specified for cosmetics and the CMI/MI ratio varied.

3.1.1. Chemical identity

5-chloro-2-methylisothiazol-3(2H)-one (CMI) and 2-methylisothiazol-3(2H)-one (MI) combined formulations are marketed under several trade names, such as Kathon CG, Kathon 886, Kathon 886 WT. Kathon[™] 886, Acticide LG, Acticide 14 L, Acticide 14P, Microcare IT, Microcare ITL etc.

Initially, all formulations were prepared as a mixture of two individual active ingredients CMI and MI and salts. However, KathonTM 886 biocide is now defined as a combination of the two active ingredients produced by an integrated production process, resulting in an approximate total of 14% active ingredients, 16% magnesium nitrate, 10% magnesium chloride and 62% water. There is no indication as to when this change was made in the manufacturing process.

Only CMI/MI in a 3:1 ratio is permitted for the use in cosmetics. Kathon^m CG is a 1.5% dilution of Kathon^m 886 Biocide. It is not clear from the dossier which preparation of Acticide is for cosmetic use.

There is some confusion in the literature with the nomenclature. Both methylchloroisothiazolinone and methylisothiazolinone are also used to include the mixture, (e.g. US EPA Re-registration of Methylisothiazolinone (EPA738-R-98-012, 1998) states 'includes the active ingredients 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyl-4-isothiazolin-3-one').

3.1.1.1. Primary name and/or INCI name

Methylchloroisothiazolinone (and) methylisothiazolinone with magnesium chloride and magnesium nitrate (INCI name)

5-chloro-2-methylisothiazol-3(2H)-one and 2-methylisothiazol-3(2H)-one

3.1.1.2. Chemical names

5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one, 3:1 ratio

5-Chloro-2-methyl-4-isothiazolin-3-one 5-Chloro-2-methyl-3(2H)isothiazolone 5-Chloro-2-methyl-2H-isothiazol-3-one 4-Isothiazolin-3-one, 5-chloro-2-methyl-

2-Methyl-4-isothiazolin-3-one 2-Methyl-3(2H)isothiazolone 2-Methyl-2H-isothiazol-3-one 3(2H)-Isothiazolone, 2-methyl

3.1.1.3. Trade names and abbreviations

Chloromethylisothiazolione + Methylisothiazolinone (75% + 25%) CMI/MI or MCI/MI CIT/MIT Kathon[™] CG Microcare IT Microcare ITL Acticide 14 Acticide LG

3.1.1.4. CAS / EINECS number

	CMI/M	Kathon ^{M} CG (CMI/MI 3:1, Mg salts (current process))
CAS:	26172-55-4	55965-84-9
EINECS:	247-500-7	/

5-chloro-2-methyl-4-isothiazolin-3-one

CAS: 26172-55-4 EINECS: 247-500-7

2-methylisothiazol-3(2H)-one

CAS: 2682-20-4 EINECS: 220-239-6

3.1.1.5. Structural formula

5-chloro-2-methylisothiazol-3(2H)-one

2-methylisothiazol-3(2H)-one

3.1.1.6. Empirical formula

5-chloro-2-methylisothiazol-3(2H)-one 2-methylisothiazol-3(2H)-one C₄H₄CINOS C₄H₅NOS

3.1.2. Physical form

CMI/MI formulation (Kathon 886, current process) is supplied as a liquid at 20°C.

The two actives are the result of a chemical reaction and are not the result of blending two separately produced active ingredients. The reaction results in a 3 CMI:1 MI ratio. There are no details for the blended formulations

3.1.3.	Molecular weight	
5-chloro-2 2-methyli	2-methylisothiazol-3(2H)-one sothiazol-3(2H)-one	149.45 115.16
3.1.4. Purity, composition and substance codes		

CMI and MI were characterised by NMR and IR

Kathon[™] 886 Biocide (current process) is defined as a combination of the two active ingredients produced by an integrated production process, resulting in an approximate total of 14% active ingredients, 16% magnesium nitrate, 10% magnesium chloride and 62% water.

The current specifications for this are:

Kathon™ 886F (14% nominal) Chloromethylisothiazolinone: Methylisothiazolinone:	% Weight 10.6 - 10.8 3.43 - 3.47
Inert ingredients	
Magnesium nitrate:	16.5 – 17.1
Magnesium chloride:	9.30 - 9.43
Impurity (manufacturing by-products)	% Weight
Magnesium sulfate:	<0.1
B-Aminocarbonyl ethane sulfonic acid:	<0.01 - <0.1
Ethyl acetate:	<0.05 - 0.08
Ethanol:	0.06 - 0.21
Acetic acid:	0.3 - 0.32
Ammonium chloride:	0.1
Ammonia acetate:	0.1
N-Methyl-chloro propionamide [MCPA]:	<0.01
N-Methyl di-chloro-acetamide [DCA]:	<0.05 - <0.1
4,5-Dichloro-2-Methyl-4-isothiazolin-3-one:	<0.01 – 50 to 100 ppm
Dimethyl nitrosamine:	<0.1, LOD
MMNP:	<0.3, LOD

The dossier does not state how the other formulations are prepared but it would suggest that they are also a direct mixture of two individual active ingredients CMI and MI and salts. These mixtures include Acticide LG, Acticide 14 L, Acticide 14P. As far as can be ascertained from the dossier, there are considerable variations in the ratio between the preparations Acticide LG would seem to be a 1.5% CMI/MI formulation.

Active ingredients (product specifications)	<u>% weight</u>
CMI	1.05%
MI	0.42 %
<u>Inert ingredients (product specifications)</u>	
Magnesium nitrate [Mg $(NO_3)_2$]	3 - 15 %
Water	75.5 % (nominal)
Impurities (manufacturing by-products)	

Magnesium chloride [MgCl ₂]	6.6% w/w
Methyl-3-(methylnitrosamino)-propionamide	<0.0001 g/kg,
Acetic acid	0.5 – 1.7% w/w

Magnesium nitrate and magnesium chloride are present in varying amounts depending upon the source. Other stabilisers have been evaluated as safe (SCCNFP/0670/03), but not yet included in the cosmetics directive.

3.1.5. Impurities / accompanying contaminants

Analysis of 11 samples of various CMI/MI preparations (Kathon 886, Kathon 886 WT, Acticide LG, Acticide 14 L, Acticide 14P, Pinus Biozide PBK100, Pinus 6.94) revealed the following impurities:

2,2-Dichloro-N-methylacetamide:	<0.003 - 2.4 mg/g
3-Chloro-N-methylpropionamide:	0.0078 - 9.5 mg/g
4,4-Dichloro-2-methyl-4-isothiazolin-3-one:	0.0031 - 2.61 mg/g

Changes in manufacturing processes have reduced nitrosamines to below the limit of detection [<0.3ppm]. Thus nitrosamines, no longer, present an impurity issue.

Ref: L

3.1.6. Solubility

Kathon current process Solubility in Water ()	≥ 1000 g/L at 20 °C
Mixture of active ingredients Solubility in Water Solubility in Water	367 g/L at 20 ºC ≥ 660 g/L at 30 ºC, pH 9
5-chloro-2-methyl-4-isothiazolin-3-one (CMI) Solubility in Water Solubility in Ethyl acetate Solubility in Hexane	706-751 g/L, 20 °C 38.06 g/L, 10 °C 52.55 g/L, 30 °C 1.39 g/L, 10 °C 2.91 g/L, 30 °C
2-methyl-4-isothiazolin-3-one (MI) Solubility in Ethyl acetate Solubility in Hexane	1.12 g/L, 10 °C 1.89 g/L, 30 °C 5.87x10 ⁻³ g/L, 10 °C 1 48 x10 ⁻² g/L, 30 °C

3.1.7. Partition coefficient (Log Pow)

Log Kow: Kathon 886 (current process) ¹⁴C-labeled CMI: $K_p = 2.519$ log $K_p = 0.401$ ¹⁴C-labeled MI: $K_p = 0.326$ log $K_p = -0.486$ Tests were conducted at 24°C and ambient pH. Acticide 14 (CMI/MI) Log P_{ow}: 0.75 at 27 °C (Directive 92/69/EEC, A.8) Log P_{ow}: 0.67 - 0.7 at 20 °C pH value: 5 - 9

Effect of pH:

Log Pow at pH 5 (2	20 °C): 0.70
Log Pow at pH 7 (2	20 °C): 0.67
Log Pow at pH 9 (2	20 °C): 0.69
Log Pow at pH 7 (2	10 °C): 0.63
Log Pow at pH 7 (3	30 °C): 0.71

The given pH refers to the aqueous part of the mobile phase (methanol/water 50/50).

Ref: M

3.1.8. Additional physical	and chemical specifications
Organoleptic properties:	Clear, light amber liquid
Melting point:	22.3 – 35.1 °C (manufacturer 1)
2.	46.2 – 50.3 °C (manufacturer 2)
Boiling point:	100 °C (manufacturer 1)
2.	106.5 °C (manufacturer 2)
Flash point:	Not applicable CMI/MI aqueous formulation (~ 75% water)
Vapour pressure:	0.00108 hPa at 20 °C (manufacturer 1)
	20.8 hPa at 20 °C (manufacturer 2)
Density:	1.296 g/ml at 25 °C (manufacturer 1)
	1.256 at 20 °C (manufacturer 2)
Viscosity:	11.4 Cp at 25.7 °C
	8.4 Cp at 44.6 °C
pKa:	/
Refractive index:	/
UV spectrum:	λmax 273-274 nm

3.2. Function and uses

The "mixture of 5-Chloro-2-methyl-isothiazol-3(2H)-one and 2-Methylisothiazol-3(2H)-one with magnesium chloride and magnesium nitrate" is currently regulated as a preservative in the cosmetic directive (76/768/EEC) in annex VI, part 1, entry 39 with the maximum authorized concentration 0.0015% (15 ppm) of the mixture.

The submission describes KathonTM CG as cosmetic grade at 1.5% active ingredient stabilized with magnesium nitrate. It is the formulated product sold to customers for cosmetic applications. KathonTM CG is a cosmetic preservative. The main uses are rinse-off products, such as shampoos, conditioners, gels and surfactants. The EU use concentration is a maximum of 15 ppm a.i. for rinse-off and leave-on products. However, the manufacturers recommend a maximum level of 7.5 ppm a.i. (0.05% by weight of product as supplied) for leave-on products.

The manufacturers recommend CMI/MI as a preservative in shower gels, body washes, bubble baths, liquid soaps, shampoos, hair conditioners and wipes.

The CMI/MI mixtures have wide applications in household (domestic) and industrial products.

3.3. Toxicological Evaluation

The value of the acute, subchronic and reproductive toxicity studies is limited as the majority were carried out more than twenty years previously. The results are indicative of the possible toxicity as the studies were to the standards of the time. The major failings were that the test formulations are not properly characterised.

3.3.1. Acute toxicity

3.3.1.1. Acute oral toxicity

Test substance	Species	Result	Study date	Ref
		Acute oral toxicity		
Kathon™ WT	Rat	male $LD_{50} > 5000 \text{ mg/kg bw}$ (> 75 mg a.i./kg bw)		1
1.5% a.i.		female LD ₅₀ 3310 mg/kg bw (~ 49.6 mg a.i./kg bw)	1991	
Acticide 14	Rat	combined LC ₅₀ Bliss' method	1993 - 1994	2
(14% a.i)		490 mg/kg bw (~ 69 mg a.i./kg bw);		
		combined LC ₅₀ Litchfield & Wilcoxon's method		
		472 mg/kg bw (~ 66 mg a.i./kg bw)		
Acticide 14	Rat	male LD_{50} 465mg/kg bw (69 mg a.i./kg bw)	1997	3
(14% a.i)		female LD ₅₀ 393 mg/kg bw (59 mg a.i./kg bw)		
Kathon CG	Rat	female LD_{50} between 0.5 and 5.0 g/kg/bw	1980	4
1.5% a.i.				
		Acute dermal toxicity		
Kathon CG	Rabbit	female LD ₅₀ > 5000 mg/kg bw (> 75 mg/kg a.i mg/kg bw)	1980	4
Acticide 14	Rat	Male & female LD ₅₀ 1008 mg/kg bw (141 a.i. mg/kg bw)	1993 - 1994	5
(14% a.i)				
Acute inhalation toxicity				
Kathon [™] 886 F	Rat	Male & female 4hr aerosol exposure LC ₅₀ 2.36 mg/L air,	1991	6
13.9% a.i.		confidence limits of 1.60 to 4.82 and a slope of 2.2.		
		$(LC_{50} 0.33 \text{ mg a.i./L}, \text{ confidence limits of } 0.22 \text{ to } 0.67, \text{ and } 0.22 \text{ to } 0.22 \text{ to } 0.67, \text{ and } 0.22 \text{ to } 0.22 \text{ to } 0.67, \text{ and } 0.22 \text{ to } 0.2$		
		a slope of 2.2.		

The table below summarises the acute toxicity studies

These were reliable acute toxicity studies, indicating that P56 has slight acute oral and inhalation toxicity and was considered non-toxic by single dermal application. No details of formulation were provided but were said to be GLP characterized. CMI:MI ratio was not given

3.3.2 Irritation and corrosivity

The table below summarises the irritation and corrosivity studies. This section consists of older studies that have been reformatted at a later date or are non-validated protocols. There are data gaps in the older studies. The Bovine Cornea Opacity-Permeability test (BCOP) is a non-validated screening test.

Test Substance	dilution	Species/Test	Result	Study Date	Ref			
Skin Irritation								
Kathon [™] MW 1.5%a.i with copper nitrate	undiluted	rabbit	Corrosive	1984	7			
Acticide 14 14.2% a.i (CMI 10.2%/MI 4%)	undiluted	rabbit	Corrosive	1993	8			
	Mucous membrane Irritation							
Kathon™ RH 886T	100 ppm (0.01% a.i.)	rabbit	non-irritating	1975	9			
Kathon™ CG	undiluted	rabbit	Severely irritating	1977	10			

Test Substance	dilution	Species/Test	Result	Study Date	Ref
Microcare IT	1.5% a.i. 0.15% a.i. 0.015% a.i. 0.0015% a.i.	BCOP; (screening test)	Mild irritant Non irritant Non irritant Non irritant	2002	11
	Re	spiratory Tract Ir	ritation		
Kathon™ 886F	407µg/L	Rat	RD50 69 μg/L (9.4 μg a.i/L)	1991	12

P56, (5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one in a ratio of 3:1) is corrosive or irritating at high concentrations.

Comment

No adequate data is given to support safe use at a maximum authorised concentration of 0.0015 % in rinse-off cosmetic products. Nevertheless, the weight of evidences over several decades of consumer exposure to cosmetic products indicates that skin and/or mucous membrane irritation is not a problem under the conditions of use in leave-on and rinse-off products.

3.3.3. Skin sensitisation

Test substance	Species	Result	Study date	Ref
GPMT				
Kathon™ 886 Diluted to 1.5% a.i.	guinea pig	Non-sensitiser at 56 ppm a.i. [25µg a.i./cm2]	1977	13
Kathon™ 886F (14.05 % a.i.)	guinea pig, female	Diluted with saline to 30 ppm and 50 ppm. Not a sensitiser at 30 ppm [1.3 µg a.i/cm2] and 50 ppm [2.2 µg a.i/cm2]	2000	14
Acticide LG	guinea pig, female	Diluted with deionised water to 20%, challenge 7.5, 4,% (v/v) . For intradermal treatment, 0.25% in 50 FCA;50 water Sensitiser	1991	15
Acticide 14, (14.2 %; 10.20 %CIT/ 4.00 % MIT)	guinea pig, male and female	Diluted with deionised water to 25%, challenge 10, 7.5,5, 2.5, 0.025 and 0.0025% (v/v). For intradermal treatment,, 5% in saline and FCA. Sensitiser at 10, 7.5,5, 2.5%, 0.025%. Highest tested non-sensitiser 0.0025% (v/v).	2000	16
Buelher	r			•
Kathon™ various grade	guinea pig,	Sensitiser	1981,1979, 1979, 1985, 1984, 1988, 1988	17, 18, 19, 20, 21, 22
Open Epicutane	ous			
CMI/MI (14.05% a.i)	guinea pig,	Sensitiser. Threshold for induction > 58 ppm a.i. [> <u>0.7</u> μg a.i./cm ²]). Equivalent to 0.04 w/v % ethanol/water (constant content of 40v% ethanol)	2000	23
LLNA				
CMI/MI (14.05% a.i)	Mouse, female	Sensitiser EC ₃ 30 ppm [0.75 µg a.i./cm ²]	2000	25
CMI/MI (14.05% a.i)	Mouse, female	Sensitiser EC ₃ 70 ppm [\sim 2µg a.i/cm ²] Vehicle acetone/olive oil (4:1 v/v)	2000	26
CMI	Mouse	Sensitiser EC ₃ 81 ppm [2.0 μ g a.i./cm ²]		24
MI	Mouse	Sensitiser EC ₃ 25,150 ppm [620 μ g a.i./cm ²]	1981	17
NMMA	Mouse	Non-sensitiser Vehicle acetone/olive oil (4:1 v/v)	2003	27
DCMI	Mouse	Sensitiser EC ₃ > 67 ppm a.i. [1.7 μ g a.i./cm ²] Vehicle acetone	2005	28
Pulmonary Hyp	ersensitivity			
Kathon™ CG (1.53.a.i)		Not a respiratory sensitiser	1995	29

The only studies with a CMI/MI 3:1 formulation were the LLNA and the pulmonary hypersensitisation studies. The CMI:MI ratio was not given in the other studies.

