eHealth Network

Guidelines on

Technical Specifications

for EU Digital COVID Certificates

Validation Rules

V1.1
2022-02-23

eHealth Network

The eHealth Network is a voluntary network, set up under article 14 of Directive 2011/24/EU.
It provides a platform of Member States' competent authorities dealing with eHealth.

Adopted by the eHealth Network on 23.02.2021.

-Keep this page free-

eHealth Network

Contents
O =Y 1 o1 Vo) [=4V AU 6
B O 1V T oV = PP PP PP 7
T UL =T g o 4 =T PP PPPPPPPOUPROTP 8
3.1 [DI=T o 1Y AU =P OO PPPPRPPRRRRRR 8
3.2 ATTIVAL ettt sttt b e b e bt b e eheesane et e eennees 8
33 20 Yo 14 oY= SRR 8
34 Holder INFOrMationcooioiieiie ettt bt st st eae e b eeeens 8
3.5 PUDBIIC INFOrMAtioNcouiiiie ettt st b et 8
S T ol o L= SRR PUPPPRROP 9
4.1 ACCEPLANCE RUIES ...ttt ettt et e s e st e e st e s bt e e sabeesateesabeesaeeenans 9
4.2 INVAlIAAtION RUIES ..ottt ettt st s s e ene e 9
4.3 Dates and Time HanAIINGccocouieii ettt e e st e e et e e e e s e e e s s naeeeeeensaaeeeenes 9
TR U] [= 3 o o Yol =YY o = SRR SURR 10
5.1 OVEBIVIBW ...ttt ettt et e e s ettt e e s be e e e s eab e e e s s bb e e e s eane et e seasbbeeesannneeesennneas 10
5.2 [(o Tol Y [o F =AY =] o LSS ST P PP RPPRPTPPPP 10
53 SEIECHIVE PrOCESSING ccuviiiiiie ettt ettt ettt sttt et s et e sab e e sbee e sabeesbaeesabeesbaeenseeennne 11
5.4 FallDack SCENAIIOSeeuiieiieiieie et s s s et eans 12
5.4.1 Incompatible Rule ENGINE VEISIONS.......ciiicciiiieiciiiee ettt etee e e ervre e e rre e e e e nnaee e 12
5.4.2 INCOMPAtibIe SCREMA.....ceeieeeeee et araee e 12
5.5 Rule FOrmat and REPOSITONYuviiiieciiieeiiiiiee ettt ecttee e e erttee e e e tre e e e e stbaeeessanaeeesennseeeeensraeeeens 12
5.5.1 Rule [dentifier Pattern......cc.ee ettt ettt e 12
5.5.2 RUIE FOPMAT. ittt sttt ettt e st s e st e e e ate e sabeesateesasaeenaes 12
5.5.3 [0=T o To 1] Ko] VA PP PP PPTPPPPPPPIN 13
6. Rule and Valueset DiStribULIONcooiiriiiiiiiieiiee e et 14
6.1 FUNCLIONAI OVEIVIEW ...ttt ettt s s st e en s 14
6.2 RUIES APttt ettt e s bt bt s at e st e et e e bt et e e st eesbeesabeeate st e enbeenseebeenaeeeean 14
6.3 VAIUESET AP ...ttt ettt et e bt e e bt e e abe e st e e e at e e sr e e e nne e e eneeeans 14
6.4 AP PrOVISIONING «.ceveeeiiiete ettt ettt ettt e e et e e s sbe e e e seabee e e s sasbaeesssaneeessnnes 15
2 U (=Tl =X V= o ST 16
7.1 OVEIVIBW ...ttt s a e e ba e e e s sba e e e s eb e e e e sabae e e s sanaes 16
7.2 UL V7 -) SRR 16
7.3 Dates and Time HanAIINGcccoouviieeeiiee ettt e tte e e et ae e e e raaae e e s e abeeeeearaaeeeas 16
7.4 BasiC Data ProCeSSing STTUCTUIE.......uuiiiiiiiiie ittt e et e e e e s s e baaaeeeeeeas 16
7.5 EXEEINAl PArameters. ..o iei ettt ettt e st st e st e st e e sae e e s be e eaeeens 16
7.6 V11 e A Te] o T WY -4 T o TR 17

