

Methodology for evidence screening of chemicals developed in the context of an impact assessment on criteria to identify endocrine disruptors

Brussels, 6th November 2015

Sharon Munn Sander van der Linden Alfonso Lostia

Systems Toxicology Institute for Health & Consumer Protection

Joint Research Centre **DISCLAIMER:** This presentation and its contents do not constitute an official position of the European Commission or any of its services. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this presentation or its contents

GENERAL OUTLINE

OVERVIEW – Sharon Munn

DATA SOURCES AND DATASHEET POPULATION – Sander van der Linden

DATA ANALYSIS AND CHEMICAL SELECTION – Alfonso Lostia

Disclaimer

The screening methodology was developed in the context of an impact assessment and cannot replace the regulatory decision making process of determining the chemicals considered as having endocrine-disrupting properties.

The methodology aims at estimating which substances may fall under the different ED IA policy options.

The methodology is based on a screening of existing evidence (desk work). No additional experimental data, experimental screening or discussion in scientific committees is foreseen.

The screening does not substitute full evaluations of individual substances to be carried out in the context of chemical legislation. Therefore, the screening does not pre-empt the regulatory conclusions that may eventually be made on the basis of such evaluations.

Scope of the screening methodology

To assess in a limited amount of time the potential endocrine disrupting properties of approximately 700 substances subject to:

- Plant Protection Products Regulation (PPPR) (approx. 400)
- Biocidal Products Regulation (BPR) (approx. 100)
- REACH Regulation Cosmetic Products Regulation
 - Water Framework Directive (WFD)

Sample of approx. 200 substances

- □ Apply the four policy options for criteria for identifying EDs in EC Roadmap based on available data
- <u>http://ec.europa.eu/smart-</u> regulation/impact/planned_ia/docs/2014_env_009_endocrine_disr uptors en.pdf

Option 1. No policy change.

Interim criteria set in the BPR and the PPPR to be applied.

Substances are or may be considered as EDs if they are or have to be classified as:

- CLP "carcinogenic category 2" and "toxic for reproduction category 2", OR
- CLP "toxic for reproduction category 2" and "toxic effects on the endocrine organs"

Substances not fulfilling above criteria will be considered not ED according to interim criteria

Option 2. EDs identified according to WHO/IPCS definition

An endocrine disrupter is an exogenous substance or mixture **that alters function(s) of the endocrine system*** and consequently causes **adverse health effects** in an intact organism, or its progeny, or (sub)populations" (IPCS/WHO, 2002).

Two elements: adversity and *endocrine disrupting mode of action

Need evidence for both

Option 3: WHO definition and additional categories

Option 3 proposes two additional categories based on the strength of evidence for fulfilling the WHO/IPCS definition:

- Cat I (fulfils WHO definition, equivalent to option 2)
- Cat II (suspected ED) –evidence insufficient to place in Cat I
- Cat III (endocrine active substance) –evidence insufficient to place in Cat II

Substances not fulfilling any of these categories designated 'unclassified'

Option 4: WHO definition with the inclusion of potency

Potency refers to the amount of substance necessary to produce a certain effect. A substance A which produces an effect at 5 mg is 10 times more potent than a substance B which produces the same effect at 50 mg.

Applying a potency cut-off at 10 mg, Substance A confirmed ED Substance B not considered ED

INFORMATION REQUIREMENTS AND DATA SOURCES

Information requirements

Joint Research Centre

Focus

- Focus on EATS (Estrogens, Androgens, Thyroid, Steroidogenesis), so endocrine disruption via other modes of action not assessed
- Mammalian toxicity: reproductive toxicity, carcinogenicity and repeated dose toxicity
- Ecotoxicology focus on fish and amphibians, to a limited extent birds (not invertebrates)

OECD CONCEPTUAL FRAMEWORK

Level 1: Existing data and non-test information (incl. QSAR)

Level 2: *In vitro* assays providing data about selected endocrine mechanism(s)/pathway(s)

Level 3: In vivo assays providing data about selected endocrine mechanism(s)/pathway(s)

Level 4: In vivo assays providing data on adverse effects on endocrine-relevant endpoints

Level 5: *In vivo* assays providing more comprehensive data on adverse effects on endocrine-relevant endpoints (more extensive part of organism life cycle)

OECD Guidance Document 150

Data Gathering: sources

Rely on already existing readily accessible information

- **Primarily:** evaluated data from the existing regulatory assessment reports, *including* EFSA conclusions, MS Draft Assessment Reports, MS Competent Authority Reports, REACH restriction dossiers, Support documents for identification of SVHC, opinions of Scientific Committee on Consumer Safety (SCCS).
- **Supplemented by additional information:** gathered from databases focusing on endocrine effects including non-regulatory studies such as JRC's Endocrine Active Substances Information System, TEDX, SIN list, ToxCast, EDSP WoE analyses and targeted literature searching

ASSUMPTIONS AND LIMITATIONS

Regarding data quality

- All data in the regulatory documents are assessed (peer reviewed) and relevant by default
- Published scientific literature are reliable

Regarding data relevance

- All mammalian data are human relevant, unless specifically stated otherwise
- Understanding of the endocrine system of many invertebrate species is limited, the focus for ecotoxicological effects is on mammals, fish, amphibians and to a limited extent on birds

DECISION-MAKING WORKFLOW

Option 1 – Interim Criteria

Options 2 to 4 ED CAT I, II, III

Data Processing for options 2 to 4

Category	Description
In vitro mechanistic	Scientific literature, ToxCast
In vivo mechanistic & in vivo hormone levels	OECD CF Level 3 assays plus hormone levels
Adversity – EATS specific	Endpoints that can be specific for Estrogen, Androgen, Steroidogenesis or Thyroid pathways
Non-specific adversity (may or may not be indicative of EATS)	Endpoints potentially sensitive to, but not specific for, EATS pathways
Adversity – General	Non EATS related effects, including food intake, systemic toxicity, body weight change etc.

Options 2 & 3 ED CAT I, II, III

Path 1 leading to Cat I

Path 2 leading to Cat I

Path 3 leading to Cat I

Path 4 leading to Cat I

Options 2 & 3 – ED Categories II & III

Cat II

- Specific *in vivo* effects, indicating endocrine specific effects (level 4 and 5) not secondary to generalised systemic toxicity, **but without** supporting mechanistic evidence (*in vivo*, *in vitro*), plausibly linking to observed adverse *in vivo* effects
- Positive mechanistic *in vivo* (level 3) evidence, without *in vivo* evidence of adversity from level 4 and 5 assays

Cat III

• No *in vivo* evidence indicating endocrine specific effects (level 4 and 5) but mechanistic evidence *in vitro*.

Unclassified

 No *in vivo* effects, indicating endocrine specific effects (level 4 and 5) and no mechanistic evidence (*in vivo*, *in vitro*).

Assessment under option 4 - potency

Potency-based STOT-RE Cat 1 & 2 trigger values (from CLP) proposed as cut-off criteria

Indicate for all EDs under option 2 whether there is an observed ED effect at or below the designated guidance value If above guidance value not considered ED (unclassified) for purposes of IA.