The sensitization potential of CMI/MI in predictive animal tests, including the Buehler test and Magnusson-Kligman test in the guinea pig has been reported extensively (Andersen et. al., 1995; Basketter, 1996; Bruze et al., 1987a; Chan et al., 1983; Enslein et al., 1997; Schallreuler and Schulz, 1986 and Zissu, 2002. Chan et al., (1983) evaluated both the induction and elicitation dose response curves of CMI/MI in the Buehler test. Bruze et al., (1987a) evaluated both active ingredients of CMI/MI and demonstrated that CMI was significantly more responsive in the assay. These investigators also showed that a minor impurity, 4,5 dichloro-methyl-isothiazolone, of CMI/MI was as potent as the monochlorinated active (CMI) as a sensitizer (Bruze et. al. (1987b).

Development and validation of the local Lymph Node Assay (LLNA) in mice, required a battery of known positive and negative allergens as controls (summarized in Gerberick et. al., 1992 and 2004) and estimation of relative allergenic potency (Basketter et. al., 2000 and 2001). CMI/MI was often included in the battery of allergens tested in comparison with other predictive assays in laboratory models. CMI/MI, with other known allergens, has also been used to further evaluate the assay with respect to statistical handling of the data (Basketter et. al. 1999). Warbrick et al. (1999) used CMI/MI to demonstrate the effects of different vehicles in the LLNA. Responses with CMI/MI in acetone/olive oil vehicle were highest compared to other vehicles tested. Similar vehicle effects with CMI/MI were shown by Potter and Hazelton (1995).

During the validation of the LLNA with respect to isothiazolone class of chemistry (Potter and Hazelton, 1995), CMI was shown to be a significantly more potent allergen (EC3 = $2 \mu g/cm^2$) compared to MI (EC3 = $200 \mu g/cm^2$).

More recent investigations by Basketter et al., (2005) evaluated the LLNA and have shown that EC3 values of a number of allergens, including CMI/MI compare well with human data such as human predictive assays (HRIPT).

The data demonstrates that CMI/MI is an extreme sensitiser in animals.

Dermal / percutaneous absorption

A detailed evaluation of the potential of CMI/MI to cause contact allergy in humans is in section 3.3.11.

Ιη γίνο	
Guideline:	/
Species:	, Rabbit, albino
Group size:	2 female
Control	Test substance: ¹⁴ C-RH-886T prepared as ratio 3:1 of ¹⁴ C-RH-
	886 and ¹⁴ C-RH-056.
Batch:	/
Purity <i>:</i>	¹⁴ C-CMI/MI, specific activity 0.81 mCi/g equivalent to 1798 dpm/μg CMI/MI
Doses:	99.2 ppm w/v ¹⁴ C-CMI/MI
Sampling time:	0, 2, 4, 7, 24, 28, 30 48, 52, 55, and 72 h after first application
Method of Analysis:	liquid scintillation counting
GLP:	
Study period:	1973

The rabbit skin was prepared by clipping the hair. The skin of one was intact, while the second was abraded. Dermal application of the ¹⁴C-CMI/MI was made on 3 consecutive days. 0.5 ml of 99.2 ppm w/v ¹⁴C-CMI/MI was applied at two sites of the skin and occluded for 24 hours. A 1 cm² gauze patch was used for each test site. Blood samples were taken from the ear. Untreated rabbits were controls, no other control information provided.

Results

3.3**.4.**

Blood samples assayed from both treated rabbits did not exceed the average control count rate (23.8 \pm 1.24 cpm) + 2x standard deviation (26.3cpm). No blood sample showed a concentration of RH-886T greater than 0.0045 ppm.

Conclusion

¹⁴C- RH-886T was applied to the intact and abraded skin of rabbits over a 3 day period. No radioactivity was found in the blood at any time point.

Ref.: 30

Comment

This was an old study with data gaps. The chemical identity of the test substance is not defined.

Guideline:	/
Species:	, Rat, Sprague-Dawley, Charles River
Group size:	12 male, 6 per group
Test substance:	¹⁴ C-Kathon 886
	Solution 1: ¹⁴ C-CMI (labelled in the carbonyl position, RH-651) and
	MI (unlabelled, RH-573);
	Solution 2: CMI (unlabelled RH-651) and ¹⁴ C-MI (labelled in the
	carbonyl position, RH-573)
Batch:	Solution 1: Lot N° 395.0201; Solution 2:.Lot N° 395.0101
Purity <i>:</i>	Solution 1: Specific activity 13.72 mCi/g, radio-purity >98% by TLC;
	Solution 2: Specific activity 10.47 mCi/g, radio-purity >98% by TLC.
Doses:	0.2 ml ¹⁴ C-CMI/MI in water, each containing 2000 ppm a.i.
Sampling time:	24, 48, 72 and 96 h after application
Method of Analysis:	liquid scintillation counting
GLP:	/
Study period:	1982

0.2 ml of ¹⁴C labelled material was applied to the skin and occluded for 24 hours. A contoured glass ring was used for each test site. Dermal application of the 14C-label was for one 24 hour period. 2 rats /group were killed 24, 48 and 96 h after application for sampling and analysis of blood, testes and urine.

Results

Following dermal application of ${}^{14}C$ -CMI or ${}^{14}C$ -MI, total recovery of ${}^{14}C$ -label in this study ranged from 74 to 91% of administered dose.

Washing removed 3 to 7% of the ¹⁴C -CMI dose after the 24 hr exposure period, while 51 to 59% of ¹⁴C -label (expressed as ¹⁴C -CMI equivalents) was retained in the skin application site for 96 hr observation period. Since ¹⁴C-label at the application site was constant over the 96 hr period, it was likely to be unavailable for systemic absorption. At 96 hr post dose, <1% of the ¹⁴C -label was present in the skinned carcass and 15% of ¹⁴C -label was found in the excreta (predominantely in the urine). Concentrations of ¹⁴C -label (derived from ¹⁴C - CMI and expressed in CMI equivalents) in whole blood and testes are shown below:

Time	Whole Blood ppb*	Testes ppb*
24 hr	140	11
28 hr	35	8
96 hr	31	1

Washing removed 8 to 28% of the ¹⁴C -MI dose after the 24 hr exposure period, while 30 to 68% of ¹⁴C -label (expressed as ¹⁴C -CMI equivalents) was retained in the skin application site for 96 hr observation period. Since ¹⁴C -label in the skin application site was constant over the 96 hr period, this material was likely unavailable for systemic absorption. At 96 hr post dose, <1% of the ¹⁴C -label was present in residual carcass and 23% of ¹⁴C -label was

found in the excreta (predominantly in the urine). Concentrations of ¹⁴C -label (derived from ¹⁴C -MI and expressed in MI equivalents) in whole blood and testes are shown below:

Time	Whole Blood ppb*	Testes ppb*
24 hr	12	7
28 hr	10	7
96 hr	16	Not detected

Conclusion

Following dermal application (24 hr exposure) of CMI or MI, approximately 15 and 24% of the dose, respectively, was systemically available. Within 72 to 96 hr most of the absorbed radioactivity was excreted (predominantly in the urine).

Ref.: 31

Guideline: Strain:	OECD 417 Rat. Crl:CD®BR
Group size:	40 male, 3 to 5 rats for each of the 8 studies
Test substances:	A: Kathon Biocide ¹⁴ C-RH-651 (5-chloro-2-methyl-4-isothiazolin-3- one), 4.22 mCi/g specific activity, 14.6% a.i.;(11% ¹⁴ C-CMI, 3.6 % MI)
	B: Kathon Biocide ¹⁴ C-RH-573 (2-methyl-4-isothiazolin-3-one), 1.73 mCi/g specific activity, 14.5% a.i., (11% CMI, 3.5 % ¹⁴ C-MI)
Batch	AUTOIL DIOLIUE 14.370 d.i. A. EEE 0101, R. EEE 0201, Kathan Riacida unlaballad, DR16 41
	A. 00 EV radio purity B. 00 10 radio purity
Pullty:	A. 99.5% fadio-pulity, B. 98.1% fadio-pulity
Doses:	35μ aliquots ¹⁺ C-Kathon in water, 25 or 2500 ppm a.i.
Sampling time:	0, 3, 6, 24, 48 and 96 h
Diffusion cells:	Franz cells
Receptor fluid:	Tyrode's buffer, pH 7.4, 37 C: 6/8 contain gentamicin
Method of Analysis:	HPLC, TLC, liquid scintillation counting
GLP:	in compliance
Study period:	1989

Freshly excised rat skin sections were mounted in Franz diffusion cells. Six of the eight studies used bathing solutions (Tyrode's buffer, pH 7.4, 37 C) containing gentamicin (0.5 mg/cell, approximately 70 μ g/ml) to control bacterial growth. A single 35 μ l aliquot of ¹⁴C - CMI/MI or CMI/ ¹⁴C -MI, diluted in water, was applied onto the skin at 25 or 2500 ppm. At various times after application, the skin sections were wiped with cotton swabs moistened with distilled water (wipes were analyzed for ¹⁴C-label), and the amount of ¹⁴C-label found both bound to or in the skin and penetrating the skin into the bathing solution was measured. ¹⁴C-label found bound to or in the skin, plus ¹⁴C-label that penetrated through the skin, was considered to be bioavailable.

Results

Kathon ¹⁴ C-	Time	Upper cell	Wipe-off	Bath and rinse	Skin	Total ¹⁴ C-
component	h	rinse				recovery
¹⁴ C-CMI	0	4 ± 6	69 ± 22	0.1 ± 0.1	19 ± 24	93 ± 8
2500 ppm	3	2 ± 1	27 ± 20	0.4 ± 0.3	71 ± 27	101 ± 7
	6	3 ± 3	3 ± 1	3 ± 3	96 ± 3	105 ± 3
	24	2 ± 1	2 ± 0.3	10 ± 0.4	92 ± 1	106 ± 1
	48	1 ± 2	4 ± 2	9 ± 6	91 ± 10	104 ± 3
	96	3 ± 1	1 ± 0.1	13 ± 4	90 ± 4	107 ± 0.4
¹⁴ C-CMI	0	3 ± 3	69 ± 9	1 ± 0.4	19 ± 1	91 ± 9
25 ppm	3	1 ± 1	3 ± 2	0.5 ± 0.2	117 ± 5	121 ± 3
	6	3 ± 2	2 ± 0.3	0.2 ± 0.2	118 ± 8	122 ± 7
	24	1 ± 1	2 ± 0	1 ± 0.5	115 ± 2	121 ± 4
	48	1 ± 2	1 ± 1	1 ± 1	103 ± 5	107 ± 9
	96	1 ± 3	2 ± 2	1 ± 1	102 ± 4	106 ± 2

Kathon ¹⁴ C-	Time	Upper cell	Wipe-off	Bath and rinse	Skin	Total ¹⁴ C-
component	h	rinse				recovery
¹⁴ C-MI	0	0.3 ± 0.3	82 ± 3	0.1 ± 0.1	2 ± 0.5	84 ± 3
2500 ppm	3	4 ± 5	60 ± 38	0.4 ± 0.4	26 ± 41	91 ± 9
	6	0.2 ± 0.4	74 ± 2	1 ± 1	4 ± 1	79 ± 3
	24	1 ± 0.1	77 ± 5	0.3 ± 0.2	3 ± 1	81 ± 6
	48	2 ± 2	58 ± 47	5 ± 5	30 ± 39	95 ± 2
	96	3 ± 2	4 ± 1	23 ± 2	58 ± 4	89 ± 5
¹⁴ C-MI	0	10 ± 5	132 ± 4	1 ± 1	1 ± 0.2	143 ± 9
25 ppm	3	1 ± 2	111 ± 4	1 ± 0	2 ± 1	115 ± 3
	6	0 ± 0	85 ± 30	1 ± 1	15 ± 16	95 ± 16
	24	13 ± 2	16 ± 0.2	24 ± 2	49 ± 1	102 ± 2
	48	12 ± 3	6 ± 3	55 ± 6	28 ± 0.4	100 ± 1
	96	23 ± 1	6	61 ± 25	16 ± 2	111 ± 5

At 96 hr exposure, 1 to 13% of the Kathon Biocide ¹⁴C-CMI (25 or 2500 ppm respectively) was absorbed across rat skin (systemically available). Most of the ¹⁴C-label (90-102%, 2500 or 25 ppm respectively) was bound to the skin.

At 96 hr exposure 23 to 61% of ¹⁴C -label derived from Kathon Biocide ¹⁴C-MI (25 or 2500 ppm respectively) was absorbed across rat skin. Much of the ¹⁴C-label (16 to 58%, 25 or 2500 ppm respectively) was bound to the skin.

It was not possible to determine if the ¹⁴C in the tissue at 96h, from either CMI or MI, was the parent compound and/or metabolites nor if it was permanently bound or available for further absorption.

HPLC and thin layer chromatographic analyses of bathing solutions collected 24 or 96 h after 2500 ppm CMI/MI application provided evidence that the parent components of Kathon Biocide (CMI and MI) were not in the receptor fluid suggesting biotransformation and/or degradation in the skin. The parent compounds were stable in spiked receptor fluid.

Conclusion

In this rat skin *in vitro* absorption study, MI was absorbed across the skin barrier to a greater extent than CMI. Both compounds were bound to the skin but it was not determined if this bound material was systemically available.

Ref.: 32

In-vitro human skin

Guideline:	OECD draft 428
Tissue:	Human (<i>post mortem</i>) skin
Group size:	6 membranes from 3 different donors
Diffusion cells:	glass diffusion cells, 2.54 cm ² membrane area
Skin integrity:	trans-dermal electrical resistance; at least 10 k Ω
Test substances:	(4,5- ¹⁴ C)-CMI (RH-651, 5-Chloro-2-methyl-4-isothiazolin-3-one; 48
	µCi/g specific activity), and non-radiolabelled MI (RH-573, 51.1% a.i)
	CMI 3:MI 1 (225 µg/ml ¹⁴ C-CMI / 75µg/ml MI w/v in water). Batch:
	CMI/MI Sublot 1065.000101; MI: Lot N° 41814, Pail 1
Purity:	98.7% radio-purity
Doses:	22.5, 75.0 and 225 μg/ml CMI, 20 μl/cm ²
Diffusion cells:	Franz cells
Receptor fluid:	water
Sampling time:	0, 1, 2, 4, 8, 12, 24 h
Method of Analysis:	liquid scintillation counting
GLP:	in compliance
Study period:	May -Aug 2005

Six intact membranes from at least three different subjects were selected for each dose. The 3 aqueous dilutions were applied to the epidermis in the cells and occluded for the 24h exposure period. Receptor fluid samples (0.5 ml) were taken at specified intervals; the volume was maintained with fresh receptor fluid after sampling time. At the end of the

exposure period, the distribution of CMI in the test system was measured and reported as ¹⁴C-CMI equivalents.

Results

Minimal absorption of CMI occurred within the first 2 hr of exposure, thereafter, the absorption rates ranged from 0.004 to 0.079 μ g/cm²/h over the 24 h. CMI absorption was fastest between 4-8 hr after dosing and then slowed possibly due to depletion of the applied reservoir. After 24h exposure, 16.9, 22.4 and 36.2% of the applied doses (22.5, 75.0 and 225 μ g/ml, respectively) were absorbed.