eHealth Network

8. Predefined RUIEScoiie ettt ettt e et be e s abe e s bt e st e e s ae e e s aeeeeaas 18

8.1 AVailable Data FIeldsoc.ee et s s 18
APPENAIX A - EXAMPIES. . etiiiieiiiee ettt e e e e s etee e e st e e e e tteeeessbteeeseaaseeeeeesteeesanssaeesaansaeeeeansreeenanns 19
F AN o] o= g Vo 1 = TSRS 20
PN o o1 oo I G =T o o -4 ol SRS PSSRR 21
Appendix D - multiple events CheCKING.......oii i 25

Version History

Version Date Description
1.0 2021-06-09 First version
1.1 2022-02-23 Minor corrections

This document complements normative technical specifications adopted and published as
Commission Implementing Decision (EU) 2021/1073 (with any amendments, such as Commission
Implementing Decision (EU) 2021/2014). The document should be read together with the legal acts.

eHealth Network

1. Terminology

Definition Description

Technical check Technical check (rules) on the authenticity, integrity, structure and time
stamps of the QR code. These are not specified in this document.
Business Validation | Business rule validation checks on the DCC payload against acceptance and

invalidation rules.

Verification Verifcation Datetime is the date+time against which the rules are checked.

Datetime For instance: date of departure, date of arrival, current date etc.

CoD Country of Departure

CoA Country of Arrival

DCC EU Digital COVID Certificate

FFT Fit for Travel, acceptance for access to a MS <<term may change>>

MS Member State or Member States

Holder A Holder of a DCC.

Proof A cryptographically signed digital assertion of a vaccination, test result or
recovery status of a holder.

Verifier A verifier uses trusted cryptographic information of an issuer to verify the
proof of a holder.

Issuer The issuer issues or signs proofs about a holder statement.

Rule Engine A rule engine processes rules over a set of data defined in a standardised

manner.

eHealth Network

2. Overview

The EU DCC Validation Rules are applied on the payload of the DCC. All "technical" validations have
to be performed in the verifier applications to ensure that these checks are not overridden. This
includes:

e Check of EXP Date
e Check of the Data Format (CBOR, Schema)
e Check of the Cryptographic Signature

All checks that are based on the semantics of the DCC payload must be performed as validation rules
to ensure the exchange/interoperability of this information to other countries (hard coded rules on
the payload cannot be explored by others). This should ensure the following behaviour:

e All wallet apps of all countries must be able to evaluate the current rule set of a country
e All verifier apps of all countries must be able to evaluate the current rule set of a country

e External parties (e.g. Reopen Europe, Airlines, Websites) must be able to use the rules as an
input for checklists, visualisations etc.

e All verifier apps must be able to select a rule set to be used for the check against a scanned DCC
e All wallet apps must be able to select a rule set to be used for the check against a selected DCC

Under this site conditions, it's not recommended to implement hard coded rules on the payload,
otherwise these rules are "hidden" to others.

eHealth Network

3. User Stories

3.1 Departure

A user with the verifier app in the CoD wants to cross check, if a holder of DCC fulfils all
requirements of the CoA. The user opens the verifier app, selects the CoA (e.g. from the boarding
pass) and scans the provided DCC. The verifier app performs the technical validation. If this
validation was successful, the verifier app performs the logical validation by checking the payload for
additional rules set by the CoA. If all are passed, the verifier app shows green and valid.

3.2 Arrival

A user with the verifier app in the CoA wants to cross check, whether a holder of DCC fulfils all
requirements of the CoA. The user opens the verifier app. The CoA is his default setting for scanning
the provided DCCs. The verifier app performs the technical validation. If this validation was
successful, the verifier app performs the logical validation by checking the payload for additional
rules set by the CoA. If all are passed, the verifier app shows green and valid.

3.3 Booking

The booking website needs to check before a successful booking the validity of a DCC. For this
purpose the service needs access to the logical rules to ensure the validity of the provided data.