RESULTS

OPTION 1			OPTION 28	OPTION 4					
			Mammalian	Mammalian Ecotox					
Question	Answer (Yes/No	Reasonin g	Question	Answer (Yes/No	Reasoning	Answer (Yes/No	Reasoning	Answer (Yes/No)	Reasoning
CLP-harmonised "carcinogenic category 2"			Is there <u>evidence of adversity that may or may not be EATS-</u> <u>specific</u> in an intact organism, or its progeny, or in a (sub)population?						
CLP-harmonised "toxic for reproduction category 2"			Is there <u>evidence of Adversity – EATS specific</u> in an intact organism, or its progeny, or in a (sub)population?						
toxic effects on the endocrine organs.			Is there evidence of in vivo mechanistic and/or in vivo hormone levels information?						
CLP-proposal "carcinogenic category 2"			Is there evidence of in vitro mechanistic information?						
CLP-proposal "toxic for reproduction category 2"			Is there evidence of a plausible link between in vitro/in vivo mechanistic information and the observed EATS-specific or non-specific adversity?						
Evaluation result									

Practical Implementation

- Draft Screening Methodology submitted to contractor, includes:-
 - > data sources to be consulted
 - > type of data to extract
 - template for recording and summarising data
 - > decision trees to follow to apply options for criteria in a systematic manner to 700 substances,

Data sources and datasheet population

Brussels, 6th November 2015

Sander van der Linden

Systems Toxicology Institute for Health & Consumer Protection

> DISCLAIMER: This presentation and its contents do not constitute an official position of the European Commission or any of its services. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this presentation or its contents

Workflow of screening methodology

Source Documents

- Mammalian toxicity
- Wildlife toxicity

2. Data classification

1	A	8	c	D	E	F	G	н	1	1	K	L	М
6													
7													
8	Type of toxicity	Study principle	Study guideline (OECD/US EPA) or remarks	Reporting date	Species	Route of administration	Duration of exposure	Duration unit	Generatio n/Life stage	Sex (effect dose)	Lowest Effect dose	Effect type	Effect target
9	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	М	20	Organ histopathology	[Not in list]
10	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	м	20	Organ histopathology	Brain histopathology
11	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	F	19	Clinical chemistry	T3 and T4 level
12	Mammalian in vivo - Repeated dose	Repeated Dose 28-Day Oral Toxicity in rodent	OECD 407	2005	Rat	Oral	28	Days	Adult	M+F		No relevant effect observed	No relevant effects
13	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Growth
14	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Kidney weight
15	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Liver weight
16	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	М	189	Organ histopathology	Lung histopathology
17	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ histopathology	Lung histopathology
18	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Systemic taxicity
19	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	м	189	Organ histopathology	Testis histopathology
20	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	м	373	Organ histopathology	Epididymis histopathology
21	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	м	169	Organ histopathology	Kidney histopathology
22	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Kidney histopathology
23	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	м	169	Organ Weight	Kidney weight
24	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	Organ Weight	Kidney weight
25	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	м	169	Organ histopathology	Lung histopathology
26	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Lung histopathology
27	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	In life observation	Systemic taxicity
28	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	М	373	Organ histopathology	Testis histopathology
29	Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2006	Mouse	Oral	18	Months	Adult	м		No relevant effect observed	No relevant effects
30	Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2005	Mouse	Oral	18	Months	Adult	F		No relevant effect observed	No relevant effects
31	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	Rat	Oral	26	Weeks	Adult (F0+F1)	м	419	In life observation	Body weight
32	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Body weight
33	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	м	419	In life observation	Food consumption
34	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	8at	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Food consumption
16	Hammalian Inc. in	Too Concelles Record ation Taxiste	0000-044	2002	24	Owl	~	Minele	44.6791		440	Areas bisteastkalans	Wideon bistonathalam

Information requirements

Joint Research Centre

Classification as C or R (cat 2)

Harmonized classification

- Plant protection products (EU Pesticide Database)
- Biocidal products (C&L Inventory)
- Other (C&L Inventory)

Proposed classification (if newer)

- Plant protection products (DAR/EFSA conclusion)
- Biocidal products (CAR)
- Other (CLH report, ECHA website)
- If present in more than one category: all collected
- If no classification found, indicated in data sheet

For the purpose of impact assessment...

Endocrine organ

 Hormone secreting organs and their targets that are included in the OECD GD 150

This includes: mammary gland, accessory sex glands (e.g. Cowper's gland, seminal vesicles, prostate gland, bulbourethral glands, Glans penis), testis, epididymis, penis, cervix, uterus (endometrium), vagina, hypothalamus, pituitary, thyroid, adrenals, ovaries, placenta, Levator ani/bulbocavernosus muscles (LABC)

Information requirements

Source documents for toxicological data

Rely on already existing readily accessible information

Primarily: evaluated data from the existing regulatory assessment reports, **including** EFSA conclusions, MS Draft Assessment Reports, REACH restriction dossiers, Support documents for identification of SVHC, MS Competent Authority Report, opinions of Scientific Committee on Consumer Safety.

Compare Particular Bostoria General	***	Lease first Mile Soliday	JUSTIFICATION DOCUMENT FOR THE	E SELECTION OF A CORAP SUBSTANCE	LH REPORT FOR PERSONEL		
Scientific Committee on Consumer Products SCCP	* * *	CONCLUSION ON PESTICIDE PEER REVIEW Conclusion on the poer review of the positicale mild assument of the active substance (preventhered ¹ Economic Peer Soft Apparent ²	Justification for t	the selection of		CLH report	
	* * *	Dargens Field Soley Antiony (JESA), Prans, July ABSTACT The means of the Imagene Field Index Antionet (JESA) following the prime review of the same risk prime and the fit of the magnetic index of the supported Soley for these, South and the or- port of the start of the support of the support. Soley for the start of the prime wave on the magnet of the support of the support. Soley for an address for the start of the support of the start of the start of the support. Soley for an address for the start of the start o	a candidate CoRAP substance		Proposal for Harmo Based on Regulatio	nised Classification and Labelling a(EC) Na 12722008 (CLP Regulation), Annex VI, Part 2	
OPINION ON Resorcinol		biplements (a Explored (2015)) 100 2017. The minimum year model in the locar of the evolution of the representation is not of general-cost on a beneral-to any particular for the sing appropriate for two an exploring explored (2016) and an explored (2016) and an explored (2016) and any particular distribution of the formation of the decrement of the decrement of the decrement (2017). The decrement of the decrement (2017) and the decrement of the decrement (2017) and the decrement (2017).	Substance Name (Public Nam Chemical Group: EC Number:	e): Thiram	Substance Name: Fipronil CNmber: 424-616-5		
COLIPA nº A11	Draft Assessment Report (DAR)	Kawaman gowdonh per reise, nik commen petrais, fugusis	CAS Number: Submitted by:	137-26-8 Swedish Chemicals Agency	AS Number: 121068-37-3 adex Number: 608-055-06-	i	
Scientific Committees	Initial risk assessment provided by the rapportent Member State France for the existing active substance FIPRONIL of the second stage of the service approxement referred to its Article K(2) of Council Directive 51:414423.C		Published:	20/03/2013	'antact details for dossier sub	miner: AVES (on bahaf of the Franch MSCA) 253 aroune du Ganeral Ledere F-Se'11 Alaman-Aller Cales +33 1 56 29 19 39 rankijanovale	
The SOCP adapted this spinon at its $13^{\rm th}$ plenary of 15 April 2008	Volume 1 January 2005	Consequent los de longen l'accesso de la CALON INTER que not auxiliana 2011. Consequent los de la Calence de la C	No This document has been prepared by the CoRAP update.	te the evaluating Hember State given in	'ersion number: 1	Dute: 2696-2014	