Systemic availability of CMI was potentially 79.2, 73.2, and 84.5% of the applied doses (22.5, 75.0 and 225 μ g/ml, respectively), including ¹⁴C -label retained in the epidermis. All values expressed as percent of total CMI dose applied (mean \pm SD)

Dose	Donor chamber	Skin wash at 24 h	Stratum corneum	Remaining epidermis	Absorbed	Total recovery (equivalents)
225 µg/ml	6.27 ± 1.00	4.99 ± 1.80	2.67 ± 1.98	48.3 ± 20.8	36.2 ± 15.5	98.5 ± 4.49
75 μg/ml	6.37 ± 3.71	7.73 ± 4.21	4.74 ± 3.38	50.8 ± 15.5	22.4 ± 12.4	92.1 ± 2.46
22.5 μg/ml	5.39 ± 2.31	11.3 ± 4.83	6.16 ± 1.05	$\textbf{62.3} \pm \textbf{19.6}$	16.9 ± 15.5	102 ± 8.3

At the end of the study, given the reactivity of CMI, it was not possible to determine if the 14 C -material was the parent compound or ring opened degradation/metabolic products nor whether it was permanently bound in the tissue or available for further absorption.

Conclusion

Absorption of CMI across the epidermis was 16.9, 22.4, and 36.2% of the respective doses in aqueous solutions (22.5, 75.0 and 225 μ g/ml) following a 24 hr occluded exposure, in the presence of MI (CMI: MI ratio of 3:1). Potential systemic availability of CMI, including ¹⁴C - label retained in the epidermis, was 79.2, 73.2, and 84.5% of the applied doses.

Ref.: 33

In-vitro human skin

Guideline:	OECD draft 428
Tissue:	Human (<i>post mortem</i>) skin
Group size:	6 membranes from 3 different donors/application
Diffusion cells:	glass diffusion cells, 2.54 cm ² membrane area
Skin integrity:	trans-dermal electrical resistance; at least 10 k Ω
Test substances:	(4,5- ¹⁴ C)-CMI (RH-651, 5-Chloro-2-methyl-4-isothiazolin-3-one;
	48.91 μ Ci/g specific activity), and non-radiolabelled MI (RH-573,
	99.0% a.i) 3:1 w/v in water.
Batch:	CMI/MI Sublot 1065.0003; CMI: Lot N° 1065.00; MI: 033055A
Purity:	98.7% radio-purity
Test applications:	Aqueous solution, shampoo, body lotion and facial cream
Doses:	CMI/MI ratio 3:1 (11.37µg/ml CMI / 3.75µg/ml MI w/v in water).
Diffusion cells:	Franz cells
Receptor fluid:	purified water
Sampling time:	0, 1, 2, 4, 8, 12, 24 h
Method of Analysis:	liquid scintillation counting
GLP:	in compliance
Study period:	July- Oct 2005

In vitro dermal absorption of radioactive 5-Chloro-2-methyl-4-isothiazolin-3-one (¹⁴C-CMI) was evaluated in human epidermis from an aqueous solution and 3 formulations (shampoo,

body lotion and facial cream) at a concentration of $11.25 \ \mu g \ CMI/ml$ in the presence of non-radiolabelled 2-methyl-4-isothiazolin-3-one in a ratio of 3:1, CMI to MI.

Six intact membranes from at least three different subjects were selected for each application type. The aqueous solution and 3 formulations were applied to the epidermis at a rate of 20 μ /cm² (aqueous solution and shampoo) and 20 mg/cm² (body lotion and facial cream) and occluded for the 24h exposure period. Receptor fluid samples (0.5 ml) were taken at specified intervals; the volume was maintained with fresh receptor fluid after sampling time. At the end of the exposure period, the distribution of CMI in the test system was measured and reported as ¹⁴C-CMI equivalents.

Results

Minimal absorption of CMI occurred within the first 4 h of exposure; thereafter, the rate of absorption was 0.0009 μ g/cm²/hr at concentrations tested over the 24 h period. After 24h, 7.36% of the applied CMI in aqueous solution containing 11.25 μ g/ml, was absorbed across the epidermis during 24 h occluded exposure. Systemic availability of CMI was potentially 58.7% of the applied dose including ¹⁴C-label retained in the epidermis.

At the end of the study, given the reactivity of CMI, it was not possible to determine if the ¹⁴C -material was the parent compound or ring opened degradation/metabolic products nor whether it was permanently bound in the tissue or available for further absorption.

When CMI (11.25 μ g/ml)/MI (ratio of 3:1) was formulated in a shampoo, body lotion and facial cream, 3.53, 2.82 and 1.11% of the applied CMI dose (24 hr, occluded exposure) was absorbed across the epidermis, respectively. Systemic availability of CMI, including ¹⁴C-label retained in the epidermis, was potentially 48.4, 51.6 and 46.6% from the applied shampoo, body lotion and facial cream formulations respectively.

Dose 11.25 µg/ml	Donor chamber	Skin wash 24 h	Stratum corneum	Remaining epidermis	Absorbed	Total recovery (equivalents)
aqueous	$\textbf{2.02} \pm \textbf{0.31}$	18.6 ± 4.10	12.9 ± 3.74	51.3 ± 6.23	7.36 ± 3.22	92.2 ± 2.07
shampoo	$\textbf{2.21} \pm \textbf{1.02}$	25.4 ± 6.45	17.0 ± 4.79	44.9 ± 5.95	$\textbf{3.53} \pm \textbf{2.22}$	93.1 ± 3.42
body lotion	2.04 ± 1.35	17.1 ± 7.74	$\textbf{7.29} \pm \textbf{4.84}$	48.8 ± 7.97	$\textbf{2.82} \pm \textbf{2.19}$	78.0 ± 6.21
facial cream	1.48 ± 0.26	24.0 ± 6.49	11.3 ± 5.67	45.5 ± 9.17	1.11 ± 1.05	83.4 ± 7.78

All values expressed as percent of dose recovered (mean \pm SD)

Conclusion

Absorption rates of CMI, in either aqueous solution or in formulations, were minimal within the first 4 hours of exposure. The absorption rates of CMI (11.25 µg/ml) across the human epidermis were slower in formulations (0.0002 to 0.0004 µg/cm²/hr during 24 hr occluded exposure) compared with the rate of absorption of CMI (11.25 µg/ml concentration) in aqueous solution (0.009 µg/cm²/hr during 24 h occluded exposure). Absorption of CMI across the epidermis was 7.36, 3.53, 2.82 and 1.11% of the respective doses in aqueous solution, shampoo, body lotion and facial cream following a 24 hr occluded exposure, in the presence of MI (CMI: MI ratio of 3:1). Potential systemic availability of CMI, including ¹⁴C - label retained in the epidermis, was 58.7, 48.4, 51.6 and 46.6% of the applied doses.

Ref.: 34

Comment No details of the formulations were provided.

In-vitro human skin

Guideline:	OECD draft 428
Tissue:	Human (<i>post mortem</i>) skin
Group size:	6 membranes from 3 different donors/application
Diffusion cells:	glass diffusion cells, 2.54 cm ² membrane area

Skin integrity: Test substances: Batch:	trans-dermal electrical resistance; at least 10 k Ω (4,5- ¹⁴ C)-MI ¹⁴ C-MI (2-methyl-4-isothiazolin-3-one, RH-573) 1063.0005 aqueous dilutions; 1063.0008 shampoo, body lotion and facial cream
Purity:	98.7% radio-purity
Test applications:	Aqueous solutions, shampoo, body lotion and facial cream
Doses:	Aqueous solution 300, 100 and 50µgMI/ml and 100ml formulations.
Diffusion cells:	Franz cells
Receptor fluid:	purified water
Sampling time:	0, 1, 2, 4, 8, 12, 24 h
Method of Analysis:	liquid scintillation counting
GLP:	in compliance
Study period:	Jan -Aug 2005

In vitro dermal absorption of radioactive 2-methyl-4-isothiazolin-3-one (¹⁴C-MI) was evaluated in human epidermis from three aqueous solutions (313, 104.3, and 52.2 μ g MI/mI) and from three formulations (shampoo, body lotion and facial cream) at a concentration of 100 μ g MI/ml. The aqueous solutions were applied to the epidermal membranes at a rate of 20 μ l/cm², while the three formulations were applied to the epidermal membranes at a rate of 20 mg/cm². All applications were occluded for an exposure period of 24 hr. Receptor fluid samples (0.5 ml) were taken at specified intervals; the volume was maintained with fresh receptor fluid after sampling time. At the end of the exposure period, the distribution of MI in the test system was measured and reported as ¹⁴C-MI equivalents.

Results

MI in aqueous solution was readily absorbed across the human epidermis following a 24 h occluded exposure – 29.8, 38.0 and 54.7% of applied dose at MI concentrations of 52.2, 104 and 313 μ g/ml, respectively.

Systemic availability of MI was potentially 65.3, 60.1 and 75.5% of the applied dose (52.2, 104 and 313 μ g/ml, respectively) including ¹⁴C-label retained in the epidermis.

When MI (100 μ g/ml) was formulated in a shampoo, body lotion and facial cream, 29.5, 9.0 and 19.6% of the applied dose was absorbed across the epidermis (24 hr, occluded exposure), respectively. Systemic availability of MI was potentially 49.7, 25.9 and 36.1% of the applied dose (100 μ g/ml) including ¹⁴C-label retained in the epidermis.

At the end of the study, given the reactivity of MI, it was not possible to determine if the ¹⁴C -material was the parent compound or ring opened degradation/metabolic products nor whether it was permanently bound in the tissue or available for further absorption.

MI Dose	Donor chamber	Skin wash at 24 h	Stratum corneum	Remaining epidermis	Absorbed	Total recovery (equivalents)
313 µg/ml	$12.9 \hspace{0.1 in} \pm \hspace{0.1 in} 3.09$	7.03 ± 3.68	1.55 ± 0.74	10.8 ± 3.99	54.7 ± 12.0	86.9 ± 7.51
104.3 µg/ml	10.5 ± 2.68	15.0 ± 6.92	4.27 ± 2.31	$22.1 \pm 9.38 $	38.0 ± 12.1	89.9 ± 3.70
52.2 µg/ml	10.7 ± 3.97	$14.1 \hspace{0.1in} \pm 4.87$	4.48 ± 2.39	35.5 ± 7.16	$29.8 \hspace{0.1 in} \pm \hspace{0.1 in} 10.1$	94.7 ± 3.41
100 µg/ml shampoo	7.95 ± 4.06	29.7 ± 10.6	4.06 ± 2.78	20.2 ± 7.78	29.5 ± 13.4	91.4 ± 4.14
100 µg/ml body lotion	4.07 ± 1.32	69.4 ± 7.00	3.86 ± 1.29	16.9 ± 3.20	8.98 ± 3.10	103 ± 5.88
100 µg/ml facial cream	8.69 ± 2.62	49.1 ± 10.8	2.11 ± 0.78	16.5 ± 2.25	19.6 ± 10.0	96.0 ± 6.44

All values expressed as percent of dose recovered (mean \pm SD)

Conclusion

Absorption rates of MI, in either aqueous solution or in formulations, were minimal within the first 6 hours of exposure. The absorption rates of MI (100 μ g/ml) across the human epidermis were slower in formulations (0.007 to 0.026 μ g/cm²/hr during 24 hr occluded exposure) compared with the rate of absorption of MI (104 μ g/ml concentration) in aqueous

solution (0.037 μ g/cm²/hr during 24 h occluded exposure). Absorption of MI across the epidermis was 29.8, 38.0 and 54.7% of the respective doses in aqueous solutions (52.2, 104.3, 313 μ g/ml) following a 24 hr occluded exposure. Potential systemic availability of MI, including ¹⁴C -label retained in the epidermis, was 65.3, 60.1 and 75.5% of the applied doses. Absorption of MI from cosmetic formulations was 29.5, 9.0 and 19.6% of the respective doses from shampoo, body lotion and facial cream and potential systemic availability of MI, including ¹⁴C -label retained in the epidermis, was 49.7, 25.9 and 36.1% of the applied doses.

Ref.: 35

General Comment on dermal absorption

Assessment of percutaneous absorption is difficult with 2 reactive active ingredients. Both substances, CMI and MI, were bound to the skin, but it was not determined if this bound material was systemically available. For CMI and MI on their own, ¹⁴C was found to be minimally absorbed during the first 4-6 h after application. The mean ¹⁴C moiety from aqueous solutions absorbed across human skin over 24 h varies from 7-56% with very high standard deviations. The ¹⁴C moiety of MI was absorbed across the skin barrier to a greater extent than the ¹⁴C moiety of CMI. Given the reactivity of both CMI and MI, it was not possible to determine if the absorbed ¹⁴C moieties were either parent compounds or ring opened degradation/metabolic products nor whether they were permanently bound in the tissue or available for further absorption.

For these reasons, combined with large variations seen between the submitted studies, a reliable value for dermal absorption could not be determined. Therefore, 100% dermal absorption will be used to calculate the Margin of Safety.

3.3.5. Repeated dose toxicity

3.3.5.1. Repeated Dose (28 days) oral / dermal / inhalation toxicity

A 21 day dermal rabbit study, (1972) was provided, but was not considered as there were data gaps including incomplete characterisation of the test material.

Ref.: 36

3.3.5.2. Sub-chronic (90 days) oral / dermal / inhalation toxicity

Oral studies

Guideline:	
Species/strain:	Rat, Charles River CD
Group size:	120 (15/dose/sex)
Test substance:	RH-886 Technical (5-chloro-2-methyl-4-isothiazolin-3-one and 2-
	Methyl-4-isothiazolin-3-one, CMI/MI, 75.3% a.i.)
	RH 35,375 (N-methyl malonamic acid, NMMA)
	RH 00,345 (malonic acid, MA)
Batch:	RH-886: Lot N° SW 72/0571
	RH 35,375: Lot N° MH 24:28A
Purity:	/
Vehicle:	diet
Dose levels:	0 (control), 40-80, 132-260, 400-800 ppm_CMI/MI,
	33-66 ppm NMMA+6.7-13.4 ppm MA, 110-220 ppm NMMA+22-44 ppm
	MA
Route:	Diet
Exposure:	90 days

GLP: / Study period 1975

Rats were exposed to CMI/MI or NMMA combined with MA in a powdered commercial diet. CMI/MI concentrations were increased over the 13-week period (initial concentration up to week 2, intermediate concentration week 3-4, final concentration week 5 to 13). Concentrations in the control and CMI/MI groups were: 0/0/0, 40/57/80, 132/187/260, 400/570/800 ppm. For the NMMA+MA groups, the concentrations were 33/47/66 ppm NMMA/6.7/9.5/13.4 ppm MA and 110/156/220 ppm NMMA/22/31/44 ppm MA.

Results

There were no mortalities and no effects on body weight or food consumption.

In each group, some animals showed slight alopecia or reddened raw or scabbed areas on the skin. There were no other differences in general behaviour or appearance.

There were no treatment-related changes in haematological, biochemical, urinary parameters nor any pathology.

Conclusion

No systemic toxicity was observed up to and including the highest dose of either CMI/MI (800 ppm, equivalent 29.1 mg a.i./kg/day] or its metabolites, N-methyl malonamic acid and malonic acid tested in combination [13 to 15 mg/kg/day N-methyl malonamic acid/2.6 to 3.0 mg/kg/day malonic acid].

The No Observed Effect Level (NOEL) in this study was estimated to be greater than or equal to the highest dose tested (29.1 mg a.i. /kg/day).

Ref.: 37

90-day repeated oral dose and one-generation reproduction toxicity in rodents

Guideline:	/
Species/strain:	Rat, COBS CD (SD) BR
Group size:	250 (15/sex/dose subchronic; 10/sex/dose reproduction)
Test substance:	Kathon 886 NAR (5-chloro-2-methyl-4-isothiazolin-3-one and 2-Methyl-4-isothiazolin-3-one, 15.5% a.i CMI/MI)
Batch:	Lot N° SW81-0138
Purity:	99.9 area% (HPLC)
Vehicle:	water
Dose levels:	0, 25, 75 or 225 ppm a.i.
Route:	drinking water
Exposure:	90 days (subchronic), approximately 5 months (15 weeks up 21 postnatal day 21, reproduction)
GLP:	in compliance
Study period	1981

Kathon 886 NAR, with magnesium salts, is given as 15.1% a.i. but there is no indication of the CMI/MI ratio.

Dose levels were selected based on a range-finding study that indicated a no-observedeffect-level (NOEL) of 200 ppm a.i. after two weeks of CMI/MI administration in the drinking water.