3.4 Holder Information

A holder of a DCCs needs to check in the wallet app, whether their current certificate is still valid for
entering another MS. For this purpose, the user selects a DCC and selects a MS to which the DCC
should be checked against. The result is a list where all rules are provided with green arrows or red
crosses (included the most important technical validations), so that the user knows exactly what kind
of actions he has to perform. For instance: if the test certificate is not more valid, the checklist shows
that the date time is expired, but the type of the test is still ok. A holder must have all the time a full
overview of his current state.

3.5 Public Information

Some service providers want to visualise checklists or information about the current situation in a
MS. These service providers are using the defined rules to create a human readable presentation of
the current situation. E.g. a visitor clicks on a state and gets the actual rule set as a checklist.

eHealth Network

4. Principles

4.1 Acceptance Rules

Acceptance Rules are all rules to generate acceptance for the DCC. To standardize the interpretation
of a rule and the interoperability meaning, each defined rule must respect the following principles:

1. The rules apply only for the trip from departure to arrival. After arrival, extra rules may apply in
the CoA, such as quarantine, extra tests et cetera. These are not in scope of the FFT check.

2. Besides QR code data elements, the following external information elements are to be used in
the FFT check:

1. Verification DateTime (date and time against which the data in the QR code are
compared.). If no Verification DateTime is provided, it will be filled with the current
date and time.

2. Country of Destination (1ISO 3166, 2-character)
Other external parameters such as the age of the citizen, “color” of Country of
Departure are not in scope.

3. The QR code contains information on 1 event with one entry: either a vaccination, a negative
test, or a recovery statement (V, T or R).

4. The rules are checked against the Verification DateTime.

5. Rules must have a valid starting date and end date, indicating between witch time points they
are active. The end date may be open.

6. Only the active rules for the CoA are checked, and only the rules for the specific type of
certificate (V, T or R).

7. New rules come into effect at least 48 hours after they have been uploaded to the DCC Gateway.

8. MS create their own set of rules. The EU rules are just for information and must be included or
edited in the MS rule set. This avoids unclarity or conflicting rules between EU and MS rules:
only MS rules will be processed.

9. All rules for a country are processed and all must resolve to true.

10. JSON Logic Syntax of a specified version is used to define the rules.

4.2 Invalidation Rules

Invalidation Rules are all rules defined by an issuing country to invalidate DCC. These rules cannot be
overridden by a verifier country and must be executed. To standardize the interpretation of a rule
and the interoperability meaning, each defined rule must respect the following principles:

All rules from the issuing country must be processed.

The rules will be applied against the entire DCC payload.

JSON Logic Syntax of a specified version is used to define the rules.
GDPR Rules must be respected.

Eall e

4.3 Dates and Time Handling

For a proper handling of any kind of rules an appropriate date and time handling is strictly necessary.
For this purpose the principles for handling dates and time are:

1. The signing certificate expiration datetime supersedes the expiration datetime in the DCC.
2. Expiration datetime of the DCC supersedes the end date of the respective V/T/R Dates.
3. All used times inside the DCC must be time zoned for a proper comparison.

eHealth Network

5.

51

Rule Processing

Overview

The basis for the rule processing is the default validation defined in the DCC Specification, where a
validator app scans a QR code and extracts the DCC Payload.

Health data

repository 67 ————3| Metadata
=
L= ’

¥ v
{...}-»{c@}-»&ﬁ-»t)i%-»% — e

Base45 + QR Code
JSON JSON CBOR Binary COSE Signed ZLib

Schema Document Document Document Compression Validator

App

The rule processing is built on top of the standard data validation flow defined by the DCC
Specification. To ensure the maximum interoperability for applied rules between countries, the
processed payloads must meet the following criteria:

1.
2.
3.

Each QR Code contains only one type of Proof (v/t/r)

The Proof contains only one event with one entry (v/t/r)

The Rule Engine processes only the QR Code Content and some external standardised
parameters

This guarantees a proper processing of rules on a single object without side effects or mixing of edge
cases. The validator and the wallet app can then be connected to a rule repository to provide this
information to fulfil the user stories described above.