Supplemented by additional sources

Open literature

- For all compounds, a literature search is performed
- SCOPUS: compound name & endocrine
- SciFinder: concept "endocrine disruption" & substance identifier based on CAS

ToxCast (US EPA)

• US EPA database with ED relevant in vitro assay data

Endocrine Disruptor Screening Program (US EPA)

 WoE analysis (summarized data) of ED relevant *in vitro* and *in vivo* assays, focusing on estrogens, androgens, thyroid and steroidogenesis

ToxRefDB (US EPA)

Database with ED relevant in vivo data.

Supplemented by additional sources

Open literature

- For all compounds, a literature search is performed
- SCOPUS: compound name & endocrine
- SciFinder: concept "endocrine disruption" & substance identifier based on CAS

ToxCast (US EPA)

• US EPA database with ED relevant in vitro assay data

Endocrine Disruptor Screening Program (US EPA)

 WoE analysis (summarized data) of ED relevant in vitro and in vivo assays, focusing on estrogens, androgens, thyroid and steroidogenesis

ToxRefDB (US EPA)

Database with ED relevant in vivo data.

Check for additional sources

The Endocrine Disruption Exchange (TEDX)

 List of chemicals that show the potential to affect the endocrine system (reference(s) provided)

Substitute It Now (SIN)

•List of substances identified by NGO ChemSec as Substances of Very High Concern, including ED criteria (reference(s) provided)

Public consultation

List of references supplied by public consultation

Community Rolling Action Plan (ECHA)

Flag presence of CoRAP if ED motivated

3.2 Grounds for concern

(Suspected) CMR	Wide dispers
(Suspected) Sensitiser	Consumer us
(Suspected) PBT	Exposure of
Suspected endocrine disruptor	Other (provid

Type of studies to be captured

Mammalian toxicity

 developmental toxicity, reproductive toxicity, carcinogenicity and (sub)chronic (repeated dose) toxicity

Ecotoxicology

 non-acute toxicity, reproductive toxicity in fish and amphibians (and birds to a limited extent)

Focus on test methods specified within the OECD CF (OECD GD 150 TG or equivalent)

Types of effects to be captured

 Production/action of steroid hormones (estrogen, testosterone), impacts on reproduction (fertility, abnormalities in development, onset of puberty) and thyroid hormones (impact on growth and

Test guideline or other test method	Endpoints for es acti	trogen-mediated vity	Endpoints for an acti	drogen-mediated vity	Endpoints for thyroid-related activity	Endpoints for steroidogenesis- related activity	Endpoints potentially sensitive to, but
[Reference to interpretation table within this document]	Agonistic	Antagonistic	Agonistic	Antagonistic			not diagnostic of, EATS modalities
OECD TG 416: 2-	Change in AGD	Studies using	Studies using	Decreased AGD	Increased	Possible effects	Changes in :
generation	in male and	pure antagonists	agonists are	in male pups,	thyroid weight.	on:	
reproduction	female pups.	are lacking.	lacking.	change in AGD			Weights of
toxicity study		However,	However,	in female pups.	Possible liver	AGD in male	adrenals
(including guidance	Changes in	changes may	changes may		weight increase	and female pups.	
on OECD TG 415:	estrus cyclicity	occur in the	occur in the	Changes in	(in combination		Time to mating
1-generation study)	(P, F1).	following:	following:	estrus cyclicity	with other	Estrus cyclicity	
	~ *			(P, F1).	thyroid-related	(P, F1).	Male fertility
	Decreased age at	AGD in male	Increased AGD		endpoints).		
	Vaginal opening	and female pups.	in male pups,	Changes in age		Age at Vaginal	Female fertility
	(F1).		change in AGD	at vaginal	Histopathologic	opening (F1).	
		Estrus cyclicity in	in female pups.	opening (F1).	changes in	Age at preputial	Gestation length
		(P, F1).			thyroid	separation (F1).	Dystocia

Commission

Oral chronic toxicity and carcinogenicity in the rat B 6.8.1.4-13

	a station of the state of the s									```	_0111111351011	
Reference	Bigot D. 1998			2								
	Chronic toxicity	y and carcino	genicity s	audy of		in the S	prague-Da	wley rat	by			
Type of study	Two Year Die	Deviations		Specific i animals i	neurologica s not a sta	al examinat ndard requi	ions were o rement.	conducted.	Also, pe	rfusion fix	ation for selected	5
Year of execution	8 June 1995 (GLP state	ment	Yes							60	
Test substance	0 0010 10001	Acceptanc	e	The study	y is conside	ered accept	able					_
Test substance		Desults									1	
Purity	96.0%	Mortality :	one male	e aiven 2	ma/ka/da	av was kil	led in We	ek 11 fo	llowing a	severe	reaction to	
Species	Sprague Daw	treatment.	Two male	es dosed w	vith 5 mg/	kg/day we	re killed (one in ea	ch of We	eks 31 a	nd 34) after	
Group size	Main study :	severe read	tions to	treatment.	Ante m	ortem clin	ical signs	for these	animals	included	convulsive	
Exposure	Oral via the d	epiaodea, b	ouynoigi	11 1000, 1110	ppeterioe	, and appe	a enay imp		/1.	<u>_</u> 2		
	killed in order	Clinical sign	<u>is</u> : signs	indicative	of neurol	logical dist	turbances	occurred	intermitte	entlyfron	n Week 2 of	
	each group w	treatment a	t both 2	and 5 mg/ ous beba	/kg/day.	They inclu	ded convu alities of	ulsions, tv nait and	vitching c	r∛remor ∆II	s of various	
Dose	0. 0.5. 2 or 1	5 mg/kg/day	/, and t	five males	s and th	iree fema	les dose	d with 2	mg/kg/	day wei	re affected.	
	concentration	Convulsions	s were ob	oserved in	1 male a	nd 1 femai	ie at 2 mg	/kg/day a	nd in 2 m	ales at 5	mg/kg/day.	
Vehicle	diet (homogei	Other signs	were se	en at thes	e dose le nd tremo	vels includ	ted exagg	erated rig	idity or s	tiffness (of the limbs,	
Observations	Animals were	behaviour (a	aggressio	on and ner	vousness) and activ	ity pattern	is and res	stance to	dosing.	changes in	
	and on publ	There was r	no clear t	reatment-r	elated eff	ect at 0.2	mg/kg/day	4		0		
	performed tw							. O				
	brooweights	26 weeks o	: DODYW	eignt gain ent which :	was part	be aroun i	v in one te mean bod	emale giv	en 5 mg/ Growth /	kg/day c	dogs in this	
	animals prior	group was	similar to	that of co	ontrols. H	lowever, t	he decede	ints exhib	ited weig	ht loss p	prior to their	
	dosing, Blog	termination.		~			0					
20	from all chro	Table B 6.3.	3-1/01:	Group	mean bo	dyweight a Dose level	ma/ka/day	reight cha	nge (kg)			
0	collected duri	Week	0	0.2	2	5	0	0.2	2	5	-	
(D)	survivors for			M	ales	Deale	0	Ferr	ales			
50	52, 78 and 1	1	8.3	8.3	8.3	8.4	7.5	7.3	7.4	7.3	_	
E	25, 51, 77 and	13	11.3	11.2	11.5	112	9.8	9.5	9.6	9.3		
20	All animals, ir	26	12.7	12.8	12.9	12.8	11.0	10.5	10.5	10.1		
26	(major organs	52	13.4	13.7	13.7	13.6	12.0	11.4	11.2	11.1		
No	the control a	Weeks		1		Bodyweig	ht change					
3	histonatholog	13-26	3.0	2.9	3.3	2.8	2.4	2.3	2.2	0.8		
	dose groups	26-39	0.5	0.4	0.4	0.5	0.5	0.7	0.5	0.5	_	
	carcinogenicil	39-52	0.2	0.5	0.4	0.3	0.5	0.2	0.6	0.5		rtan w
	101.020400.000 0 0000.0000	0-52	5.2	5.4	0.0	5.2	4.5	4.1	4.4	3.0		stag -
mmalian in vivo - Re	peated dose	Chronic toxic	ity					5		31665	Adult	
mmalian in vivo - Re	peated dose	Chronic toxic	ity					5		31665	Adult	
mmalian in vivo - Re	peated dose	Chronic toxic	ity					5		31665	Adult	
mmalian in vivo - Re	peated dose	Chronic toxic	ity					5		31665	Adult	
mmailan in vivo - Re mmalian in vivo - Re	peated dose	Chronic toxic	ity ity					5		31665	Adult	
mmalian in vivo - Re	peated dose	Chronic toxic	itv					5		31665	Adult	
mmalian in vivo - Re	peated dose	Chronic toxic	ity					5		31665	Adult	