Rats were exposed to CMI/MI via their drinking water at concentrations of 25, 75 or 225 ppm a.i. for three months [equivalent to an average intake of 2.38, 6.28 and 16.3 mg/kg/day in males and 4.06, 10.8, and 24.7 mg/kg/day in females]. Two additional groups of rats (25/sex/group) were given tap water or tap water containing the inorganic ions present in the CMI/MI solution, at a concentration equal to that in the high dose group (225 ppm). This solution is referred to as the ion control solution.

13 week Toxicity Results

There were no mortalities in either sex at any dose level. There were no treatment-related effects on body weight up to the mid dose. A significant decrease in body weight was seen in males at the high dose during the first two weeks of the study. Food consumption was significantly decreased in males at all dose levels and in females mid and high dose groups during the first few weeks of dosing. Water consumption was significantly decreased at all concentrations.

No overt clinical signs or ophthalmic were seen in any group throughout the 13 week toxicity or the reproductive phase. No adverse effects were seen in the examinations.

No haematological treatment-related changes were seen in either sex at any dose level. There was a significant decrease in globulin and an increase in the albumin/globulin (A/G) ratio in males in both the high concentration and in the ion control groups, after 13 weeks of treatment. A significant decrease in total protein was also seen high concentration group, but was not seen in the ion control group. Females in the high concentration group showed a modest (40%) increase in SGOT (AST, aspartate aminotransferase) levels after 13 weeks of dosing. No changes were observed at any dose in mixed-function oxidase activities of the liver.

At the end of 13 weeks of treatment, there was a significant increase in relative liver weight in males and in relative kidney weight in females at the high concentration but without any correlative changes in organ pathology.

Histology revealed a local irritation of the glandular mucosa of the stomach in 7 of 15 males and 5 of 15 females at the high concentration. These subtle low level changes did not occur at the low or mid concentration nor were they present in either control group. No other compound related changes were seen. Reproductive organs at all doses were comparable to the controls.

Reproductive Results

Reproductive capability was similar in all groups. Litter size and survival at birth was also similar in all groups. One dam at the high concentration lost the entire litter by day 4 due to a lactation problem. This is not uncommon and was not considered treatment related. Pups of the other high concentration group dams, except one, survived and thrived to day 21.

Conclusion

The No Observed Effect Level (NOEL) in this study was 75 ppm a.i. [equivalent to 6.28 and 10.8 mg/kg body weight/day in males and females, respectively], based primarily on irritation of the glandular stomach at the high dose. The No Observed Adverse Effect Level (NOAEL) was 225 ppm a.i. [equivalent to 16.3 and 24.7 mg/kg body weight/day in males and females, respectively], the highest dose tested, since no adverse effects were observed on the histopathology of any tissues or organs distant from the site of dosing. No adverse effects were observed on reproductive capability of male and female rats and no effects were observed on foetal health or pup survival (to day 21) up to and including the high dose [equivalent to 16.3 and 24.7 mg/kg body weight/day in males and females, respectively].

Ref.: 38

/
Dog, beagle
48 (4/dose/sex)
RH-886 Technical (, CMI/MI)
RH 35,375 (N-methyl malonamic acid, NMMA)
RH 00,345 (malonic acid, MA)
RH-886: Lot N° SW 72/0571 and SW 73/05459-6713
RH 35,375: Lot N° MH 24:28A
diet

Dose levels:	0, 84, 280 and 840 ppm a.i. CMI/MI, 150 NMMA+30 MA, 500 NMMA+100 MA
Route: GLP:	Diet /
Study period	1975

RH-886 Technical is described in the dossier as <u>56% active ingredient</u> and a "calcium chloride complex". However, the two batches of RH-886 in this study were RH-886 T with 75.3% active ingredient, the second batch RH 886, 73% a.i. CMI/MI was at concentrations of 84, 280 and 840 ppm a.i., resulting in doses equivalent to 2.7, 8.9, 26.9 mg a.i./kg/day CMI/MI

N-methyl malonamic acid (NMMA) is the major ring opened metabolite of CMI/MI.

Dogs were exposed to the test compounds in a powdered commercial diet for three months. There were no deaths at any dose level of CMI/MI or NMMA combined with MA. Body weight and food consumption were comparable to the controls. No treatment related differences in general behaviour, appearance or in neurological changes.

Haematology, biochemistry and urinalysis revealed no treatment-related changes. Organ weights were within the normal parameters. There were no treatment related gross or microscopic pathological effects.

Conclusion

No systemic toxicity was observed up to and including the highest dose of CMI/MI or NMMA combined with MA [16 to 17 mg/kg/day N-methyl malonamic acid/3.2 to 3.4 mg/kg/day malonic acid].

Ref.: 39

Guideline:	OECD 409 (1981)
Species/strain:	Dog, Beagle
Group size:	116 (58 males and 58 females)
Test substance:	ACTICIDE 14, 14 % (10.2% 5-chloro-2-methyl-2H-isothiazol-3-one
	(CIT): 3.8% 2-methyl-3H-isothiazol-3-one (MIT)
Batch:	58008-608
Purity:	/
Vehicle:	diet
Dose levels:	0, 101, 363 and 555 mg a.i. /kg diet
Route:	Diet
Exposure:	90 days
GLP:	in compliance
Study period	23 Jan - 25 April 1996

Acticide 14 was 10.2% CMI: 3.8% MI, which is not a 3:1 ratio. In addition, the pH was 2.7 and there were no salts.

The nominal values of the doses were 150, 500 and 750 mg a.i. /kg diet. The values given under "Doses" are calculated values. Because of the poor analytical recovery of ACTICIDE 14 from the test diet, the "worst case" figures were used to calculate the actual concentration of Acticide 14 consumed by the animals. The data taken was that recorded in Week 2 when dietary levels of 101, 363 and 555 ppm a.i. were obtained.

Results

There were no deaths during the study. In the high dose group, there was a dose-related decrease in weight gain, resulting in losses in absolute body weight. This was attributed to statistically significantly reduced food consumption. Poor food consumption was also noted in a number of animals in the mid dose group over the 13 week treatment period. This appeared to be related to the palatability, since a short period of meat supplementation improved food consumption in the thinnest animals. This indicated that there was no central depression of appetite.

Haematology, clinical chemistry, ophthalmoscopy and organ weight were comparable to the controls. There were no macroscopic or microscopic findings indicative of toxicity.

Conclusion

Acticide 14 did not cause any organ or systemic toxicity in the diet at dose levels up to 555 mg a.i./ kg diet active ingredient (nominal concentration of 750 mg a.i./kg diet active ingredient), which is equivalent to up to 30 mg a.i./kg bw/day.

Ref.: 40

Dermal Studies

Guideline:	/
Species/strain:	Rat, Sprague-Dawley
Group size:	40 (10 dose/sex))
Test substance:	Acticide 14 (10.2% CMI / 4% MI)
Batch:	/
Purity:	/
Vehicle:	distilled water
Dose levels:	0, 0.75, 3.75 and 18.75 mg/kg/day bw
Dose volume:	60 μl/kg bw
Route:	dermal
Exposure:	once daily for 91 days
GLP:	in compliance
Study period	Sept - Dec 1993

There are no further details about the Acticide formulation, which is not at 3 CMI:1 MI ratio. Method: The hair was removed by clipping prior to first application and then as needed. Application was to intact skin. A semi-occlusive dressing applied for 6 hours.

Results: One control group male and female and one high-dose male were found dead during the first 2 weeks of the study. The high-dose death was considered to be incidental since a relationship between the cause of death and test article toxicity could not be established. There were no significant effects on body weight and food consumption.

A dose-response related erythema was seen but no other treatment-related clinical changes. There were no treatment related changes in haematological, biochemical, urinary, ophthalmic parameters or organ weight. There were no macroscopic treatment-related lesions apart from the skin alterations. There were no histopathological lesions in the other organs and tissues suggestive of systemic target organ toxicity due to the test article.

Investigation of local skin reactions showed minimal individual skin reactions in 2 females low dose, 3 males and females in the mid group and in the majority of all high-dose animals of both sexes. Reactions included dose-related slight to moderate erythema and desquamation, slight oedema and atonia as well as eschar formation. These reactions were generally mild in the males and more pronounced in the females. The only microscopic treatment-related findings were related lesions such as inflammation, parakeratosis and acanthosis at the treated skin sites.

Group		Control	Low	Mid	High
Dose mg/kg/day		0	0.75	3.75	18.75
Mean total score (on scale 1 - 4)	Males	0.0	0.0	0.0	0.3
	Females	0.0	0.0	0.1	0.4
Eschar formation (%)	Males	0	0	0	60
	Females	0	2	7	75
Exfoliation (%)	Males	0	0	0	0
	Females	0	0	0	0

NOAEL: NOAEL (male rat): NOAEL (female rat): <= 0,104 mg/kg/day (a.i.) 0.104 mg a.i./kg/day not observed.

LOAEL:

>= 0,104 mg/kg/day (a.i.)

Ref.: 42

Guideline: Species/strain: Group size: Test substance: Batch: Vehicle: Dose levels: Route: Exposure: GLP: Ctude paged	/ Rabbit, New Zealand 48 (6/dose/sex) Kathon 886 MW (12.1% CMI/ 2.5% MI), 14.6% active ingredient Lot N° 3433 Purity:/ Deionized water 0, 100, 200 and 400 ppm a.i. (0, 0.67, 1.3 and 2.7 % Kathon MW) dermal 1 ml/kg once daily, (13 x 5 days) in compliance
Study period	1978

Kathon 886 MW is the magnesium formulation but as supplied is not at the 3:1 ratio.

Method: The hair was removed by clipping prior to first application and then as needed. The dose groups were further divided, 3 with intact skin and 3 with lightly abraded skin. The abrasion was done prior to first application and then weekly. The application area was left uncovered.

Results: There were 12 deaths (4 high dose, 5 mid dose and 3 low dose). There were no significant effects on body weight, food consumption. There was ocular and nasal discharge in most treated animals. Controls and all dose groups exhibited poor eating behaviour and diarrhoea.

A dose-response related erythema was seen.

Dose	Response week	Post mortem
High	2	Moderate to severe erythema, slight oedema
Mid	5	Slight to moderate, 1/7 slight oedema
Low	7	Slight to moderate erythema, 1/9 slight oedema

Haematology, biochemistry and urinalysis revealed no treatment-related changes. Post mortem showed organ weights comparable to the control. There was no evidence of systemic toxicity at autopsy.

A retrospective examination of the animals suggested that the health status was not ideal. The deaths were considered to be an aggravation of an endemic pulmonary disease in the rabbits induced by stress associated with dermal irritation and not systemic toxicity of CMI/MI.

Ref.: 41

Inhalation studies

OECD 413 Rat, Charles River CRL: CD(SD)BR 128 (16/dose/sex) Kathon [™] 886 MMPA Process (5-chloro-2-methyl-4-isothiazolin-3-one
Lot N° SW 82/0169
/
water (Milli-U)
0.0, 0.34, 1.15 and 2.64 mg ai/m ³
10 ml/kg bw
aerosol
6 hours per day, 5 days per week for 13 consecutive weeks in compliance

Study period July – October 1982

Kathon 886 MMPA Process contains the magnesium salts.

There were no deaths. There were no effects on body weight at low or mid dose. At the high dose, decreased body weight, body weight gains and food consumption were significant.

The high exposure group showed signs consistent with those produced by exposure to a sensory irritant – chromorhinorrhea, rhinorrhea, eye squint, bradypnea, dyspnea.

There were no treatment related changes in haematological, urinary or ophthalmic parameters. High dose females had decreased serum protein levels. High dose males had decreased spleen weights. This was not observed in females and did not correlate with any histopathological change. Other than the respiratory tract, there were no treatment-related macroscopic or histopathological lesions indicating systemic target organ toxicity

At the high dose, slight to moderate eosinophilic droplets in the anterior respiratory mucosa of the nasal turbinates and very slight to slight rhinitis in the lining of the anterior portion of the nasal cavity were noted. Both changes were minor, potentially reversible physiologic responses to an upper respiratory tract irritant. Additional changes included very slight to slight hyperplasia of the squamous epithelium in the nasal turbinates and varying degrees of sinusitis in the paranasal sinuses. These were described as being secondary effects and not direct-treatment related. At the mid-dose, the only effect observed was a very slight incidence of rhinitis.

Conclusion The No Observed Effect Level (NOEL) was 0.34 mg/m^3 , based on minimal irritation of the respiratory tract at 1.15 mg/m^3 . No adverse effects on the histopathology of any tissues/organs distant from the site of dosing were noted up to and including the highest dose tested (2.64 mg a.i./m³).

Ref.: 43

General comment

The value of these repeated dose studies is limited as the test formulations are not properly characterised or are not at the 3:1 ratio and there are other data gaps.

3.3.5.3. Chronic (> 12 months) toxicity

See 3.3.7. Carcinogenicity

3.3.6. Mutagenicity / Genotoxicity

In Vitro studies

Substance: test	Findings	Study date	Ref
CMI/MI: reverse mutation test in Salmonella typhimurium and Saccharomyces cerevisiae	Positive in strain TA100	1981	46
CMI/MI: reverse mutation test in Salmonella typhimurium)	Positive in strain TA100 without S9-mix only	1981	47
CMI/MI: reverse mutation test in Salmonella typhimurium)	Positive in strain TA100 without S9-mix only	1981	48
CMI/MI: reverse mutation test in Salmonella typhimurium	Positive in strain TA100 (only strain tested)	1991/1992	49
CMI/MI: reverse mutation test in Salmonella typhimurium	Positive in strains TA98, TA100, TA102, TA1535 and TA1537 without S9-mix; and TA100 and TA 102 with S9-mix	1994	50
CMI/MI: reverse mutation test in Salmonella typhimurium	Positive in strain TA-100, negative in <i>E. coli</i>	1982	51
CMI: reverse mutation test in Salmonella typhimurium	Positive in strain TA-100 without S9-mix only	1981	52

Substance: test	Findings	Study date	Ref
MI: reverse mutation test in Salmonella typhimurium	Negative	1982	53
MI: reverse mutation test in Salmonella typhimurium	Negative	1999	54
NMMA: reverse mutation test in Salmonella typhimurium and Escherichia coli	Negative	2005	55
CMI/MI: gene mutation test in mammalian cells (mouse lymphoma cells)	Positive	1981	56
CMI/MI: gene mutation test in mammalian cells (mouse lymphoma cells)	Positive	1993/1994	58
CMI/MI: In vitro unscheduled DNA synthesis (UDS) assay [primary rat hepatocytes]	Negative	1990/1991	59
CMI/MI: Mammalian cell chromosome aberration test (Chinese hamster lung cells)	Negative	1982	61

Under *in vitro* conditions CMI/MI induced an increase in the number of revertants in the 4 gene mutation assays in bacteria performed. Increases were predominantly seen in *Salmonella* strain TA100; increases in other strains were only demonstrated in one test. CMI induced an increase in the number of revertants in TA100 only in the absence of S9-mix. Both MI and NMMA were negative in the gene mutation assay in bacteria. In two gene mutation assays in mammalian cells CMI/MI treatment resulted in an increase in the mutant frequency at the *tk* locus of mouse lymphoma cells both in the absence as presence of S9-mix. Unscheduled DNA synthesis was not observed after treatment of hepatocytes with CMI/MI. Clastogenicity was tested in a poorly performed *in vitro* chromosome aberration test; CMI/MI did not induce an increase in the number of cells with chromosome aberrations.

