New Opportunities Through Innovations

Jacques Pirenne, Transplant Surgeon, Leuven

Organ Shortage

Xenotransplants?

Artificial Organs?

Maximize Deceased Donor Pool

New Preservation Techniques

Maximize Living Donor Pool

Journalist Workshop Organ Donation & Transplantation 7 /10/ 2013

Dependence upon Anti-Rejection Drugs

Chronic Graft Loss: Mechanisms

Toxicity: Minimize & Avoid Anti-Rejection Drugs

New Transplants

Regeneration & Organ Bioengineering : "Holey Grail"

Xenotransplants?

Rejection

SO HAVE YOU

FILLED OUT YOUR ORGAN DONOR CARD YET??

Genetically modified pigs

- Infection/Xoonosis?
- **Physiological limits**

Xeno cells Transplant **Encapsulated** islets Neuronal cells

Artificial Organs?

Kidney Dialysis

External controller The pump is connected, via flexible power cable, to a small computer worn on the belt.

Source Thoratec Graphic by Suzy Parker, USA TODAY

Former vice president Dick Cheney has received a miniature pump designed to help the failing heart. Here's how one of those pumps --- HeartMate II --- works:

Inflow valve Blood enters the pump from the left ventricle.

2 Rotary pump A rotary blade spins at 7,000 rpm, increasing the heart's pumping power. 3 Outflow valve Blood exits the pump into the aorta, the main conduit to the rest of the body.

Ventricular Assistance

Device

Fully Implantable **Device**

Lung: Extracorporeal Membrane Oxygenation

Liver "Dialysis"

Maximizing Deceased Donor Pool

Legislation

Detection Training (para) medical staff Optimize resources

Extension of Donor criteria

82 yo donor liver

Donation After Circulatory Death (DCD)

After euthanasia

New Preservation Techniques

Simple cold storage

Cold perfusion

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

JANUARY 1, 2009

VOL. 360 NO. 1

Machine Perfusion or Cold Storage in Deceased-Donor Kidney Transplantation

 Cyril Moers, M.D., Jacqueline M. Smits, M.D., Ph.D., Mark-Hugo J. Maathuis, M.D., Ph.D., Jürgen Treckmann, M.D., Frank van Gelder, Bogdan P. Napieralski, Margitta van Kasterop-Kutz, Jaap J. Homan van der Heide, M.D., Ph.D., Jean-Paul Squifflet, M.D., Ph.D., Ernest van Heurn, M.D., Ph.D., Günter R. Kirste, M.D., Ph.D.,
 Axel Rahmel, M.D., Ph.D., Henri G.D. Leuvenink, Ph.D., Andreas Paul, M.D., Ph.D., Jacques Pirenne, M.D., Ph.D.,

Better Function Better Survival Viability assessment

Warm Perfusion

Heart Proceed Trial

Mc Curry JHLT 2008

Evaluation of viability Repair Modulation* *against rejection, inflammation, infection* Better function posttransplant Longer Preservation

*Via Drugs, trophic factors, viral vectors, siMRNA

COPE

Consortium on organ preservation in Europe

- Technology for organ reconditioning and preservation
- Kidney + Liver
- Coordinator: Rutger Ploeg, Univ Oxford
- ESOT link
- EU contribution: €6 million
- Four clinical trials
- www.co<u>pe-eu.org</u>

Courtesy Charles Kessler

First Successful

Kidney Tx 1953

Altruistic donors: Genuine & anonymous gift

Maximizing Living Donor pool

USA, Scandinavia, Holland: ~40-50% Belgium, France: ~5-10%

Information without coercion

ABO incompatible Tx

Altruistic Donors

- Give
- Anonymously
- To unkown recipient
- With no counterpart

Parabole of the Good Samaritan Stained glass window St Eutrope, Clermont-Ferrand, France

Chronic Graft Loss

KIDNEY TRANSPLANTATION: OUTCOME PER ERA

J van Liver Tx 2011

Naesens Nat Rev Nephrol 2010, Grigoryev JASN 2008, Akalin ISN 2010, Kotsch Tx 2010, Godwin PNAS 2010, Korbely Tx Int 2010

Biomarkers of renal graft injuries in kidney allograft recipients

- Coordinator: Pierre Marquet, INSERM, Limoges
- EU contribution: €6 million
- www.biomargin.eu

Courtesy Charles Kessler

Minimizing Anti-Rejection Drugs

Why?

- Infection & Cancer
- Toxicity
- Costs
- Compliance
- Quality of Life

Minimization of anti-rejection drugs currently based on "trial and error"

<u>Personalised</u> minimisation of immunosuppression after solid organ transplantation by <u>biomarker-driven</u> stratification of patients to improve long-term outcome and health-economic data of transplantation

• Kidney + Liver

BIO-DrIM

- Coordinator: Petra Reinke, Charité, Berlin
- EU contribution: €6 million
- Follow-on from FP5 (Indices of tolerance) and (FP6)
 RISET projects

Courtesy Charles Kessler

Avoiding Anti-Rejection Drugs

"Tolerance"

Peter Medawar

How? Co-Tx of donor immune cells

Problems? Toxicity of preconditonning regimens Predictors (signature) of tolerance Recipient selection

Sykes, Sachs, Cosimi, Ildstad, others - Harvard, Columbia, Chicago

A unified approach to evaluating cellular immunotherapy in solid organ transplantation

- Cell product technology (Treg, Tr1, Mreg, DC)
- One clinical trial kidney
- Coordinator: Ed Geissler, Univ Regensburg
- EU contribution: €10.8 million
- <u>www.onestudy.org</u>

Courtesy Charles Kessler

Multi-Organ Transplants

Multivisceral

Liver + Pancreas

Liver + Bowel

Liver + Heart Liver + Lung

Liver + Heart + Lung

Composite Transplants Limbs Face

IPL

Uterus

Regeneration

Each piece of a planaria regenerates in a complete organism

Regeneration in Planaria

Regenerating a limb A newt can regenerate an entire limb within 7-10 weeks.

Liver regeneration after right lobe donation

Alonso-Torres Radiographics 2005

Orlando G Organ bioengineering regeneration : new holy grail of transplantation ANN SURG, 2013

Construction of tubular organ

Lancet 2011 Macchiarini (in part with EU support)

Construction of solid vascularized organ

Baptista et al Hepatology 2011

Kidney: Nature Medicine 2013

Simple Scaffold

3D Printing

Complex Scaffold

Scaffold + cellular "printing"

Scaffold + cellular "printing" + electronic

Nano Letter 2013; Mannoor; Princeton University

3D printed bionic ear

Conclusions

- Solid organ Xenotransplants faced with biological obstacles? Celluar xeno Tx more likely to succeed
- Artificial organs bridge to transplant
- Maximize deceased donor pool: Legislation, detection, extension of criteria & public awareness
- Preservation: From "Ice box" to warm perfusion
- More information on living donation & ABO incompatible Tx
- Multi-organ & composite transplants increasingly performed
- Chronic graft loss: predictors, mechanisms and prevention
- Patient tailored minimization of anti-rejection drugs
- Successful reproducible induction of tolerance still to be achieved
- Organ bioengineering & regeneration may allow to construct new tissues/organs (eliminating waiting list) with own recipient cells (eliminating rejection)

Recipients and donor families on the top of Mont-Blanc 9 september 2013