{

Rule
Health data Repository
repository G? ——3| Metadata -
(] -—
-— -

..}-»{c@}-»oﬁ-» o‘i%-»% — o |7 :QQ*{Q}

. . Base45 + QR Code
JSON JSON CBOR Binary COSE Signed ZLib . Rule JSON
Schema Document Document Document Compression Vall.l\dator Engine Rules
T
Wallet
App
5.2 Processing Steps

The rule processing contains some common steps before the rules can be applied. At first there must
be a technical validation of the received certificate for expiration and schema compatibility. If this is
given, the process can continue with the rule engine check-up. If the engine is supported (backwards
compatibility must be given), then the processing can be started. Otherwise human-readable

10

eHealth Network

feedback must be created. The second step is a logical validation by the rules engine, which
processes the rules with prepared data for a certain certificate type. This prepared data must
contain external data from the technical environment, for instance the current time, the current
country code for validation and other standard values to give the rule engine a context for the
verification.

= Processing Steps
=
>
Y | invalidor
Expired? Invalid
Certificate
Check
c
o
5 .
2 Valid Expired? Y
[=3 r
o Invalid
<
c Show Human
o Readable
© Fallback Check Rule
S Repository
=
T
Q N
>
RuleEngine Check & N
<
available? Rule Engine
Rules available for Process Result
?
schema version Feedback
Valid A Invalid
=
Y ¢
N
g Prepare
- Data Processing Execute Rule Collect Result Evaluate Results
= Structure
[=4 —
w All rules \
2 executed?
3
o V_\
Execute Logic

The output of the rules must be collected to get a full picture of the final result. This is necessary for
a proper feedback to the verification app which can handle then the complete result matrix. The
result matrix should contain at least the Rule Identifier, the current values and the Boolean result
value. In the case of a validation error, a verification application (including the wallet) should
feedback the validation result to the user similar to this table:

Rule Identifier Rule Description Result Current
VR-XX-00123 Number of doses must be 2/2 false Dose Number: 1

Total Series of Doses: 2
VR-XX-00111 Valid Vaccine True vaccine medicinal product:

Astra Zeneca

5.3 Selective Processing

The rule processing must be selectable in the wallet and in the verifier app to decide which rules of
which country has to be applied against a payload. For this purpose both apps must have a selection
by country to give the user the possibility to check-up against different rule sets.

11

eHealth Network

5.4 Fallback Scenarios
5.4.1 Incompatible Rule Engine Versions

In the case of an incompatible engine version (rule engine version> current version), the technical
validation has to be performed a human readable fallback. This fallback can be a table similar to this
table:

Rule identifier Rule description Result Current
VR-XX-00123 Number of doses must be OPEN Dose Number: 1
2/2 Total Series of Doses: 2
VR-XX-00111 Valid Vaccine OPEN vaccine medicinal product: Astra Zeneca

Each of the results has to be decided manually by the operator. For instance, by selecting each row
and giving a check mark or by simply confirming that the check has successful passed. This check-up
is a completely manual check-up, because the engine is not able to perform automatically a check
with a rule.

This table can be presented similar to that table:

Rule identifier Rule description ‘ Result Current
VR-XX-00123 Number of doses must be OPEN Dose Number: 1
2/2 Total Series of Doses: 2
VR-XX-00111 Valid Vaccine True vaccine medicinal product: Astra Zeneca

The wallet app should show the same table, but with a warning for each open rule, because this can
lead to time delays during the travel.

5.4.2 Incompatible Schema

In the case of a schema version provided by the DCC that is unknown or not supported by the
verification application, the verifier application can only present the complete content and let the
verifier decide.

5.5 Rule Format and Repository

5.5.1 Rule Identifier Pattern

5.5.5.1 Acceptance

Rule Prefix - Country Code - Unigque Sequence Number
GR - EU - 0001
"GR" for General Rule ISO 3166 OR "EU" Incrementing Number

"VR" for Vaccination Rule
"TR" for Test Rule
"RR" for Recovery Rule

5.5.5.2 Invalidation

The invalidation identifiers can be chosen, e.g. a GUID.

5.5.2 Rule Format

All rules are technically defined in a JSON format which describes the type, validity, the used
versions, the human readable descriptions etc. The table below describes which fields must be
present in the JSON to describing a rule.