In Vivo studies

Substance: test	Treatment	Findings	Study date	Ref
CMI/MI: Rat chromosome	Single dose or treatment on 5	Negative,	1973	62
aberration test (bone	consecutive days by oral gavage or	No indication of		
marrow cells)	in the feed	exposure		
	Up to 28 mg a.i./kg			
CMI/MI: Mouse	Single dose or treatment on 5	Negative	1982	63
chromosome aberration test	consecutive days by oral gavage or	No indication of		
(bone marrow cells)	in the feed	exposure		
	Up to 30 mg a.i./kg.			
CMI/MI: Mouse	Single dose by oral gavage	Negative	1991	67
chromosome aberration test	Up to 20 mg a.i./kg.			
(bone marrow cells)				
CMI/MI: Mouse	Single dose by oral gavage	Negative	1992	68
chromosome aberration test	Up to 30 mg a.i./kg.			
(bone marrow cells)				
CMI/MI: Mouse	Single dose or treatment on 5	Negative	1983	64
micronucleus assay	consecutive days by oral gavage			
	Up to 30 mg a.i./kg			
CMI/MI: Mouse	Single dose by oral gavage	Negative	1996/1997	65
micronucleus assay	Up to 50 mg/kg bw			
CMI/MI: Mouse	Treatment on 2 consecutive days by	Negative,	1994	66
micronucleus assay	oral gavage up to 4,17 mg a.i./kg	No indication of		
		exposure		
CMI/MI: Unscheduled DNA	Single dose by oral gavage	Negative	1997	69
synthesis (UDS) study in	Up to 500 mg/kg bw			
the rat				
CMI/MI: Unscheduled DNA	Single dose by oral gavage	Negative	1994	70
synthesis (UDS) study in	Up to 60 mg/kg bw			
the rat				

Substance: test	Treatment	Findings	Study date	Ref
CMI/MI: Drosophila melanogaster sex-linked recessive lethal test	Treatment in the feed or by injection. Up to 86 μg a.i./kg (feed) or 258 μg a.i./kg (injection)	Negative	1982	71
Other related studies:				
CMI: <i>In vitro</i> and <i>in vivo</i> DNA binding study to DNA from mouse lymphoma cells and rat testes cells		<u>No</u> binding of ¹⁴ C- label, derived from ¹⁴ C-CMI, to DNA fraction <i>in vitro</i> or <i>in vivo</i>	1983	72
CMI/MI: Tissue distribution study in mouse	Single dose by oral gavage Up to 100 mg base-eq/kg bw of ¹⁴ C- labelled test compound	CMI/MI and / or metabolites found in blood, bone marrow and liver	2002	90
CMI/MI: Tissue distribution study in mouse	Single dose by oral gavage Up to 22.5 mg base-eq/kg bw_of ¹⁴ C- labelled test compound	CMI/MI and / or metabolites found in blood, bone marrow and liver	2004	91

The positive mutagenic effect of CMI/MI found *in vitro* in gene mutation assays in bacteria as well as mammalian cells was not confirmed in the sex-linked recessive lethal test in *Drosophila melanogaster* nor in two Unscheduled DNA synthesis (UDS) studies in the rat. As under *in vitro* conditions, both in *in vivo* chromosome aberration tests and in micronucleus tests, CMI/MI appeared not clastogenic.

CMI/MI does also not have relevant clastogenic potential in an *in vivo* micronucleus test in mice described by Richardson *et. al*

The negative *in vivo* mutagenicity tests are supported by the results of the carcinogenicity studies that show that CMI/MI did not produce an increase of the type or incidence of tumours.

CMI on its own was positive *in vitro* in a gene mutation test in bacteria without S9-mix only. However, a DNA binding study *in vivo* was negative indicating that the possibility that CMI alone has genotoxic potential *in vivo* is low.

Both MI and NMMA were negative under *in vitro* conditions and consequently not tested *in vivo*.

3.3.7. Carcinogenicity

One mammalian cell transformation test (mouse embryo fibroblast test) was negative.

Ref.: 60

Combined chronic toxicity/carcinogenicity test: 24-month repeated oral (drinking water) dose in rodents

Guideline: Species/strain: Group size: Test substance:	OECD 453 Rat, Charles River CRL:CD®BR 850, 450 male, 400 female (90/male/dose, 80/female/dose) Kathon [™] 886 (5-chloro-2-methyl-4-isothiazolin-3-one and 2-Methyl-4- isothiazolin-3-one, CMI/MI) 14.2% active ingredient
Batch:	Lot N° 48014
Purity:	/
Vehicle:	water
Dose levels:	30, 100 and 300 ppm a.i.
Control:	water alone; water with magnesium salt
Route:	drinking water
Exposure:	2 year
GLP:	in compliance

Study period Sept 1990 – Sept 1992

In the study report, Kathon 886 is given as 14.2% active ingredient with a pH between 2-3. In the document with compiled batch information for Kathon the active ingredient is 13.2, [10.13 % CMI/ 3.85% MI] with 15.4% magnesium nitrate and 9.0% magnesium chloride. The dose levels were equivalent to: 0, 0, 2.0, 6.6, 17.2 mg a.i./kg bw/day in males and 0, 0, 3.1, 9.8, 25.7 mg a.i./kg bw/day in females. The animals were monitored daily. Blood and urine were evaluated at intervals throughout the study. Ten animals/sex/group were killed and *post mortems* carried out at 12 and 18 months. The remainder were killed at 24 months for full analysis.

Results

There were no deaths. There were no treatment-related effects on body weight or body weight gain at doses or food consumption up to and including the mid dose group. A treatment-related and concentration-dependent decrease in water consumption was seen in both sexes in all treated groups throughout the study. These decreases ranged from 0-22% at low dose 3-30% at mid dose and 15-40% at high dose. These decreases appear to be due to the unpalatability of the CMI/MI and not its inorganic stabilizer salts since the water consumption in the salt control was comparable to the tap water control throughout the study. Based on the average daily water consumption, the high dose was judged to be a maximum tolerated dose. The decreases in body weight and body weight gain were seen in high dose animals throughout the study and may be secondary to decreased water consumption.

No treatment-related clinical effects were recorded. No treatment-related ophthalmic, haematological. biochemical or urinary changes were noted. Organ weights were comparable to the control.

No effects on type or incidence of neoplasms were seen at up to and including the high dose (males: 17.2 a.i.; females 25.7 mg a.i./kg/day). Slight to moderate forestomach hyperplasia was seen at both mid and high dose groups. Gastric irritation was the primary effect observed. No adverse effects on the histopathology of any other tissues/organs were observed away from the site of dosing. No systemic effects were observed.

Conclusion

Kathon[™] 886 in the drinking water for 24 months produced no treatment-related effects on the type or incidence of neoplasms in rats at concentrations up to and including 300 ppm a.i. (17.2 to 25.7 mg/a.i./kg/day). CMI/MI is not considered carcinogenic.

The No-Observed-Effect Level (NOEL) in this study was 30 ppm a.i. (2.0 to 3.1 mg a.i./kg/day), based primarily on gastric irritation of the stomach at 100 and 300 ppm a.i.. The No-Observed-Adverse-Effect Level (NOAEL) was 300 ppm a.i. (17.2 to 25.7 mg/a.i./kg/day), since no evidence of systemic toxicity was observed at any dose and there was no adverse effects on the histopathology of any tissues/organs distant from the site of dosing at any dose.

Ref.: 74

Dermal Study

Guideline:	/
Species/strain:	Mouse, Charles River CD-1
Group size:	120 males (40/dose)
Test substance:	Kathon [™] CG (5-chloro-2-methyl-4-isothiazolin-3-one and 2-Methyl-4-isothiazolin-3-one, CMI/MI), 1.5% active ingredient
Batch:	Lot N° MH31:9E (prepared from Lot SW 78/4014, 14.7% a.i.)
Purity:	/
Vehicle:	deionized water
Positive control:	3-methylcholanthrene 1000 ppm a.i. in acetone.
Dose levels:	0, 400 ppm a.i.
Batch: Purity: Vehicle: Positive control: Dose levels:	Kathon [™] CG (5-chloro-2-methyl-4-isothiazolin-3-one and 2-Methy isothiazolin-3-one, CMI/MI), 1.5% active ingredient Lot N° MH31:9E (prepared from Lot SW 78/4014, 14.7% a.i.) / deionized water 3-methylcholanthrene 1000 ppm a.i. in acetone. 0, 400 ppm a.i.

one

Dose volume:	25µl
Route:	dermal
Exposure:	topically 3 times per week for 30 months
GLP:	/
Report date	1983
Report date	1983

Lot SW 78/4014 was a semi-works-manufactured formulation formulated into the 1.5% a.i end-use formulation Lot MH 31:9E. The CMI/MI ratio was not given.

All positive controls (3-methylcholanthrene) died within 16 months. By the end of the study period, 10/40 control and 7/40 Kathon treated animals survived. Deaths in the Kathon treated group occurred mainly between in the period of 8 –28 months, compared with the controls of 12 –28 months.

There were no effects on body weight. There was brown staining eschar and/or desiccation, flaking of skin at application site of Kathon[™] CG treated mice

All positive controls showed squamous cell carcinoma of the skin with metastases to lungs, kidney and spleen.

No treatment-related neoplasms were observed in Kathon-treated mice when compared with the control mice. Histology of the treated skin of the Kathon animals showed focal or multifocal epidermal necrosis, hyperplasia, hyperkeratosis, eschar, dermal inflammation, and increased dermal collagen. No other adverse histopathological effects of tissues/organs were seen. There was no evidence of systemic toxicity.

Conclusion

3.3.8.1.

Due to the lack of positive histopathological findings, the test substance was not considered to be carcinogenic.

Ref.: 73

Test substance	Species	Result	Study date	Ref
Kathon 886F 11.1%CMI/3.7 % MI a.i	Rat Drinking water	Parental P1 NOAEL 2.8 -4.4 mg a.i/kg bw/day P1 Reproductive NOEL 22.7-28.0 mg a.i/kg bw/day P2 Reproductive NOEL 35.7-39.1 mg a.i /kg bw/day [highest dose tested]	1998	80
Acticide 14 13.9%a.i.	Rat Gavage	Reproductive NOAEL was >/= 10 mg a.i./kg bw/day Parental NOAEL was >/=10 mg a.i./kg bw/day F1 NOAEL was >/= 2.5 mg a.i/kg bw/day F2 NOAEL >/= 2.5 mg a.i./kg bw/day	1998	81

3.3.8. Reproductive toxicity

Two generation reproduction toxicity

Guideline: Species/strain: Group size: Test substance:	OECD 416 Rat, Crl: CD®BR strain 26 males and 26 females /dose Kathon 886F (5-chloro-2-methyl-4-isothiazolin-3-one and 2-Methyl-4- isothiazolin-3-one, CMI/MI), 14.76% active ingredient
Batch:	Lot N° 0157A001
Purity:	/
Vehicle:	deionized water
Positive control:	none
Dose levels:	0, 0 (salt control), 30, 100, or 300 ppm a.i. of CMI/MI
Route:	oral
GLP:	Yes
Report date	1998

Rats were dosed with CMI/MI in drinking water through two generations at concentrations of 0 (control), 0 (magnesium salt control), 30, 100 or 300 ppm a.i. For the P1 generation, this was equivalent to 0, 2.8-4.4; 8.5-11.8, and 22.7-28.0 mg a.i./kg bw/day; and in the P2 generation 0, 4.3-5.5, 13.4-16.0, and 35.7-39.1 mg a.i./kg bw/day.

There were no treatment related effects on survival, food consumption or overt signs of toxicity. A decrease in bodyweight gain was noted initially in the P1 generation. This was thought to be linked to reduced water consumption since significant dose-related reduction in water consumption was seen at all concentrations in both the P1 and P2 generations, during the premating, gestation and lactation stages.

Treatment-related histopathological changes were seen in the stomach in the P1 and P2 generation. These included erosions of the glandular mucosa, oedema and inflammation in the submucosa of the glandular and nonglandular stomach, with hyperplasia and hyperkeratosis of the nonglandular stomach at the 100 and 300ppm a.i. Other histopathological changes were seen but were not dose dependent.

The oestrus cycle in P1 or P2 females at any treatment level was comparable with the controls, as was the sperm motility, morphology, testicular sperm count or caudal epididymal reserves of P1 or P2 males.

All other endpoints (gestation index, gestation length, number of pups per litter or treatment-related gross findings in F1 or F2 pups) were similar to those in the controls in either generation.

The study authors considered that rats exposed to CMI/MI in the drinking water through two generations had a No Observed Adverse Effect Level (NOAEL) of 30 ppm a.i. (2.8-4.4 mg/kg/day in the P1 animals; 4.3-5.5 mg/kg/day in the P2 animals) for parental animal toxicity, based on the gastric irritation of stomach at higher doses. The No Observed Effect Level (NOEL) for reproductive toxicity was 300 ppm a.i. (22.7-28.0 mg/kg/day in the P1 animals; 35.7-39.1 mg/kg/day in the P2 animals), the highest dose tested. There were no effects on fertility or foetal development at any dose level.

Test substance	Species	Result	Study date	Ref
Kathon™ 886 13.9% a.i.	Rat Gavage	Developmental NOEL for CMI/MI was >15 mg a.i./kg bw/day during organogenesis (highest dose tested).	1980	75
Acticide 14 10.2%CMI/4% MI	Rat Gavage	NOAEL maternal toxicity: <= 3.95 . mg/kg bw a.i. NOAEL teratogenenicity : >= 19.6 . mg/kg bw a.i. NOAEL embryotoxicity: >= 19.6 mg/kg bw a.i.	1994	76
Acticide 14 10.2%CMI/4% MI	Rabbit Gavage	Developmental NOAEL was > 5.49 mg a.i./kg bw/day NOAEL for maternal toxicity and foetal toxicity was 1.41 mg a.i./kg bw/day	2002	78
Kathon MW 13.9% a.i	Rabbit Gavage	NOEL maternal toxicity: 2 mg/kg bw Developmental NOEL: 8 mg a.i./kg bw/day [highest dose based on severe maternal toxicity at 20 mg/kg/day]	1991	77

3.3.8.2.	Teratogenicity
•••••	

General comment on reproductive toxicity

In the two generation reproductive toxicity and the teratogenicity study, the chemical characterisation of Kathon^M 886 was CMI/MI 3:1 ratio with magnesium salts. The other studies were not considered for the calculation of the MoS due to the inadequate chemical characterisation of the test substances.

Therefore, the NOAEL of 2.8 mg a.i./kg bw/day Kathon[™] 886 from the parental P1 two generation reproductive toxicity study, (Ref 80), based on significantly reduced water intake

and irritation/erosion of the stomach wall was used for the calculation of the Margin of Safety.

3.3.9. Toxicokinetics

Toxicokinetic studies in rats, *in vivo* and using different CMI/MI administration routes, using either ¹⁴C-labelled CMI or ¹⁴C-labelled MI, showed that systemically it was rapidly absorbed and metabolized. CMI, MI and/or their metabolites did not bioaccumulate in tissues. CMI and MI were not detected in urine, faeces or bile. The metabolites were eliminated mainly within 24 h, only low levels of ¹⁴C were found in blood and highly vascular tissue in the body after 168 h.

N-methyl-malonamic acid (NMMA), a ringed-opened metabolite, was the major metabolite of both CMI and MI. It appeared to have low systemic toxicity. It was eliminated through urine > faeces > bile. Other metabolites of CMI (or MI) were Phase I reductive and oxidative cleavage metabolites and Phase II metabolites consisting of glutathione-derived conjugates of Phase I metabolites of CMI(or MI), in addition to glutathione conjugates.

Ref.: 82

Comment

This reference is a 1997 compilation of 5 separate studies that were performed between 1972 – 1986 to comply with the OECD 417 Guideline, 1992. The value of this compilation is questionable, as the quality of the studies was variable and did not meet modern standards.

3.3.10. Photo-induced toxicity

3.3.10.1. Phototoxicity / photoirritation and photosensitisation

Human

Guideline:	/
Group size:	2 male, 23 female
Test substance:	Kathon [™] CG (5-chloro-2-methyl-4-isothiazolin-3-one and 2-Methyl-4-
	isothiazolin-3-one, CMI/MI), 1.5% active ingredient
Batch:	/
Purity:	/
Vehicle:	aqueous
Dose levels:	15 ppm a.i.
Dose volume:	0.2ml
Route:	dermal
Exposure:	24h, 0.75 μg/cm ² topically
GCP:	/
Report date:	1982

The inner surface of the forearms was wiped with alcohol, and stripped with Scotch tape. The test solution was applied to Parke Davis Readi-Band (Webril) patches (2 cm²), that were in place for 24 hours. Dermal responses were then recorded. Irradiation of one arm with UV-A (wavelength unspecified, 4,400 μ W/ cm²) was for 15 minutes. Both skin sites (irradiated and not irradiated) were examined immediately after irradiation and again at 24, 48 and 72 hr. The irradiated site was also examined 1 week later for "tanning effects". No phototoxic effects were observed with CMI/MI under these test conditions.

Ref.: 102

3.3.10.2.	Phototoxicity / photomutagenicity / photoclastogenicity

/

3.3.11. Human data

Contact allergy to Methylchloroisothiazolinone/methylisothiazolinone, recent clinical data

A recent overview of the use of MCI/MI and contact allergy to it is available (Thyssen et al 2007).

Since the late 1970s in Europe and early 1980s in the USA, preservatives containing MCI/MI have been widely used (Law et al, 1984). In 1980-1982, the first cases of occupational allergic contact dermatitis to MCI/MI were described and later also found in consumers (Bjorkner et al, 1986; Gruvberger., 1997). The MCI/MI-containing preservatives Kathon® CG and Kathon® 886 were added to the baseline patch test series and cutting oil patch test series, respectively, in southern Sweden (Bjorkner et al, 1986).