- Species: rat •
- Strain: Sprague-Dawley ٠
- Number of animals per dose: 10 •
- Route of administration: oral ٠
- Method of administration: feed •
- Purity: 96 % •
- Dose range •
 - Male: 0.5, 2, 10 ppm
 - Female: 0.5, 2, 10/6 ppm •

stag 🔻	Sex (effect dose) 💌	Lowest Effect dose 💌	Effect type 💌	Effect target 💌
	F	117	Organ histopathology	Adrenals histopathology
	F	117	In life observation	Growth
	М	109	In life observation	Haematological parameters
	F	117	In life observation	Haematological parameters
	М	109	Organ histopathology	Liver histopathology
	F	117	Organ histopathology	Liver histopathology
	М	109	Clinical chemistry	T3 and T4 level
	F	117	Clinical chemistry	T3 and T4 level

Structure of data template

- Spreadsheet based (Excel): versatile, easy to use
- 40 columns for data details
- Structured template to capture/store diverse types of data from variety of sources (databases, scientific literature)
- All relevant effects captured from study (study ID)
 - Capture all ED relevant effects
 - Capture general toxicity effect at similar or lower dose (interpretation)
 - Each row describes one effect at single dose from one study

General substance information

- Compound name
- CAS number
- CLP (harmonized), including date of classification
- CLP (proposed), including date of classification
- Co-RAP (concern justification)
- Reason for inclusion on the SIN List
- Other information/comments

Compound				
CAS				
CLP (harmonized):		No CLH available.		
CLP/ATP inserted:				
CLP (proposed):		Skin Irrit. 2 - H 315		
EFSA Journal 2012;10(11):2915		Skin Sens. 1 - H 317		
		Eye Irrit. 2 - H 319		
So-RAP (concern - justification):		Not relevant		
Reason for inclusion on the SIN List:		Not relevant		
Other information/comments			1	
		Fill formula Create matrix	Copy last stud	ly details
Type of toxicity	-	Study principle 💌	Study ID Matri 💌	Study refere
Mammalian in vivo - Repeated dose		Repeated Dose 90-Day Oral Toxicity in rodents	1	88-2508
Mammalian in vivo - Repeated dose		Repeated Dose 90-Day Oral Toxicity in rodents	2	88-2508
Mammalian in vivo - Repeated dose		Repeated Dose 90-Day Oral Toxicity in rodents	2	88-2508
Mammalian in vivo - Repeated dose		Repeated Dose 90-Day Oral Toxicity in rodents	2	88-2508
Mammalian in vivo - Repeated dose		Repeated Dose 90-Day Oral Toxicity in rodents	2	88-2508
Mammalian in vivo - Repeated dose		Carcinogenicity	3	88-2508
Mammalian in vivo - Peneated doce		Carcinogenicity	3	88-2508

Data organisation

Study information	Study details	Effect	Indications
Guideline	No. animals	Generation	OECD CF level
Source	Purity	Sex	OECD 150
Reference	Route of administration	Lifestage	Comparable to OECD150
Date	Doses tested (+units)	Effect dose	Pathway
Species	Duration (+units)	Effect type	Human relevance
		Effect target	Adjusted effect dose
		Description	
		Direction	

Data Template

	А	В	С	D	E	F	G	Н		J	K	L	М
6													
7													
8	Type of toxicity	Study principle	Study guideline (OECD/US EPA) or remarks	Reporting date	Species	Route of administration	Duration of exposure	Duration unit	Generatio n/Life stage	Sex (effect dose)	Lowest Effect dose	Effect type	Effect target
9	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	М	20	Organ histopathology	[Not in list]
10	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	М	20	Organ histopathology	Brain histopathology
11	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	F	19	Clinical chemistry	T3 and T4 level
12	Mammalian in vivo - Repeated dose	Repeated Dose 28-Day Oral Toxicity in rodent	OECD 407	2006	Rat	Oral	28	Days	Adult	M + F		No relevant effect observed	No relevant effects
13	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Growth
14	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Kidney weight
15	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Liver weight
16	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	М	189	Organ histopathology	Lung histopathology
17	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ histopathology	Lung histopathology
18	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Systemic toxicity
19	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	М	189	Organ histopathology	Testis histopathology
20	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	М	373	Organ histopathology	Epididymis histopathology
21	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	М	169	Organ histopathology	Kidney histopathology
22	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Kidney histopathology
23	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	М	169	Organ Weight	Kidney weight
24	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	F	229	Organ Weight	Kidney weight
25	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	М	169	Organ histopathology	Lung histopathology
26	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Lung histopathology
27	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	F	229	In life observation	Systemic toxicity
28	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	М	373	Organ histopathology	Testis histopathology
29	Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2006	Mouse	Oral	18	Months	Adult	М		No relevant effect observed	No relevant effects
30	Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2006	Mouse	Oral	18	Months	Adult	F		No relevant effect observed	No relevant effects
31	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	М	419	In life observation	Body weight
32	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Body weight
33	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	М	419	In life observation	Food consumption
34	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Food consumption
25	Mammalian in viva - Depreductivo	Two Conception Bonroduction Tovisity	0000 416	2005	Dat	Centre	76	Weeks	A dol+ (E1)	N.A.	410	Organ histopathalami	Kidnov histonathalamı