Field Description Datatype Example values
Identifier The unique rule name string GR-CZ-0001
Type Type of the Rule. string Acceptance/Invalidation

12

eHealth Network

Version Version of the Rule string 1.0.0 (semver)

SchemaVersion @ Version of the used Schema string 1.0.0 (semver)

Engine Type of the RuleEngine string "CERTLOGIC"

EngineVersion Version of the used Engine string 2.0.1 (semver)

CertificateType Type of the certificate string General, Test, Vaccination, Recovery

Description Array of Human readable @ Array [{“lang”:“en”,desc:"Full vaccination
description of the rule course 2/2"}]

ValidFrom Start Validity of the Rule string DateTime value

ValidTo End Validity of the Rule string DateTime value

AffectedFields Fields of the payload which @ Array ["tg", "mn"...]
are used by the rule.

Logic The logic payload in JSON. Object JSON

An Example of the structure can be found in Appendix A

5.5.3 Repository

All rules are stored in a repository which must observe the validity time of a rule. The rules for
Invalidation and Acceptance are stored in separated sections of the repository. If the "ValidTo" is
expired, the rule is automatically deleted, if the owner of the rule does not update the rule.

The repository performs content checks on the uploading/updating of rules to avoid conflicts:

Check
UploaderCorrect

Description

Check if the uploading Country uses the right
format for the identifier. Country is extracted
from Upload certificate.

The validFrom date must be minimum 48 hours
in the future on upload time. If the rule already
exists, the valid from is taken from the old
entry.

The validTo must be minimum five in the future
in relation to the validFrom date.

RuleValidFrom

RuleAlreadyExpired

DescriptionFilled Human Readable Description must be filled with

minimum one entry with 20 signs and language
“en”.

The inserted Versions must be semVer

The schema of the rule must be valid.

The language in the description array must be a

valid one.

VersionChecks
SchemaCheck
LanguageCheck

Exception if not valid
Rule cannot be set for
another country.

Rule cannot be enabled
within a time window less
than 48 hours.

Rules with validity less
than 72 hours are not
accepted.

Description must be filled
for fallback.

Invalid Version Number

Invalid Schema.
Invalid Language.

13

eHealth Network

6. Rule and Valueset Distribution

6.1 Functional Overview

The rules and value sets are provided over the EU gateway additionally to the existing functionality
of up/downloading signer certificates. The rules can be uploaded by each member state, but the
value sets are maintained centrally by the eHN. In a future version the value sets can be uploaded by
the member state as well, but this needs further alignment and harmonization of the value set
interpretation.

:{ Global 1
- “““ B
T !
| Value sets (vaccines, tests) }____________
EU gateway ez
==

| MS Signing certificates | | | Combined Signing certificates |

| Daily upload Daily download f
I MS Acceptance Rules | | Combined Acceptance Rules |
| (MS Value sets) | t———- MSbackend [¢——— | Value sets (vaccines, tests) |

~
s
s N

| Daily uploa/d | [;aily download |
————— —————
6.2 Rules API
Route Action Description Parameters Response
content
/rules GET Returns a List of Rules | Country Array of CMS
/{country} for a Country. Messages
/rules PUT Upload/Update of a | CMS -
/{ruleldentifier} single Rule Message/Ruleldentifier
/rules DELETE Deletes a rule. Ruleldentifier/Signature -
/{ruleldentifier}
/countrylist GET List of onboarded | - Array of Country
Countries Codes

Note: The rules are immutable. After uploading it can be only deleted if a new version is uploaded
before.

6.3 Valueset API

Action \ Description Parameters Response content
/valuesets GET ID List of available - JSON Array
Valuesets
/valueset/{id} GET Valueset for a certain | ID as Path | JSON
ID Parameter

The valuesets will be placed as JSON on the server and will be published by a public route.