In the 1980s, a number of reports of allergic contact dermatitis to MCI/MI were published (de Groot et al, 1985; Foussereau J. 1990; O'Driscoll and Beck. 1988). The prevalence of contact allergy markedly increased in unselected eczema patients with prevalence rates between 3% and 8% (Bjorkner et al, 1986: 14: 85-90; Hannuksela, 1986: 15: 211-214; Tosti, 1988), which was largely attributed to cosmetic leave-on products. Cosmetic products contained a concentration of MCI/MI that was within the recommended levels of use (30 ppm) (Fewings et al, 1999).

Since the 1990s, the content of MCI/MI in the EU has been limited to 15 ppm in cosmetic products (Reinhard, 2001). However, the Cosmetics, Toiletries and Fragrance Association recommended a use concentration of no more than 7.5 ppm in cosmetic leave-on products and 15 ppm for cosmetic rinse-off products (Cosmetic Ingredient Review Panel of the Cosmetic, Toiletry Fragrance Association. 1992). It has been suggested that such reduction should reduce the risk of induction of sensitization as well as elicitation of contact dermatitis in MCI/MI-sensitized individuals from the use of rinse-off products (Fewings et al, 1999). However, the frequency of patch test reactions to MCI/MI from a 10-year multicentre data remained high at 2–2.5% (Wilkinson et al., 2002). An epidemiological study from a Spanish group found that 4.04% of tested individuals had contact allergy to MCI/MI (García-Bravo et al, 2004). It has been shown that the elicitation threshold for a MCI/MI-containing solution is less than 2 ppm in sensitized individuals (Zachariae et al, 2006).

The results of patch testing 6958 patients were collected from 9 dermatology centres in the UK during the period 2004–2005. Methylchloroisothiazolinone/methyl-isothiazolinone had a high positivity rate with a mean of 2.0% (1-5-2.5%) (Jong et al, 2007).

During an allergy screening programme involving 9320 children aged 7 and 16 years, 12.6% reported symptoms of chronic/recurrent eczema. From this group, a representative sample of 229 eczema children underwent patch testing. 43.8% of 7 year olds with eczema were patch test positive with 6.3% having contact allergy to MCI/MI. 52.6% of teenagers were patch test positive with 0.8% to MCI/MI. (Czarnobilska et al, 2009).

Clinical and patch test data of 19 793 patients patch tested in 2005/2006 in the 31 participating departments from 10 European countries (the European Surveillance System on Contact Allergies' (ESSCA) www.essca-dc.org) were descriptively analysed and aggregated to four European regions. A number of allergens showed limited variation across the four regions, but differences observed with other allergens may hint at underlying differences in exposures: MCI/MI 4.1% in Southern Europe versus 2.1-2.7% in the other regions. (Uter et al, 2009).

Contact allergy to MCI/MI remains high in European patients with eczema under current use and exposure conditions.

3.3.12. **Special investigations**

Pulmonary hypersensitivity

Guideline:

Species:	Guinea pig, Dunkin Hartley
Group:	40, o males/uose
Substance:	Kathon CG/ICP 1.53% active ingredient
Batch	Lot N° J87008
Purity:	99.6%
Induction route:	inhalation
Dose:	3 groups exposed to 320 mg/m ³ CMI/MI, (4.8 mg ai/m ³)
Control:	aqueous magnesium salt solution
Vehicle:	aqueous
Positive Control:	trimellitic anhydride, (TMA)
GLP:	in compliance
Study period:	July-Aug 1994, report 1995

Five daily induction exposures of 80 min inhalation of CMI/MI (3 groups at 4.8 mg ai/m³), magnesium salt control or a positive control (trimellitic anhydride, TMA; 91 mg ai/m³) were administered to groups of eight guinea pigs.

Challenge exposures were on Day14 and 28 after the last induction. However, inductions were staggered to allow correct challenge times. One-hour inhalation challenge exposures of 0.17, 0.35 and 0.72 mg ai/m³ CMI/MI in aqueous solution and individual respiratory rates were monitored continuously during the challenge and during a 10-hour post-challenge recovery period.

Results

There were no clinical signs of toxicity noted during the induction or challenge phases in either the control-exposed or the CMI/MI-exposed guinea pigs. All of the positive control animals upon challenge to TMA displayed a change in respiratory rate and a change in the respiratory waveform indicative of an immediate pulmonary hypersensitivity response. The data indicate that induction at 4.8 mg ai/m³ of CMI/MI did not result in an immediate or delayed pulmonary hypersensitivity response in guinea pigs when subsequently challenged with an aerosol of the test substance at 0.17, 0.35 and 0.72 mg ai/m³.

Conclusion

Under the conditions of this study, CMI/MI induction at 4.8 mg ai/m³ did not result in an immediate or delayed pulmonary hypersensitivity response in guinea pigs when subsequently challenged with an aerosol of the test substance at 0.17, 0.35 and 0.72 mg ai/m³ nor CMI/MI did produce respiratory sensitisation.

Ref.: 29

7368

=

3.3.13. Safety evaluation (including calculation of the MoS)

CALCULATION OF THE MARGIN OF SAFETY

Indicative daily exposure rinse-off products		
(approximate value, including retention factors)	=	1.5 g/day
Concentration CMI/MI	=	0.0015%
Daily exposure CMI/MI	=	0.0225 mg
Dermal absorption	=	100%
Typical body weight of human	=	60 kg
Systemic exposure dose (SED) rinse off	=	0.00038 mg/kg bw
No observed adverse effect level (NOAEL)	=	2.8 mg/kg bw
(two-generation reproductive study, parental P1)		

Margin of Safety

A worst case scenario of 100% absorption has been assumed for the calculation of MoS.

NOAEL / SED

3.3**.14. Discussion**

As a dossier this was poorly put together with no links between the numbered references in the submission and the references provided. The toxicological studies were useable but did not meet modern standards as the majority were carried out more than twenty years previously. This resulted in confusion with inconsistent nomenclature and poor chemical characterisation.

Despite the numerous short comings of the dossier, the weight of evidence over several decades of exposure to both industrial products and cosmetics indicate CMI/MI has low general toxicity and that skin sensitisation is the main problem.

Physico-chemical properties

Only preparations with 5-chloro-2-methylisothiazol-3(2H)-one (CMI) and 2methylisothiazol-3(2H)-one (MI) in the ratio of 3:1 are permitted for the use in cosmetics. Initially, CMI/MI formulations were prepared as a mixture of two individual active ingredients CMI and MI and salts. However, Kathon[™] 886 Biocide is now defined as a combination of the two active ingredients produced by an integrated production process, resulting in an approximate total of 14% active ingredients, 16% magnesium nitrate, 10% magnesium chloride and 62% water. This seems to be a change in the manufacturing process, but there is no indication as to when this change was made.

The CMI/MI formulations described in the dossier show variations in the CMI/MI ratio and several physicochemical parameters.

Toxicity

The value of the acute, subchronic and reproductive toxicity studies is limited as the test formulations are not properly characterised and there are other data gaps. For the calculation of the Margin of Safety, the parental P1 NOAEL of 2.8 mg a.i./kg bw/day from the Kathon MW two generation reproductive toxicity study was used.

Skin/eye irritation and sensitisation

P56, (5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one in a ratio of 3:1) is corrosive or irritating at high concentrations. No adequate data is given to support safe use at a maximum authorised concentration of 0.0015 % in rinse-off cosmetic products. However, the weight of evidences over several decades of consumer exposure to cosmetic products indicates that skin and/or mucous membrane irritation is not a problem under the conditions of use in leave-on and rinse-off products.

The data demonstrates that CMI/MI is an extreme sensitiser in animals and an extreme contact allergen in humans. The chloro-isomers including CMI appear to be more allergenic than MI as seen in the LLNA.

Contact allergy to CMI/MI remains high in European patients with eczema under current use (rinse-off and leave-on products) and exposure conditions. Induction and elicitation would be less likely in a rinse-off product than when the same concentration is present in a leave-on product. The main exposure from the general consumer will be from cosmetic products, but there may be also exposure from other consumer products and occupational settings.

Percutaneous absorption

Assessment of percutaneous absorption is difficult with 2 reactive active ingredients. Both substances, CMI and MI, were bound to the skin, but it was not determined if this bound material was systemically available. For CMI and MI on their own, ¹⁴C was found to be minimally absorbed during the first 4-6 h after application. The mean ¹⁴C moiety from aqueous solutions absorbed across human skin over 24 h varies from 7-56% with very high standard deviations.. The ¹⁴C moiety of MI was absorbed across the skin barrier to a greater extent than the ¹⁴C moiety of CMI. Given the reactivity of both CMI and MI, it was not

possible to determine if the absorbed ¹⁴C moieties were either parent compounds or ring opened degradation/metabolic products nor whether they were permanently bound in the tissue or available for further absorption.

Therefore, 100% dermal absorption was used to calculate the Margin of Safety.

Mutagenicity and Carcinogenicity

The results of the *in vitro* mutagenicity tests were equivocal. In bacterial reverse mutation tests, CMI/MI was positive in *Salmonella* strain TA100 and but predominantly negative in other strains commonly tested strains. CMI/MI was mutagenic in the mouse lymphomagene mutation assays in mammalian cells both with and without metabolic activation. Effects at the *Tk* locus was seen both with and without S-9, but were enhanced with S9-mix. CMI/MI was not genotoxic in the *in vitro* unscheduled DNA synthesis (UDS) assay nor an induction in cells with were chromosome aberrations induced in cultured human peripheral blood lymphocytes Chinese hamster lung cells were found.

However, the *in vivo* studies provided indicated that CMI/MI does not have relevant mutagenic potential *in vivo*. The positive mutagenic effect of CMI/MI found *in vitro* in gene mutation assays was not confirmed in the sex-linked recessive lethal test in *Drosophila melanogaster* nor in two Unscheduled DNA synthesis (UDS) studies in the rat. CMI/MI did also not show any increase in cells with micronuclei in mice nor did it induce chromosomale aberrations changes in rat bone marrow cells under the conditions of the assays.

CMI/MI was not considered to be carcinogenic, since there was no increase in the type or incidence of tumours.

CMI on its own was positive *in vitro* in a gene mutation test in bacteria without S9-mix only. However, a DNA binding study *in vivo* was negative indicating that the possibility that CMI alone has genotoxic potential *in vivo* is low.

Both MI and NMMA were negative under *in vitro* conditions and consequently not tested *in vivo*.

4. CONCLUSION

The mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one in a ratio of 3:1 is well recognised as an important skin sensitiser at current conditions of use and applications. Hitherto, it has been used in both leave-on and rinse-off products in Europe.

Induction and elicitation would be less likely in a rinse-off product than when the same concentration is present in a leave-on product.

On the basis of the data submitted, the SCCS is of the opinion that the mixture of 5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one in a ratio of 3:1 does not pose a risk to the health of the consumer when used as a preservative up to a maximum authorised concentration of 0.0015 % in rinse-off cosmetic products, apart from its sensitising potential.

5. MINORITY OPINION

Not applicable

6. REFERENCES

List of numbered references

- 1. Rohm and Haas Report No. 91R-019 (1991). Kathon WT 1.5%; Acute Oral Toxicity Study in Male and Female Rats
- Pharmakon Europe, report No. 53293, "Test to Evaluate the Acute Toxicity following a single oral administration (LD50) in the Rat of Acticide 14", Sponsor: Thor Chemicals (UK) Limited, 28.03.94
- 3. PFG Biopharm, Study No. 009 Tox 97, "Acute Oral Toxicity of Acticide 14 (L) in the rat", Sponsor: Thor Chemie GmbH, 14-01-98
- 4. Rohm and Haas Report No. 80R-196A (1999). Kathon® CG Biocide Acute Oral Toxicity Study in Rats and Acute Dermal Toxicity Study in Rabbits
- 5. Pharmakon Europe, report No. 53193, "Test to Evaluate the Acute Toxicity following a single cutaneous application (Limit Test) in the Rat of Acticide 14", Sponsor: Thor Chemicals (UK) Limited, 28.03.94
- 6. Rohm and Haas Report No. 91R-018 (1991). Kathon® 886F Biocide Acute Inhalation Toxicity Study in Rats
- 7. Rohm and Haas Report No. 84R-188A (1999). Kathon 886 MW 1.5% Biocide Skin Irritation Study in Rabbits
- 8. Pharmakon Europe, report No. 53093, "Test to Evaluate Acute Primary Cutaneous Irritation and Corrosivity, in the Rabbit of Acticide 14", Sponsor: Thor Chemicals (UK) Limited, 28.03.94
- 9. Rohm and Haas Report No. 74RC-1005 (1975). The Evaluation of Experiment Algaecide RH 886T as an Irritant to the Rabbit Eye
- 10. Rohm and Haas Report No. 77R-060A (1999). Kathon® CG 1.5% Preservative Acute Toxicity/ Irritation Studies in Rats and Rabbits
- 11. Thor Specialities (UK) Limited. Report RS/01/019. "An assessment of the eye irritancy potential of Microcare® IT and SI using the in-vitro BCOP assay". Sponsor: Thor Group Management Ltd., 11 January 2002
- 12. Rohm and Haas Report No. 91RC-047 (1993). Kathon® 886F Evaluation of the Upper Airway Irritation Potential (RD50)
- 13. Rohm and Haas Report No. 77RC-1013. (1977). Skin Sensitization Test with Kathon[™] 886 in Albino Guinea Pigs
- 14. Rohm and Haas Report No. 00R-140 (2000). Chloromethylisothiazolinone and Methylisothiazolinone 3:1: dermal sensitization study in guinea pigs Maximization Test
- 15. Huntingdon Research Centre, Study No. 91120D/THR 15/SS "Skin Sensitization in the Guinea-Pig of Acticide LG" (Sponsor: Thor Chemicals (UK) Limited, 15.05.91
- 16. TRC Ltd., Study No. 99/430-104T, "Acute Skin Sensitization Study of Test Item Acticide 14 in Guinea Pigs by Magnusson-Kligman Method", Sponsor: Thor Chemie GmbH, 12.01.00
- 17. Rohm and Haas Report No. 81R-66 (1982). Kathon 886 Delayed Contact Hypersensitivity Study in Guinea Pigs. P.K. Chan, M.E. DeCrescente and R.C. Baldwin. Kathon Biocide: Manifestation of Delayed Contact Dermatitis in Guinea Pigs is Dependent on the Concentration for Induction and Challenge. Journal of Investigative Dermatology 81(5): 409-411 (1983)
- 18. Rohm and Haas Report No. 79R-195 (1982). Delayed Contact Hypersensitivity Test of RH-573 and RH-886 in Guinea Pigs
- 19. Rohm and Haas Report No. 84R-234 (1985). Preliminary Cross-Sensitization Study of Proxel CRL Induced Guinea Pigs with Kathon CG
- 20. Rohm and Haas Report No. 84R-233 (1985). Cross-Sensitization of Kathon CG-Induced Guinea Pigs with Proxel CRL, Germall 115, Formaldehyde and Glutaraldehyde