Effect type

In life observation Organ Weight Organ histopathology Reproductive Developmental Abnormalities Clinical chemistry No relevant effect observed [Not in list]

Effect target

Age at first estrus Age at preputial separation Age at Vaginal opening Birth index Dystocia Estrus cyclicity Fertility Gestational interval Gestation length Gestation Index Intercurrent deaths Lactation index Litter size Litter viability Number of implantations, corpora lutea

Categorisation of effects

Category	Description
In vitro mechanistic	Scientific literature, ToxCast
In vivo mechanistic & in vivo hormone levels	OECD CF Level 3 assays plus hormone levels
Adversity – EATS specific	Endpoints that can be specific for Estrogen, Androgen, Steroidogenesis or Thyroid pathways
Non-specific adversity (may or may not be indicative of EATS)	Endpoints potentially sensitive to, but not specific for, EATS pathways
Adversity – General	Non EATS related effects, including food intake, systemic toxicity, body weight change etc.

Research Centre

Information requirements

Categorisation under option 4

- No consensus on potency cut-off values
- STOT RE values proposed in literature
- Determine whether EATS specific effects still occur at or below this dose

Route of exposure	STOT-RE Cat 1	STOT-RE Cat 2
Oral	10 mg/kg bw/day	100 mg/kg bw/day
Dermal	20 mg/kg bw/day	200 mg/kg bw/day
Inhalation (vapour)	0.2 mg/l/6h/day	1.0 mg/l/6h/day
Inhalation (dust/mist/fume)	0.02 mg/l/6h/day	0.2 mg/l/6h/day

Note: these reference values refer to effects seen in a standard 90day toxicity study in rats

Time adjustments of the guidance value

Following Haber's rule:

- for a 28-day study the guidance values above are increased by a factor of three
- for a 2-year study the guidance values are decreased by a factor of eight.

Allometric scaling and different life spans of species for Repeated Dose Toxicity not yet been integrated into the CLP guidance

The same guidance values for rat, mouse and dog studies have been used

Equivalent guidance values for 28-day and 90-day studies for rat

Study type	Unit	Category 1 90-day	Category 1 28-day	Category 2 90-day	Category 2 28-day
Oral	mg/kg bw/d	≤ 10	≤ 30	≤ 100	≤ 300
Dermal	mg/kg bw/d	≤ 20	≤ 60	≤ 200	≤ 600
Inhalation (gas)	ppmV/ 6 h/d	≤ 50	≤ 150	≤ 250	≤ 750
Inhalation (vapour)	mg/l/ 6 h/d	≤ 0.2	≤ 0.6	≤ 1	≤ 3
Inhalation (dust/mist/fume)	mg/l/ 6 h/d	≤ 0.02	≤ 0.06	≤ 0.2	≤ 0.6

Data Analysis and Chemical Selection

Brussels, 6th November 2015

Alfonso Lostia

Systems Toxicology Institute for Health & Consumer Protection

> DISCLAIMER: This presentation and its contents do not constitute an official position of the European Commission or any of its services. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this presentation or its contents

Data Analysis

Workflow of screening methodology

Source Documents

Workflow of screening methodology

	A	8	C	D	E	F	G	н	1	1	x	L	М
1	Type of toxicity	Study principle	Study guideline (OECD/US EPA) or remarks	Reporting date	Species	Route of administration	Duration of exposure	Duration unit	Generatio n/Life stage	Sex (effect dose)	Lowest Effect dose	Effect type	Effect target
l	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	м	20	Organ histopathology	[Not in list]
0	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	м	20	Organ histopathology	Brain histopatholo
1	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	F	19	Clinical chemistry	T3 and T4 level
2	Mammalian in vivo - Repeated dose	Repeated Dose 28-Day Oral Toxicity in rodent	OECD 407	2005	Rat	Oral	28	Days	Adult	M+F		No relevant effect observed	No relevant effect
3	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Growth
4	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Kidney weight
5	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Liver weight
6	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	м	189	Organ histopathology	Lung histopatholog
7	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ histopathology	Lung histopatholog
8	Mammalian in vivo - Repeated dose	Chronic taxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Systemic taxicity
9	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	м	189	Organ histopathology	Testis histopatholo
0	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	м	373	Organ histopathology	Epididymis histopatho
1	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	м	169	Organ histopathology	Kidney histopatholo
2	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2005	Rat	Oral	2	Years	Adult	F	223	Organ histopathology	Kidney histopatholo
3	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	м	169	Organ Weight	Kidney weight
4	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	Organ Weight	Kidney weight
5	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2006	Rat	Oral	2	Years	Adult	м	169	Organ histopathology	Lung histopatholog
6	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Lung histopetholog
7	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	In life observation	Systemic toxicity
8	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	м	373	Organ histopathology	Testis histopatholo
9	Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2006	Mouse	Oral	18	Months	Adult	м		No relevant effect observed	No relevant effect
0	Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2005	Mouse	Oral	18	Months	Adult	F		No relevant effect observed	No relevant effect
1	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	Rat	Oral	26	Weeks	Adult (F0+F1)	м	419	In life observation	Body weight
2	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Body weight
3	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	м	419	In life observation	Food consumption
4	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Food consumption
ć	Mammalian in view. Reproduction	Two Conception Dependenting Taxisity	0000.016	2005	0.4	Owl	26	Mashe	84-00731		410	Orang histogetheless:	Videou historethals

54

Data collected in the template

	A	В	L L	U	E		6	н		1	K	L.	M
6													
7													
8	Type of taxicity	Study principle	Study guideline (OECD/US EPA) or remarks	Reporting date	Species	Route of administration	Duration of exposure	Duration unit	Generatio n/Life stage	Sex (effect dose)	Lowest Effect dose	Effect type	Effect target
9	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	м	20	Organ histopathology	[Not in list]
10	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	м	20	Organ histopathology	Brain histopathology
11	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	F	19	Clinical chemistry	T3 and T4 level
12	Mammalian in vivo - Repeated dose	Repeated Dose 28-Day Oral Toxicity in rodent	OECD 407	2005	Rat	Oral	28	Days	Adult	M+F		No relevant effect observed	No relevant effects
13	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Growth
14	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Kidney weight
15	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Liver weight
16	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	M	189	Organ histopathology	Lung histopathology
17	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ histopathology	Lung histopathology
18	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Systemic toxicity
19	Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	м	189	Organ histopathology	Testis histopathology
20	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Bat	Oral	2	Years	Adult	м	373	Organ histopathology	Epididymis histopathology
21	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Bat	Oral	2	Years	Adult	м	169	Organ histopathology	Kidney histopathology
22	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Kidney histopathology
23	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	м	169	Organ Weight	Kidney weight
24	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	Organ Weight	Kidney weight
25	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	м	169	Organ histopathology	Lung histopathology
26	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Lung histopathology
27	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	F	229	In life observation	Systemic toxicity
28	Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity St	OECD 453	2005	Rat	Oral	2	Years	Adult	м	373	Organ histopathology	Testis histopathology
29	Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2005	Mouse	Oral	18	Months	Adult	м		No relevant effect observed	No relevant effects
30	Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2005	Mouse	Oral	18	Months	Adult	F		No relevant effect observed	No relevant effects
31	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	Rat	Oral	26	Weeks	Adult (F0+F1)	м	419	In life observation	Body weight
32	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Body weight
33	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	Rat	Oral	26	Weeks	Adult (F0+F1)	м	419	In life observation	Food consumption
34	Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2005	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Food consumption
16	Adapted in the Contract of the	Time Conception Based stice Tablets	0700.416	2006	0.48	And	14	This also	Autora (PA)	**	410	Oraca historiathalams	Vide on histonetheless.