14

eHealth Network

6.4 App Provisioning

The verifier and the wallet app get the business rules from a business rule backend which downloads

the rules from the gateway.

dcca-verifier-app |—

dcc-g y

API Gateway

dcca-businessrule-service

Business Rule Service

dcca-wallet-app [—

DCCG Cache

(manage & publish Business rules)

=

15

eHealth Network

7. Rules Engine

7.1 Overview

The rule engine has the task to prepare the extracted JSON payload for a standardised rule
processing. This contains a standardised container format, harmonised timestamps and the insertion
of external parameters to have a standardised set of parameters that are identical across all rules
and a standardised rule syntax.

7.2 Rule Syntax

The rule syntax is defined by JSON Logic® which defines a set of operators in JSON format. For this
syntax are already implementations available in the most common languages. Some of that
languages differ in the interpretation of this syntax; therefore the behaviour must be always aligned.
For this purpose, the CertLogic subset of the JsonlLogic Syntax is defined to align the behaviour
across all implementations (see Appendix C).

7.3 Dates and Time Handling

The engine must convert all timestamps and dates to ISO8601 time zoned dates before processing to
ensure a proper comparing and calculation of date values. For this purpose, the implementation
must provide a custom operator “plusDays” to add and substract days of a given date as in this
proposal:

jsonLogic.add_operation("plusDays", function(date,days){
let d = new Date(Date.parse(date));
d.setDate(d.getDate() + days);

return d.tolSOString();

N;

It has also been ensured that the implementation is able to realize the “between” operator for dates
correctly which is defined in the JSON Logic Javascript Version as a compare operation between
other values.

7.4 Basic Data Processing Structure

The basic data structure must follow a standardised manner to ensure that each rule defined in a
special version is processed correctly. This structure contains a block for external data and the DCC
content extracted by the rule engine. All rules are applied on this structure to have a standardised
syntax for each rule. The format is defined in JSON and the order of the fields can be arbitrary.

Field name Description Format
external Block for external parameters JSON
payload JSON Payload of the DCC JSON

The payload contains the extracted entry of the certain certificate type (e.g. one entry of a
vaccination). If the type is “general” the payload contains the complete DCC.

7.5 External Parameters

All external parameters are inserted by the rule engine which extract these parameters from the
CWT, the app environment or from other available variables.

! https://jsonlogic.com/

16

eHealth Network

Parameter Description Validation Type Value
fieldname
Validation Evaluation Timestamp validationClock Date Time (ISO "2021-04-21T18:25:43-
Date which is used to check 8106) 05:00"
the validity (Reference
Date)
Value Sets | Lists of values defined | valueSets JSON Object with "disease-agent-
by each valueset id. string arrays of targeted":["840539006"]

each valueset.
Country Country Code of countryCode String (ISO 3166) "NL", "CZ",...

Code country of interest

(can be CoA or CoD)
Expiration | The expiration date of | exp String (ISO 3166) @ "2022-04-21T18:25:43-
Date the certificate "exp" 05:00"

Field.
Issuing The issuing date of | iat String (ISO 3166) "2022-04-21T18:25:43-
Date the certificate ‘"iat" 05:00"

field.

An example can be found at the end of this page in Appendix B.

JSON Logic Usage:

{"in"™:[{"var":"hcert.v.0.tg"},{"var":"external.valueSets.disease-agent-targeted"}] }

7.6 Validation Logic

The validation logic must execute ALL rules for a specific country. All rules must be processed to
provide a complete overview about the state of a DCC. The final result MUST be true or false
(True=VALID, False=INVALID). A mixed state should not be allowed to express the rules as strict as
possible. The logical pattern is:

Result = AND[Rulel, Rule2,Rule3]

All rules must be created in a way that the result expresses one validation for one entity. For
instance, one rule for Vaccination Status, one rule for Validity Status. Conflicting Rules like
"Dosel/2"+"Dose2/2" should be avoided, because they cannot be applied on one certificate in the
same time (E.g. "CheckDoses" is one entity and can perform multiple checks inside).

17

eHealth Network

8. Predefined Rules

8.1 Available Data Fields

This list of data fields is currently available in the DCC Schema (version 1.0.1).