- 21. Rohm and Haas Report No. 88R-032 (1989). Kathon 886, Skane M-8, C-9211 HQ and Proxel CRL: A Cross Sensitisation Delayed Contact Hypersensitivity Study in Guinea Pigs
- 22. Rohm and Haas Report No. 90R-100 (1992). RH-886 (Kathon 886), RH-893 and RH-287: A Cross Sensitization Study in Guinea Pigs
- 23. Rohm and Haas Report No. 01RC-1030 (2001). Chloromethylisothiazolinone/ Methylisothiazolinone 3:1 – Open Epicutaneous Test in Guinea Pigs
- 24. D.W. Potter and G.A. Hazelton (1991). Evaluation of Auricular Lymph Node Cell Proliferation in Isothiazolone-treated Mice. Fundamental and Applied Toxicology 24: 165-172
- 25. Rohm and Haas Report No. 00RC-148A (2000). Murine Local Lymph Node Assay with Chloromethylisothiazolinone/ Methylisothiazolinone
- 26. Rohm and Haas Report No. 00RC-148B (2000). Murine Local Lymph Node Assay to Evaluate Chloromethylisothiazolinone/ Methylisothiazolinone
- 27. Rohm and Haas Report No. 02RC-049 (2003). N-(Methyl) Malonamic Acid Local Lymph Node Assay
- 28. Rohm and Haas Report No. 05RC-1023 (2005). 4,5-Dichloro-2-Methyl-4-Isothiazolin-3-One Local Lymph Node Assay
- 29. Rohm and Haas Report No. 94RC-096 (1995). Kathon CG/ICP Biocide: Aerosol Pulmonary Hypersensitivity Study in Dunkin Hartley Guinea Pigs
- 30. Rohm and Haas Report No. 73R-1001 (1973). Dermal Absorption Study on 14C-RH-886-T
- 31. Rohm and Haas Report No. 82R-21 (1982). 14C Kathon 886 Disposition After Percutaneous Application to Male Rats
- 32. Rohm and Haas Report No. 86R-156 (1989). 14C-Kathon[™] Biocide: In Vitro Dermal Absorption Study in Male Rat Skin
- Rohm and Haas Report No. 04RC-067 (2005). 5-Chloro-2-methyl-4-isothiazolin-3-one (CMI)/2-Methyl-4-isothiazolin-3-one (MI) in a 3:1 w/v Mixture: In Vitro Absorption of CMI from Aqueous Solutions Through Human Epidermis
- 34. Rohm and Haas Report No. 05RC-055 (2005). 5-Chloro-2-methyl-4-isothiazolin-3-one (CMI)/2-Methyl-4-isothiazolin-3-one (MI): In Vitro Absorption of CMI from an Aqueous Solution and Three Formulations through Human Epidermis
- 35. Rohm and Haas Report No. 04RC-066 (2005). 2-Methyl-4-isothiazolin-3-one (MI): In Vitro Absorption of CMI from Water and Three Formulations through Human Epidermis
- 36. Rohm and Haas Report No. 73RC-1002 (1973). Subacute Dermal Toxicity in Rabbits RH-886 Technical
- 37. Rohm and Haas Report No. 75RC-1001 (1975). RH-886T, RH-35,375 and RH-00,345: Three Month Subchronic Oral Safety Evaluation Study in Rats
- 38. Rohm and Haas Report No. 81R-162 (1982). Kathon 886 NAR: Three-Month Rat Drinking Water Study and One Generation Reproduction Study
- 39. Rohm and Haas Report No. 75RC-1002 (1975). RH-886T, RH-35,375 and RH-00,345 Three Month Subchronic Oral Safety Evaluation Study in Beagle Dogs
- 40. Covance Laboratories Ltd, Study No.: 1154/58, "Acticide 14: 13 Week Oral (Dietary Administration) Toxicity Study in the Dog" (Sponsor: Thor Chemie GmbH), 02-98
- 41. Rohm and Haas Report No. 80R-119 (1982). Kathon 886 MW 90-Day Percutaneous Toxicity Study in Rabbits
- 42. Hazleton Europe, Report no: 1127-1154-002 "Acticide 14: 90 Day Dermal Sub chronic Toxicity Study to the Rat" (Sponsor: Thor Chemicals (UK) Limited), 13-06-94
- 43. Rohm and Haas Report No. 82R-245 (1984). Kathon 886 MMPA Process: Thirteen-Week Inhalation Toxicity Study in Rats
- 44. Rohm and Haas Report No. 75RC-1001 (1975). RH-886T, RH-35,375 and RH-00,345: Three Month Subchronic Oral Safety Evaluation Study in Rats
- 45. Rohm and Haas Report No. 75RC-1002 (1975). RH-886T, RH-35,375 and RH-00,345 Three Month Subchronic Oral Safety Evaluation Study in Beagle Dogs
- 46. Rohm and Haas Report No. 76RC-1001 (1976). Mutagenicity Evaluation of Kathon[™] 886 (All Magnesium)
- 47. Rohm and Haas Report No. 81R-96 (1981). Kathon[™] 886 MW: Microbial Mutagen Test

- 48. Rohm and Haas Report No. 81R-97 (1981). Kathon[™] 886 NAR: Microbial Mutagen Test
- 49. CCR, Project No. 269201, "Salmonella typhimurium, Reverse Mutation Assay with Acticide 14", Sponsor: Thor Chemie GmbH, 31.01.92
- 50. Hazleton Europe, UK Study no: 1154/10R "Study to Determine the Ability of Acticide 14 to Induce Mutation in Five Histidine-Requiring Strains of Salmonella Typhimurium" (Sponsor: Thor Chemicals (UK) Ltd), 29-06-94
- 51. Rohm and Haas Report No. 82RC-1019 (1982). Microbial Mutagenicity Study on Kathon WT
- 52. Rohm and Haas Report No. 81R-291 (1982). 5-chloro-2-methyl-4-isothiazolin-3-one: Microbial Mutagen Test
- 53. Rohm and Haas Report No. 81R-301 (1982). 2-Methyl-4-isothiazolin-3-one Microbial Mutagen Test
- 54. Rohm and Haas Report No. 99R-062 (1999). Kordek 573T Salmonella typhimurium Gene Mutation Assay
- 55. Rohm and Haas Report No. 05RC-045 (2005). n-Methyl Malonamic Acid: Bacterial Reverse Mutation (Ames) Assay
- 56. Rohm and Haas Report No. 81RC-153 (1981). Kathon[™] 886 NAR: Mouse Lymphoma Forward Mutation Assay
- 57. Hazleton Europe, UK Study no: 1154/11 "Study to Determine the Chromosome Damaging Potential of Acticide 14 by its Effects on Cultured Human Peripheral Blood Lymphocytes using an in Vitro Cytogenetic Assay" (Sponsor: Thor Chemicals (UK) Ltd), 05-07-94
- 58. Hazleton Europe, UK Study no: 1154/15 "Study to Determine the Ability of Acticide 14 to Induce Mutations at the Thymidine Kinase (tk) Locus in Mouse Lymphoma L5178Y Cells using a Fluctuation Assay" (Sponsor: Thor Chemicals (UK) Ltd), 30-06-94
- 59. Rohm and Haas Report No. 90RC-168 (1990). Test for Chemical Induction of Unscheduled DNA Synthesis In Rat Primary Hepatocyte Cultures by Autoradiography
- 60. Rohm and Haas Report No. 81R-110 (1981). Kathon™ 886 Mammalian Cell Transformation Test
- 61. Rohm and Haas Report No. 82RN-1008 (1982). In Vitro Chromosomal Aberration with Kathon[™] CG
- 62. Rohm and Haas Report No. 73RC-1006 (1973). Cytogenetics Studies Compound RH 886 T
- 63. Rohm and Haas Report No. 81R-181 (1982). Kathon[™] 886 NAR Cytogenetic Study in Mice
- 64. Rohm and Haas Report No. 83RN-1009 (1983). Micronucleus Test Kathon[™] 886
- Covance Laboratories Limited, Marshall R., Study No.: 1154/63, Report No.: 1154/63-1052, "Acticide 14: Induction of Micronuclei in the Bone Marrow of Treated Mice" (Sponsor: Thor Chemicals (UK) Limited), 13-03-97
- Hazleton Europe, McEnaney S., Study no: 1154/23 "Study to Evaluate the Potential of ACTICIDE 14 to Induce Micronuclei in the Polychromatic Erythrocytes of CD-1 Mice" (Sponsor: Thor Chemicals (UK) Ltd), 29-06-94
- 67. Rohm and Haas Report No. 90RC-169 (1991). Kathon[™] 886 MW Acute Test for Chemical Induction of Chromosome Aberration in Mouse Bone Marrow Cells In Vivo
- 68. Rohm and Haas Report No. 92RC-0054 (1992). Kathon[™] 886 MW Acute Test for Chemical Induction of Chromosome Aberration in Mouse Bone Marrow Cells In Vivo
- 69. Rohm and Haas Report No. 97RC-055 (1997). Kathon[™] 886F: Measurement of Unscheduled DNA Synthesis in Rat Liver Using an In Vivo/In Vitro procedure
- 70. Hazleton Europe, Ward P.J., Study no: 1154/24 "Study to Evaluate the Potential of ACTICIDE 14 to Induce Unscheduled DNA Synthesis in Rat Liver Using an In Vivo/In Vitro Procedure" (Sponsor: Thor Chemicals (UK) Ltd), 30-06-94
- 71. Rohm and Haas Report No. 82RC-094 (1982). Drosophila Sex-Linked Recessive Lethal Test on Kathon[™] Biocide
- 72. Rohm and Haas Report No. 82R-243 (1983). 14C-Kathon[™] 886 Biocide DNA Binding Study

- 73. Rohm and Haas Report No. 81R-288 (1983). Kathon CG: 30-Month Dermal Carcinogenesis Study in Male Mice
- 74. Rohm and Haas Report No. 90R-149 (1994). Kathon[™] Biocide: 24-Month Drinking Water Chronic/Oncogenic Study in Rats
- 75. Rohm and Haas Report No. 80RC-81 (1980). Kathon[™] 886 Teratology Study in Rats
- HAZLETON Deutschland GmbH, Report no: 1178-1154-003 "ACTICIDE 14 Oral (Gavage) Teratogenicity Study in the Rat" (Sponsor: Thor Chemicals (UK) Limited), 26-05-94
- 77. Rohm and Haas Report No. 91R-074 (1992). Kathon Biocide: Oral (Gavage) Developmental Toxicity Study in Rabbits
- Jai Research Foundation, Valvada 396 108, Dist. Valsad, Gujarat, India Study No.: 3494, "Prenatal Development Toxicity Study of ACTICIDE 14 in Rabbits" (Sponsor: Thor GmbH), May 15 2002
- 79. Rohm and Haas Report No. 81R-162 (1982). Kathon 886 NAR: Three-Month Rat Drinking Water Study and One Generation Reproduction Study
- 80. Rohm and Haas Report No. 96R-189 (1998). Kathon[™] 886F biocide: two-generation reproductive toxicity study in rats
- 81. Covance Laboratories GmbH, Study No.: 1154-067, Report No: 1413-1154-067 "Two generation Oral (Gavage) Reproduction Toxicity Study in the Rat (One Litter Per Generation)" (Sponsor: Thor Chemie GmbH), 13-11-98
- 82. Rohm and Haas Report No. 97R-1058 (1997). 14C Kathon Biocide Toxicokinetic Study in Rats
- 83. Covance Laboratories GmbH, Study No.: 1154/60, Report No: 1154/62-1007 "(14C)-CIT and (14C)-MIT: Absorption, distribution, metabolism and excretion following oral administration to the rat" (Sponsor: Thor Chemie GmbH), 06-05-98
- 84. Rohm and Haas Report No. 04RC-053 (2005). Metabolism of 14C-RH-651 in the Rat
- 85. Rohm and Haas Report No. 04RC-057 (2005). Metabolism of 14C-RH-651 in the Biliary Cannulated Rat
- 86. Rohm and Haas Report No. 03RC-043 (2005). Metabolism and Pharmacokinetics of 14C-RH-573 in the Rat
- 87. Rohm and Haas Report No. 04RC-056 (2005). Metabolism of 14C-RH-573 in the Biliary Cannulated Rat
- 88. Rohm and Haas Report No. 82R-4 (1982). Kathon[™] 886 Toxicity and 14C Disposition after Intravenous Administration to Male Rats Pilot Studies
- 88. Rohm and Haas Report No. 82R-49 (1982). 14C Kathon[™] 886 Kinetic Study in Male Rats
- 89. Rohm and Haas Report No. 82R-230 (1983). Whole Blood, Plasma and Testicular 14C Kinetics in Male Rats After Dermal Administration of 14C Kathon[™] Biocide
- 90. Rohm and Haas Report No. 03RC-042 (2003). Tissue Distribution of 14C-RH-573 in the Mouse
- 91. Rohm and Haas Report No. 04RC-054 (2004). Tissue Distribution of 14C-RH-651 in the Mouse
- 92. Rohm and Haas Report No. 76RC-1007 (1976). Phototoxicity and Photosensitization Study with Kathon[™] 886 in Albino Guinea Pigs
- 93. Rohm and Haas Report No. 04RC-059 (2005). Neutral Red Uptake Phototoxicity Assay In BALB/C 3T3 Mouse Fibroblasts
- 94. Rohm and Haas Report No. 74RC-1009 (1974). Evaluation of Dermal Effects of Antimicrobial Agent for Cutting Fluids
- 94. Rohm and Haas Report No. 74RC-1117 (1974). Evaluation of Dermal Effects of Antimicrobial Agent for Cutting Fluids (Supplementary Report)
- 95. Rohm and Haas Report No. 79RC-0088 (1978). Modified Lanman-Maibach Patch Test
- 96. Rohm and Haas Report No. 84RC-009 (1984). 21-Day Cumulative Irritancy Assay with Aqueous Dilutions of Kathon[™] CG
- 97. Rohm and Haas Report No. 84RC-010 (1984). 21-Day Cumulative Irritancy Assay with Aqueous Dilutions of Kathon[™] CG
- 98. Rohm and Haas Report No. 84RC-012 (1984). 21-Day Cumulative Irritancy Assay with Kathon[™] CG

- 99. Rohm and Haas Report No. 85RC-21 (1984). 21-Day Cumulative Irritancy Assay with Kathon[™] CG
- 100. Rohm and Haas Report No. 76RC-1119 (1976) and Rohm and Haas Report No. 76RC-1120 (1976). Evaluation of Potential Hazards to Eyes of Individuals Exposed to a Solution Containing 10 ppm of RH-886T as Active Ingredient
- 101. Rohm and Haas Report No. 82RN-1027 (1982). Clinical Safety Evaluation of Kathon CG Photoallergy Test
- 102. Rohm and Haas Report No. 82RN-1028 (1982). Clinical Safety Evaluation of Kathon CG Phototoxicity Test
- Rohm and Haas Report No. 72RC-1001 (1972). Evaluation of Dermal Hazard Potential in Humans using RH-886 in White Cream and Rohm and Haas Report No. 74RC-1007 (1974). Evaluation of Potential Hazards by Dermal Contact Using RH-886 Ointment
- 104. Rohm and Haas Report No. 72RC-1002 (1972). Evaluation of Dermal Hazards of RH-886 Used as a Preservative in Skin Lotions
- 105. Rohm and Haas Report No. 74RC-1119 (1974), Rohm and Haas Report No. 75RC-1134 (1975), and Rohm and Haas Report No. 75RC-1129 (1975). Evaluation of Potential Hazards by Dermal Contact Using RH-886 in Hand Lotion. Rohm and Haas Report No. 76RC-1271 Supplemental Challenge
- 106. Rohm and Haas Report No. 75RC-1187 (1975), Rohm and Haas Report No. 75RC-1131 (1975), and Rohm and Haas Report No. 75RC-1132 (1975). Evaluation of Potential Hazards by Dermal Contact with Griton Oil Containing RH-886T
- Rohm and Haas Report No. 76RC-1127 (1976), Rohm and Haas Report No. 76RC-1128 (1976), Rohm and Haas Report No. 76RC-1129 (1976), Rohm and Haas Report No. 76RC-1130 (1976). Evaluation of Potential Hazards by Dermal Contact to Kathon 886A
- 108. Rohm and Haas Report No. 79RC-0014 (1979). Repeated Insult Patch Test of Kathon[™] 886
- 109. Rohm and Haas Report No. 84RC-011 (1984). Repeated Insult Patch Test with Kathon[™] CG 50 ppm Active Ingredient
- 110. Rohm and Haas Report No. 84RC-051 (1984). Human Repeat Insult Patch Test Kathon[™] CG 100 ppm Active Ingredient
- 111. Rohm and Haas Report No. 85RC-011 (1985). Modified Draize Skin Sensitization Study Kathon[™] CG 50 ppm a.i. in Petrolatum
- 112. Rohm and Haas Report No. 85RC-17 (1985). Modified Draize Skin Sensitization Study - Kathon[™] CG 100 ppm a.i. in Petrolatum
- 113. Rohm and Haas Report No. 89RC-1030 (1989). Evaluation of the Skin Irritating and Sensitizing Propensities of Skin Care Lotion Samples in Humans
- 114. Rohm and Haas Report No. 89RN-1015 (1989). Repeated Insult Patch Test with Hand and Body Lotion
- 115. Cosmetic, Toiletry and Fragrance Association (CTFA) (1989). Summary of Twenty-one RIPT Sensitization Assays on Kathon-CG. Summarized by: Cosmetic Ingredient Review (1992)
- 116. Rohm and Haas Report No. 90RC-0017 (1990). A Double-Blind Study to Determine the Topical Contact Sensitization Potential of Three (3) Test Products
- 117. Rohm and Haas Report No. 90RC-016 (1990). Modified Draize Skin Sensitization Study
- 118. J. Fewings and T. Menne. An Update of the Risk Assessment for Methylchloroisothiazolinone/Methylisothiazolinone (MCI/MI) with Focus on Rinse-off Products. Contact Dermatitis 41:1-13 (1999)
- 119. Rohm and Haas Report No. 75RC-1140 (1975). Evaluation of Residual Hypersensitivity by Dermal Contact to Kathon (RH-886)
- J. Fewings and T. Menne. The Patch Test Concentration for Methylchloroisothiazolinone /Methylisothiazolinone. Contact Dermatitis 39:320-321 (1998)
- 121. Rohm and Haas Report No. 80RN-1017 (1980). Safety Study to Evaluate Shampoo with Kathon[™] CG as a Preservative