	Category	Description
	In vitro mechanistic	Scientific literature, ToxCast
Data collected in the template	In vivo mechanistic & in vivo hormone levels	OECD CF Level 3 assays plus hormone levels
Data processing	Adversity – EATS specific	Endpoints that can be specific for Estrogen, Androgen, Steroidogenesis or Thyroid pathways
	Non-specific adversity (may or may not be indicative of EATS)	Endpoints potentially sensitive to, but not specific for, EATS pathways
	Adversity – General	Non EATS related effects, including food intake, systemic toxicity, body weight change etc.

WoE:

- Specificity: evaluating if EATS-endpoints are likely to be secondary effects of general systemic toxicity
- Consistency of effects observed / pattern of effects (within and between studies)

No

Unclassifie

Biological plausibility of effects observed

Complexity of Data Analysis

Going through all data captured in the template, to perform data-analysis, can be very complex and time-consuming.

In the template there are 40 columns and potentially hundreds of rows depending on substance.

There is the need to facilitate the data analysis by ensuring for substance evaluation:

- Usage of all data collected
- Transparency and traceability
- Medium-throughput (700 substances to be screened in a limited amount of time)

- <u>/</u>		v								14		
5												
1												
Type of toxicity	Study principle	Study guideline (OECD/US EPA) or remarks	Reporting date	Species	Route of administration	Duration of exposure	Duration unit	Generatio n/Life stage	Sex (effect dose)	Lowest Effect dose	Effect type	Effect target
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	м	20	Organ histopathology	[Not in list]
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	м	20	Organ histopathology	Brain histopathology
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 409	2005	Dog	Oral	1	Years	Adult	F	19	Clinical chemistry	T3 and T4 level
2 Mammalian in vivo - Repeated dose	Repeated Dose 28-Day Oral Toxicity in rodent	OECD 407	2006	Rat	Oral	28	Days	Adult	M+F		No relevant effect observed	No relevant effects
3 Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Growth
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Kidney weight
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ Weight	Liver weight
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	м	189	Organ histopathology	Lung histopathology
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	Organ histopathology	Lung histopathology
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	F	890	In life observation	Systemic toxicity
Mammalian in vivo - Repeated dose	Chronic toxicity	OECD 452	2005	Rat	Oral	1	Years	Adult	м	189	Organ histopathology	Testis histopathology
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2005	Rat	Oral	2	Years	Adult	м	373	Organ histopathology	Epididymis histopathology
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2005	Rat	Oral	2	Years	Adult	м	169	Organ histopathology	Kidney histopathology
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Kidney histopathology
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	м	169	Organ Weight	Kidney weight
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	F	229	Organ Weight	Kidney weight
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	м	169	Organ histopathology	Lung histopathology
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	F	229	Organ histopathology	Lung histopathology
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2006	Rat	Oral	2	Years	Adult	F	229	In life observation	Systemic toxicity
Mammalian in vivo - Repeated dose	Combined Chronic Toxicity/Carcinogenicity S	OECD 453	2005	Rat	Oral	2	Years	Adult	м	373	Organ histopathology	Testis histopathology
Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2005	Mouse	Oral	18	Months	Adult	м		No relevant effect observed	No relevant effects
Mammalian in vivo - Repeated dose	Carcinogenicity	OECD 451	2006	Mouse	Oral	18	Months	Adult	F		No relevant effect observed	No relevant effects
Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	м	419	In life observation	Body weight
Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Body weight
Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	м	419	In life observation	Food consumption
Mammalian in vivo - Reproductive	Two-Generation Reproduction Toxicity	OECD 416	2006	Rat	Oral	26	Weeks	Adult (F0+F1)	F	485	In life observation	Food consumption
E Manmalian in size Bannahustian	Tue Connection Dependentian Textsile	OT CD 414	1000	0.4	Oral	16	Weaks	4.4.46 (71)		410	Orma histoastkolaas	Wideon birton Akolony

Can we find a simpler way to visualise all the data to facilitate data-analysis?

Data analysis: build a data-matrix

Type of toxicity	 Study ID Matrix	 Effect type	Effect target	
Mammalian in vivo - Repeated dose	1	Organ Weight	Adrenals weight	
Mammalian in vivo - Repeated dose	1	Organ histopathology	Adrenals histopathology	
Mammalian in vivo - Repeated dose	1	Organ Weight	Kidney weight	
Mammalian in vivo - Repeated dose	1	Organ histopathology	Kidney histopathology	
Mammalian in vivo - Repeated dose	2	In life observation	Haematological parameters	
Mammalian in vivo - Repeated dose	2	In life observation	Haematological parameters	
Mammalian in vivo - Repeated dose	2	Organ Weight	Kidney weight	
Mammalian in vivo - Repeated dose	2	Organ histopathology	Spleen histopathology	
Mammalian in vivo - Repeated dose	2	In life observation	Systemic toxicity	
Mammalian in vivo - Repeated dose	2	In life observation	Systemic toxicity	
Mammalian in vivo - Repeated dose	3	In life observation	Haematological parameters	
Mammalian in vivo - Repeated dose	3	Organ histopathology	Kidney histopathology	
Mammalian in vivo - Repeated dose	3	Organ Weight	Kidney weight	
Mammalian in vivo - Repeated dose	4	Organ Weight	Adrenals weight	
Mammalian in vivo - Repeated dose	4	In life observation	Growth	
Mammalian in vivo - Repeated dose	4	In life observation	Haematological parameters	
Mammalian in vivo - Repeated dose	4	In life observation	Haematological parameters	
Mammalian in vivo - Repeated dose	4	Organ Weight	Liver weight	
Mammalian in vivo - Repeated dose	4	Organ Weight	Liver weight	
Mammalian in vivo - Repeated dose	4	Clinical chemistry	id stimulating hormone (TSH) leve	
Mammalian in vivo - Repeated dose	5	No relevant effect observed	No relevant effects	

Endpoint 1	Endpoint 2	Endpoint 3	Endpoint 4	Endpoint 5	Endpoint 6
_	_		_	_	_

. . .

Study 1

Study 2

Study 3

Study 4

Data analysis: build a data-matrix

For each study, a bit string is constructed displaying all endpoints observed

Mammalian in vivo - Repeated dose	2	In life observation	System.
Mammalian in vivo - Repeated dose	2	In life observation	Systemic toxicity
Mammalian in vivo - Repeated dose	3	In life observation	Haematological parameters
Mammalian in vivo - Repeated dose	3	Organ histopathology	Kidney histopathology
Mammalian in vivo - Repeated dose	3	Organ Weight	Kidney weight
Mammalian in vivo - Repeated dose	4	Organ Weight	Adrenals weight
Mammalian in vivo - Repeated dose	4	In life observation	Growth
Mammalian in vivo - Repeated dose	4	In life observation	Haematological parameters
Mammalian in vivo - Repeated dose	4	In life observation	Haematological parameters
Mammalian in vivo - Repeated dose	4	Organ Weight	Liver weight
Mammalian in vivo - Repeated dose	4	Organ Weight	Liver weight
Mammalian in vivo - Repeated dose	4	Clinical chemistry	id stimulating hormone (TSH) level
Mammalian in vivo - Repeated dose	5	No relevant effect observed	No relevant effects

Data matrix

In vivo

tic

EATS

mechanis mechanis specific specific

EATS

adversity adversity be

In vitro

tic

Non-

(may or

Non-

specific specific specific

adversity adversity adversity

may not may not may not

be

(may or (may or

be

Non-

Information from 4 different columns of the template is summarised in each box:

- Effect direction
- Effect dose
- Effect description
- Effect determination

Study design

													e of EATS)	e of EATS)	e of EATS)				
Study	Source	Year	Type of toxicity	Species	Dose unit	Route of administr ation	Exposure	Addition al remarks	Endpoint 1	Endpoint 2	Endpoint 3	Endpoint 4	Endpoint 5	Endpoint 6	Endpoint 7	Endpoint 8	Endpoint 9	Endpoint 10	Endpoint 11
1	DAR	1986	Mammali an in vivo -	Dog	mg/kg bw/day	Oral	1 Years			Decrease 500			Decrease 500				Decrease 500	Change 50	Increase 500
2	DAR	1981	Mammali an in vivo -	Mouse	mg/kg bw/day	Oral	2 Years				Change 100	Change 100					Decrease 100	Change 100	
3	TEDX	2013	In vitro	Mouse	μМ		18 hours												
4	DAR	1978	Mammali an in vivo -	Rabbit	mg/kg bw/day	Oral	13 Days							Increase 55	Change 55	Decrease 55	Decrease 55		

General General General General

adversity adversity adversity adversity

Data matrix

Stur 1		Γh	e	da b	ata uil	a r t 1	na fro	tr	In vitro	is he	eats a t	ut en	Non- specific adversity (may or	Non- specific adversity (may or	Non- specific adversity (may or	General	General	General	General ersit • 11 ease	y
3	TEDX	2013	- In vitro	Mouse	μΜ		18 hours													
4	DAR	1978	Mammali an in vivo -	Rabbit	mg/kg bw/day	Oral	13 Days							Increase 55	Change 55	Decrease 55	Decrease 55			

Examples Data Matrix

Example 1

Endpoints specific of EATS pathways

General adversity

Example 2

Few endpoints that may or may not indicative of EATS

Most endpoints related to General adversity

								Non-specific adversity (may or may not be indicative of EATS)					S	(stomi	ic	
Study	Source	Year	Type of toxicity	Species	Dose unit	Route of administr ation	Exposure	Litter/pu p weight	No reproduc tive effects	Pup mortality	Body weight	Food consump tion	Зу	oxicit		Systemic toxicity
1	DAR	1990	Mammali an in vivo	rat	mg/kg bw/day	Oral	90 Days				Decrense 33.7	Decrense 33.7				Induction 38/4
2	DAR	1979	Mammali an in vivo	rat	ppm	Oral	90 Days				Decrease 1500 ppm	Decrease 1500 ppm			\mathbf{i}	TGENVOIA
3	DAR	1994	- Mammali an in vivo	dog	ppm	Oral	90 Days				1150 Decrease 24.6 basis for	0150				Induction 24.6 (clinical
4	DAR	1995	Mammali an in vivo	dog	mg/kg bw/day	Oral	1 Years				Decrease 18.1 basis for				Increase 20.4 (basis for	Induction 20.4
5	DAR	1982	Mammali an in vivo	dog	mg/kg bw/day	Oral	1 Years									nduction L5 clinical
6	DAR	1994	Mammali an in vivo	rat	mg/kg bw/day	Inhalat n	-									nduction 13.5 (clinical
7	DAR	1999	Mammali an in vivo	rat	mg/kg bw/day	Derma	Pup n	hortali	ity							Induction 100
8	DAR	1981	Mammali an in vivo	rabbit	mg/kg bw/day	Derma	1							Induction 200 (Eocal		Induction 200 (signs of
9	DAR	1982	Mammali an in vivo	rat	mg/kg bw/day	Oral	2 Years	\frown			Decrease 75 (basis for	Decrease 75 (basis				Induction 75 (clinical
10	DAR	1982	Mammali an in vivo	mouse	mg/kg bw/day	Oral	101 Weeks				Decrease 246 (basis for		Induction 246 (thrombo			(chincar
11	DAR	1991	Mammali an in vivo	rat	mg/kg bw/day	Oral	26 Weeks	Decrease 22.1 (reduced		Increase 43.4 (DAP:	Decrease 22.1 (basis for	Decrease 22.1 (basis for	T T T T T T T T T T T T T T T T T T T			Induction 22.1 (clinical
12	DAR	1982	Mammali an in vivo	rat	mg/kg bw/day	Oral	3 generati	Decrease 37.5			Decrease 7.5 (basis	Decrease 7.5 (basis				Chinean
13	DAR	1990	Mammali an in vivo	rat	mg/kg bw/day	Oral	10 Day				Decrease 25 (basis	Decrease 25 (transien	\mathbf{N}			Induction 25 Iclinical
14	DAR	2005	Mammali an in vivo	rat		Oral	OD 6 - LD Days	Decrease 300ppm			Decrease 300ppm	Decrease 300ppm (basis fo				Chinear
15	DAR	1990	Mammali an in vivo	rabi		oiaht	Days	∇T								
16	DAR	1978	Mammali an in vivo	rabi	up w	cigit	Days									
17	DAR	1999	Mammali an in vivo	rat	bw/day		Weeks							Food		Induction 26.3 (Increase
18	DAR	1993	Mammali an in vivo	rat	mg/kg bw/day	Oral	13	a alve su	a i a la t				cons	sumpt	ion	Induction 65 (clinical
19	DAR	1981	Mammali an in vivo -	dog	mg/kg bw/day	Oral	2 Y B(oay w	eight		Decrease 15 (basis for			•		Induction 15 (neuroto