- 122. Rohm and Haas Report No. 80RN-1018 (1980). Clinical Safety Evaluation of a Newly Preserved Shampoo Formula in Humans
- 123. Rohm and Haas Report No. 81RN-1019 (1981). Shampoo Safety Study
- 124. Rohm and Haas Report No. 85RC-30 (1985). Diagnostic Patch Test and Use/Challenge Test
- 125. Rohm and Haas Report No. 86RC-0041 (1986). Human Safety Evaluation of a Skin-Care Product Containing Kathon CG as a Preservative in Patients with "Damaged" Skin
- 126. S.R. Schwartz, S. Weiss, E. Stern, I.J. Morici, J.N. Moss, J.J. Goodman and N.L. Scarborough. Human Safety Study of Body Lotion Containing Kathon-CG. Contact Dermatitis 16: 203-207 (1987) and Rohm and Haas Report No. 86RC-022 (1986). Human Safety Study of Body Lotion Containing Kathon CG as a Preservative and Rohm and Haas Report No. 85RN-1006 (1985). Human Safety Study of Body Lotion Containing Kathon CG as a Preservative
- 127. J.E. Weaver, C.W. Cardin and H.I. Maibach. Dose-Response Assessments of Kathon Biocide (I) Diagnostic Use and Diagnostic Threshold Patch Testing with Sensitized Humans. Contact Dermatitis (1985) 12:141-145
- 128. Cardin, C.W., Weaver, J.E. and Bailey, P.T. Dose Response Assessments of Kathon Biocide. (II) Threshold Prophetic Patch Testing. Contact Dermatitis (1986): 15:10 -16
- 129. Cosmetic Ingredient Review Final Report on the Safety Assessment of Methylisothiazolinone and Methylchloroisothiazolinone. Journal of the American College of Toxicology 11(1):75-128 (1992)

List of unnumbered references

Physicochemical properties

- C. Rohm and Haas Company Report No. TR-01-058 (2001). Biocides Product Directives Common Core Data Set for Active (Chemical) Substances, Parts 2 and 3: Identity and Physical and Chemical Properties of Kathon 886F Biocide.
- RCC Ltd, Tognucci A., Study Number: 840974 "Determination of the Water Solubility of 2-Methyl-3(2H)-isothiazolone Including Effect of pH and Temperature" (Sponsor: Thor GmbH), 16-08-02
- BioChem GmbH, Werle H., Study No. 99 50 40 063 C "Determination of the Water Solubility of 2-Methyl-4-isothiazoline-3-one (MIT) following OECD Guideline No. 105" (Sponsor: Thor Chemie GmbH), 17-06-99
- RCC Ltd, Tognucci A., Study Number: 840978 "Determination of the Water Solubility of 5-Chloro-2-methyl-3(2H)-isothiazolone Including Effect of pH and Temperature" (Sponsor: Thor GmbH), 28-08-02
- BioChem GmbH, Werle H., Study No. 99 50 40 063 D "Determination of the Water Solubility of 5-Chloro-2-methyl-4-isothiazoline-3-one (CIT) following OECD Guideline No. 105" (Sponsor: Thor Chemie GmbH), 17-06-99
- Thor Specialities (UK) Limited, Seal K.J., Study No: RS/01/023 "Determination of the Partition Coefficient of ACTICIDE RS at a range of temperatures and pHs" (Sponsor: Thor GmbH), 19-03-02
- Hazleton Europe, Report no: 1154/9A-1014 "Determination of the physico-chemical properties of ACTICIDE 14 according to EEC requirements" (Sponsor: Thor Chemicals (UK) Limited), 25-10-93
- Aventis Research & Technologies GmbH & Co KG, Report No.: SI002-00 "2-Methyl-4isothiazoline-3-one (MIT) #LM 357 of December 03, 1999 - Vapour Pressure" (Sponsor: Thor Chemie GmbH), 18-02-00
- Aventis Research & Technologies GmbH & Co KG, Report No.: SI001-00 "5-Chloro-2methyl-4-isothiazoline-3-one (CIT) #LM 358 of December 03, 1999 - Vapour Pressure" (Sponsor: Thor Chemie GmbH), 18-02-00
- BioChem GmbH, Study No. 94 50 40 834 A "Vapour Pressure Curve Acticide 14" (Sponsor: Thor Chemie GmbH), 29-12-94

- RCC Ltd, Tognucci A., Study Number: 840973 "Determination of the Density of 2-Methyl-3(2H)-isothiazolone" (Sponsor: Thor GmbH), 2002
- RCC Ltd, Tognucci A., Study Number: 840977 "Determination of the Density of 5-Chloro-2methyl-3(2H)-isothiazolone" (Sponsor: Thor GmbH), 12-03-02
- BioChem GmbH, Werle H., Study No. 92 50 40 216 D "Density Acticide 14" (Sponsor: Thor Chemie GmbH), 10-12-92
- RCC Ltd, Tognucci A., Study Number: 840972 "Determination of the Boiling Point/Boiling Range of 2-Methyl-3(2H)-isothiazolone" (Sponsor: Thor GmbH), 24-04-02
- RCC Ltd, Tognucci A., Study Number: 840976 "Determination of the Boiling Point/Boiling Range of 5-Chloro-2-methyl-3(2H)-isothiazolone" (Sponsor: Thor GmbH), 24-04-02
- BioChem GmbH, Werle H., Study No. 92 50 40 216 C "First Amendment Boiling Point Acticide 14" (Sponsor: Thor Chemie GmbH), 10-02-93
- BioChem GmbH, Study No. 99 50 40 063 A "Determination of the Melting Point of 2-Methyl-4-isothiazoline-3-one (MIT) according to OECD Guideline No. 102" (Sponsor: Thor Chemie GmbH), 16-06-99
- BioChem GmbH, Study No. 99 50 40 063 B "Determination of the Melting Point of 5-Chloro-2-methyl-4-isothiazoline-3-one (CIT) according to OECD Guideline No. 102" (Sponsor: Thor Chemie GmbH), 16-06-99

Material characterization

- A. Rohm and Haas Company Report No.TR-93-30 (1993). Characterization of Test Substance, Kathon[™] 886F, an MUP, to be used for Submission to Regulatory Agencies in Europe
- B. Rohm and Haas Company Report No. TR-97-53 (1998). Product Chemistry Kathon CG/ICP Biocide, End-Use Product
- D. Rohm and Haas Company Report No. 96R-1139 (1996). Stability of Kathon CG in bath gels, shampoos and liquid soaps
- E. Rohm and Haas Company Agchem Process Research Analytical Group Test Method 94-138-01 "Determination of Ammonium Chloride in Kathon 886 Technical by Potentiometric Titration" (1994)
- F. Rohm and Haas Company Agchem Process Research Analytical Group Test Method 94-144-01 "Analysis of RH24573 for Organic Impurities Using Reverse Phase HPLC" (1994)
- G. Rohm and Haas Company Biocides Research Analytical Group Test Method 96-53-02 "Ion Pair HPLC Method to Determine Magnesium Nitrate in Kathon Formulations". (1996)
- H. Rohm and Haas Company Biocides Research Analytical Group Test Method 00-70-01 "Analysis of Kathon™ 886F for Total Acids Calculated as Acetic Acid Using Potentiometric Titration." (2000)
- I. Rohm and Haas Company CIS Test Method # 04-88-01 "Capillary GC/FID Analysis of Kathon™ CGIII Concentrate for Residual Solvents" (2004)
- J. Rohm and Haas Company Test Method # 02-82-01 "Reverse Phase HPLC Analysis of Methylchloroisothiazolone Formulations for Magnesium Nitrate" (2002)
- K. Rohm and Haas Company CIS Test Method # 89-03-03 "Reverse Phase HPLC Analysis of Kathon[™] Formulations for Active Ingredients" (2001)
- L. Institut Fresnius Study No: 98/07732-00 "Determination of N-Nitrosodimethylamine (NDMA) and N-Methyl-3-(methylnitrosoamino)-propionamide (MMNP) in Acticide 14" (1998)
- M. Hazleton Europe Report No 1154/9A-1014 "Determination of Physico-chemical properties of Acticide 14" (1993)

Additional References

Andersen, K.E., Volund, A. and Frankild, S. The guinea pig maximization test – with a multiple dose design. *Acta Derm Venereol (Stockh)* **75:** 463-469 (1995).

Basketter, D.A. and Gerberick, G.F. An interlaboratory evaluation of the Buehler test for the identification and classification of skin sensitizers. *Contact Dermatitis* **35**: 146-151 (1996).

Basketter, D.A., Lea, L.J., Dickens, A., Briggs, D., Pate, I., Dearman, R.J., and Kimber, I. A comparison of statistical approaches to the derivation of EC3 values from local lymph node assay dose responses. *Journal of Applied Toxicology* **19**: 261-266 (1999).

Basketter, D.A., Blaikie, L., Dearman, R.J., Kimber, I., Ryan, C.A., Gerberick, G.F., Harvey, P., Evans, P., White, I.R., and Rycroft, R.J.G. Use of the local lymph node assay for the estimation of relative contact allergenic potency. *Contact Dermatitis* 42: 344-348 (2000)

Basketter, D.A., Gerberick, G.F., and Kimber, I. Measurement of allergenic potency using the local lymph node assay. *Trends in Pharmacological Sciences* **22** (6): 264-265 (2001)

- Bjorkner B, Bruze M, Dahlquist I, Fregert S, Gruvberger B, Persson K. Contact allergy to the preservative Kathon CG. Contact Dermatitis 1986: 14: 85–90.
- Bruze, M., Fregert, S., Gruvberger, B., and Persson, K. Contact allergy to the active ingredients of Kathon® CG in the guinea pig. *Acta Derm Venereol (Stockh)* **67**: 315-320 (1987a)
- Chan, P.K., Baldwin, R.C., Parsons, R.D., Moss, J.N., Stiratelli, R., Smith, J.M., and Hayes, A.W. Kathon biocide: manifestation of delayed contact dermatitis in guinea pigs is dependent on the concentration for induction and challenge. *The Journal of Investigative Dermatology* **81** (5): 409-411 (1983).
- Cosmetic Ingredient Review Panel of the Cosmetic, Toiletry Fragrance Association. Final report on the safety assessment of methylisothiazolinone and methylchloroisothiazolinone. J Am Coll Toxicol 1992: 11: 75–128.
- Czarnobilska E, Obtulowicz K, Dyga W , Wsolek-Wnek K and Spiewak R. Contact hypersensitivity and allergic contact dermatitis among school children and teenagers with eczema. Contact Dermatitis. 2009, 60; 264-269
- de Groot A C, Liem D H, Weyland J W. Kathon CG: cosmetic allergy and patch test sensitization. Contact Dermatitis 1985: 12: 76–80;
- Enslein, K., Gombar, V.K., Blake, B.W., Maibach, H.I., Hostynek, J.J., Sigman, C.C., and Bagheri, D. A quantitative structure-toxicity relationships model for the dermal sensitization guinea pig maximization assay. *Food and Chemical Toxicology* **35**: 1091-1098 (1997).
- Fewings J, Menne T. An update of the risk assessment for methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) with focus on rinse-off products. Contact Dermatitis 1999: 41: 1–13.
- Foussereau J. An epidemiological study of contact allergy to 5-chloro-3-methyl isothiazolone/3-methyl isothiazolone in Strasbourg. Contact Dermatitis 1990: 22: 68–70
- García-Bravo B, Conde-Salazar L, De la Cuadra J, Fernández-Redondo V, Fernández-Vozmediano J, Guimaraens D et al. Estudio epidemiológico de la dermatitis alérgica de contacto en España (2001). Actas Dermosifiliogr 2004; 95:14-24.
- Gerberick, G.F., House, R.V., Fletcher, E.R., and Ryan, C.A. Examination of the Local Lymph Node Assay for Use in Contact Sensitization Risk Assessment. Fundamental and Applied Toxicology **19**: 438-455 (1992).
- Gerberick, G.F., Ryan, C.A., Kern, P.S., Dearman, R.J., Kimber, I., Patlewicz, G.Y., and Basketter, D.A. A chemical dataset for evaluation of alternative approaches to skin-sensitization testing. *Contact Dermatitis* **50**: 274-288 (2004)
- Gruvberger B. Methylisothiazolinones Diagnosis and Prevention of Allergic Contact Dermatitis. Sweden, The Department of Occupational and Environmental Dermatology, Malmö University Hospital, 1997: 9–13.
- Hannuksela M. Rapid increase in contact allergy to Kathon CG in Finland. Contact Dermatitis 1986: 15: 211–214
- Jong CT, Statham BN, Green CM, King CM, Gawkrodger DJ, Sansom JE , English JSC, Wilkinson SM , Ormerod AD, Chowdhury MMU. Contact sensitivity to preservatives in the UK, 2004–2005: results of multicentre study. Contact Dermatitis 2007, 47; 165-168.
- Law A B, Moss J N, Lashen E S. Kathon-CG: a new single component, broad spectrum preservative for cosmetics and toiletries. In: Cosmetic and Drug Preservation. Principles and Practice, Karaba J J (ed.): New York, Marcel Decker, 1984: 129–141.

- O'Driscoll J B, Beck M H. Occupational allergic contact dermatitis from Kathon WT. Contact Dermatitis 1988: 19: 63.
- Potter, D.W. and Hazelton, G.A. Evaluation of auricular lymph node cell proliferation in isothiazolone-treated mice. *Fundamental and Applied Toxicology* **24** (2): 165-172 (1995).

Reinhard E, Waeber R, Niederer M, Maurer T, Maly P, Scherer S. Preservation of products with MCI/MI in Switzerland. Contact Dermatitis 2001: 45: 257–264.

- Richardson, C.R., Styles, J.A., and Burlinson, B. Evaluation of some formaldehyde-release compounds and other biocides in the mouse micronucleus test. *Mutation Research* 124 (3-4): 241-246 (1983). Schallreuter, K.U. and Schulz, K.H. A comparative study of the allergenicity of quaternary ammonium compounds in guinea-pigs. *Clinical and Experimental Dermatology* **11** (5): 460-466 (1986).
- Tosti A. Prevalence and sources of Kathon CG sensitization in Italy. Contact Dermatitis 1988: 18: 173–174,
- Thyssen JP, Johansen JD, Menné T. Contact allergy epidemics and their controls. Contact Dermatitis, 2007; 45; 185-195.)
- Uter W, Rämsch C, Aberer W et al. The European baseline series in 10 European Countries, 2005/2006 Results of the European Surveillance System on Contact Allergies (ESSCA). Contact Dermatitis. 2009; 61: 31-38.
- Warbrick, E.V., Dearman, R.J., Basketter, D.A., and Kimber, I. Influence of application vehicle on skin sensitization to methylchloroisothiazolinone/ methylisothiazolinone: An analysis using the local lymph node assay. *Contact Dermatitis* **41** (6): 325-329 (1999).
- Wilkinson J D, Shaw S, Andersen K E, Brandao F M, Bruynzeel D P, Bruze M, Camarasa J M, Diepgen T L et al. Monitoring levels of preservative sensitivity in Europe. A 10-year overview (1991–2000). Contact Dermatitis 2002: 46: 207–210.
- Yang, W.L., Klopman, G., and Rosenkranz, H.S. Structural basis of the in vivo induction of micronuclei. *Mutation Research* **272** (2): 111-124 (1992).
- Zachariae C, Lerbaek A, McNamee P M, Gray J E, Wooder M, Menne T. An evaluation of dose/unit area and time as key factors influencing the elicitation capacity of methylchloroisothiazolinone/methylisothiazolinone (MCI/MI) in MCI/MI-allergic patients. Contact Dermatitis 2006: 55: 160–166.
- Zissu, D. The sensitizing potential of various biocides in the guinea pig maximization test. *Contact Dermatitis* **46** (4): 224-227 (2002).