Organising the data facilitates the analysis

Study	Source	Year	Type of toxicity	Species	Dose unit	Route of administr ation	Exposure	Addition al remarks	Endpoint 1	Endpoint 2	Endpoint 3	Endpoint 4	Endpoint 5	Endpoint 6	Endpoint 7	Endpoint 8	Endpoint 9	Endpoint 10	Endpoint 11
1	DAR	1986	Mammali an in vivo -	Dog	mg/kg bw/day	Oral	1 Years			Decrease 500			Decrease 500				Decrease 500	Change 50	Increase 500
2	DAR	1981	Mammali an in vivo -	Mouse	mg/kg bw/day	Oral	2 Years				Change 100	Change 100					Decrease 100	Change 100	
3	TEDX	2013	In vitro	Mouse	μМ		18 hours												
4	DAR	1978	Mammali an in vivo -	Rabbit	mg/kg bw/day	Oral	13 Days							Increase 55	Change 55	Decrease 55	Decrease 55		

Chemical Selection

Scope of Chemical Selection

- 1. Chemicals to be screened take in account the following EU legislations:
 - Plant Protection Products Regulation (PPPR)
 - Biocides Products Regulation (BPR)
 - REACH Regulation
 - Cosmetics Regulation
 - Water Framework Directive (WFD)
- 2. ED IA analysis to be performed on about 700 chemicals
- 3. For the selected chemicals, gather mechanistic-toxicological data to then apply the four policy options for identifying EDs.

Principles for Chemical Selection

The selection of the substances considered time constraints and efficient use of public money. It was based on the following principles:

- Transparency
- Objectivity, securing that all possible scenarios are covered to assess the impact of the various options for criteria at least on a qualitative basis
- Consideration of availability of data, which are crucial for the screening assessment of ED properties.
- The selection should (as far as possible) not lead to a bias in the assessment of the four options.

For PPP and BPs, all approved substances were considered, and then non relevant substances were taken out from the list.

For REACH and Cosmetics, the list was started with substances where information and concerns were already identified. If the list ends up being longer than the available resources, a selection would be done randomly.

The substances falling under the **WFD** were covered by the selection under REACH, Cosmetics, PPPs and BPs and not listed separately.

Chemical selection: strategy

1st Step:

Compile the list of all relevant chemicals from PPPR and BPR

2nd Step:

Expand the initial list, by adding chemicals from REACH regulation, Cosmetics Regulation and WFD

3rd Step:

Cross-check if these chemicals are also listed in other regulatory / toxicological / NGO databases that can be used to collect further available mechanistic & toxicological data for the ED IA

Selection of chemicals under PPPR and BPR

All approved chemical active substances from EU Pesticides database (DG SANTE) and all Biocidal Active Substances (ECHA)

The following substances are not included:

- <u>Microorganisms</u> (living organisms, NOT chemicals)
- <u>Basic substances</u> (being substances of no concern and no inherent capacity to cause endocrine disrupting effects, and where the approval procedures follow particular rules)
- <u>Low risk substances</u> (defined in Annex II to Regulation (EC) 1107/2009 as, among others properties, not deemed to be an endocrine disruptor)
- <u>Natural extracts, mixtures, or repellents</u>
- <u>Attractants (pheromones) or plant hormones</u>
- Some inert substances, salts, acids

Selection of substances under REACH Regulation

- 1. All substances on the Candidate List already identified as SVHCs because of ED concerns under Art. 57(f)
- All substances for which an SVHC opinion on the identification of the substance as SVHC due to its endocrine disrupting properties was provided by the Member State Committee at ECHA
- 3. All substances on the Candidate list identified as SVHC because of reprotoxicity 1A/1B
- 4. All substances listed in Annex XVII for restrictions due to a ED concern or because of having a harmonised classification as reprotoxic 1A/1B

Selection of substances under REACH Regulation

- 5. All substances placed on CoRAP due to ED concern
- 6. All substances discussed in the Endocrine Disruptor Expert Group
- 7. Substances flagged as SIN list substances because of ED concerns excluding those which are pesticides, biocides and non-registered substances
- 8. Substances flagged as Category 1 and 2 in the Commission's priority list of substances for further testing of their role in endocrine disruption (EASIS) excluding pesticides, biocides and non-registered substances

Selection of substances under Cosmetics Regulation

- Most substances for which an opinion of the Scientific Committee on Consumer Safety (SCCS) was provided, which contained a discussion on their endocrine disrupting potential
- Most substances for which an SCCS opinion was provided due to the their potential or de facto classification as CMR1A/1B or CMR2 under the CLP Regulation
- Most substances not classified as CMR but for which SCCS expressed some concern on toxicity endpoints
- Substances for which concern was raised by stakeholders / Member States on potential endocrine disrupting properties

3rd Step:

overlap of chemicals with other databases to collect additional data for ED IA

Cross-check if the chemicals selected from PPPR, BPR, REACH Regulation, Cosmetic Regulation and WFD are present in any of these databases/lists:

- US-EPA Endocrine Disruptors Screening Program
- ToxCast: database with in vitro data from US EPA
- EASIS
- Tedx: list of potential Eds
- SIN: list of potential EDs compiled by NGO ChemSec

Inventory of chemicals to be screened

Chemical Name	CAS	pesticides	biocides	cosmetics	REACH	WFD	EDSP	SIN ED label	Tedx	EASIS	ToxCast
Substance 1	XXXX	1	1						1	1	1
Substance 2	xxxx	1	1						1	1	1
Substance 3	xxxx	1	1						1	1	
Substance 4	xxxx	1	1						1	1	1
Substance 5	xxxx	1	1						1	1	1
Substance 6	XXXX	1	1						1	1	1
Substance 7	xxxx	1	1						1	1	1
Substance 8	xxxx	1	1						1	1	1
Substance 9	xxxx	1	1						1	1	1
Substance 10	xxxx	1	1			1			1	1	1
Substance 11	xxxx	1	1						1	1	
Substance 12	xxxx	1	1						1		

Indicate where to find relevant information to facilitate data-collection

Concluding Remarks

Concluding Remarks

Contractor applied methodology to sample subset (35 substances) to test practical operability

Fine tuning/adjustments were made according to feedback

- Methodology currently being applied in a phased manner to PPPs, Biocides and selection from REACH, cosmetic ingredients and priority substances under Water Framework Directive
- Strike appropriate balance between resources, time constraints and depth of analysis
- The JRC is continually supporting the contractor to ensure the faithful implementation of the methodology

Concluding Remarks

> To keep in mind:

- The results of the screening do not constitute in any event a list of recognised endocrine disruptors.
- Therefore, the results do not have any regulatory consequences, nor do they pre-empt any future decision regarding identification of a chemical substance as an endocrine disruptor.

Joint Research Centre (JRC)

The European Commission's in-house science service

תודה Dankie Gracias Спасибо Takk Merci Köszönjük Terima kasih Grazie Dziękujemy Dėkojame Dakujeme Vielen Dank Paldies Kiitos _ Täname teid 感謝您 Obrigado Teşekkür Ederiz 감사합니다 Σας ευχαριστούμε υουρα Bedankt Děkujeme vám ありがとうございます Tack

www.jrc.ec.europa.eu

Serving society - Stimulating innovation - Supporting legislation

DISCLAIMER: This presentation and its contents do not constitute an official position of the European Commission or any of its services. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this presentation or its contents