Data field
Target Disease Agent
Vaccine or Prophylaxis
Vaccine medicinal product
Marketing Authorization Holder
Dose Number
Total Series of Doses
Date of Vaccination
Country of Vaccination
Certificate Issuer
Unique Certificate Identifier: UVCI
Type of Test
NAA Test Name
RAT Test name and manufacturer
Date/Time of Sample Collection
Date/Time of Test Result
Test Result
Testing Centre
Country of Test

1SO 8601 Date of First Positive Test Result
ISO 8601 Date: Certificate Valid From

Certificate Valid Until

tg
vg
mp
ma
dn
sd
dt
co
is
ci
tt
nm
ma
sc
dr
tr
tc
co
fr
df
du

Abbreviation

Type
Vac/Test/Rec
Vac
Vac
Vac
Vac
Vac
Vac
Vac
Vac/Test/Rec
Vac/Test/Rec
Test
Test
Test
Test
Test
Test
Test
Test
Rec
Rec
Rec

18

Appendix A - examples

{
"Identifier": "GR-CZ-0001",

“Version”:"1.0.0",
“SchemaVersion”:"1.0.0",
"Engine":"CERTLOGIC",
"EngineVersion":"1.0.0",
"Type":"Test",
"Description":"The Field “Doses” MUST contain number 2 OR 2/2.",
"ValidFrom":"2021-05-27T07:46:40Z",
"ValidTo":"2021-06-01T07:46:40Z",
"AffectedFields":["dt","nm"]
"Logic":{

"and": [
{“>=":[{"var":“dt", "23.12.2012" 1}},
{“>=":[{"var":“nm", "ABC" 1}}]
}

eHealth Network

Appendix B

JSON Example before JSON-LOGIC Processing:

{

"external":{

b
"hCert":{

VL

"validationClock":"2021-10-21T18:25:43-05:00",
"valueSets" : {
"test-type":[...],
"test-result":["260415000","..."]
b
"countryCode":"CZ",
"exp":"2022-10-21T18:25:43-05:00"

"tg": "840539006",

“tt": "LP6464-4",

"ma": "1331",
"sc":"2021-05-15T12:34:562",

"dr": "2021-05-16T12:45:012",

"tr": "260415000",

"tc": "Testing center 1",

"co": "RO",

"is": "Ministry of Health",

“ci": "URN:UVCI:01:RO:QW3L2LL66Q#H4"

20

eHealth Network

Appendix C - CertlLogic

Certlogic specifies a subsetof JsonLogic Syntax, where necessary extended with custom
operations - e.g. for correct handling of dates.

Regarding the relation of CertLogic with JsonLogic, and the DCC validation rules:

e Any DCC validation rule must be expressed according to CertlLogic, and may not use
JsonLogic in a way that's inconsistent with CertLogic, or not provided for by CertlLogic. In
particular, only JsonLogic constructs present in this CertLogic specification may be used.

e The use of “truthy”/“falsy” values that are not already JSON Booleans is discouraged, and
limited. In particular, DCC-validation rules should evaluate to a JSON Boolean, not to any
“truthy”/“falsy”.

e The semantics of the validation rules may beexpressedin Certlogic, but
are not (strictly) defined by it: all implementations should pass the unit tests assertions
defined for the validation rules, and should pass additional tests that ascertain the intent of
the validation rule.

e This specification can be expanded when the needs arises, but never shrunken.

e The intention is that CertLogic remains compatible with JsonLogic, but may expand on
JsonLogic when and where necessary.

e In the interest of testability and risk mitigation, CertLogic is kept as small and simple as
possible, without any “programmers' convenience”.

The semantics of Certlogic is that of a function which takes a CertLogic expression, a data
context, and returns a value. All three of these values are JSON values that must be self-
contained, and non-referential. This means that:

e These JSON values can be finitely serialised, and identically deserialised.
e JSON objects anywhere in any of these values have at most one incoming reference (that of
their parent), and no outgoing references, except to children.

CertlLogic logical expressions are of the following form, except for data access (var) - see below.

{

"<operation id>": [
<first argument>,
<second argument>,
/...
<last argument>

]

}

The CertLogic function always evaluates to some value, and never throws an error. Operating on a
value null evaluates to null in most, but not all, cases.

A JSON array evaluates to an array with every item evaluated separately. If a JSON object (not an
array) is not of the logical expression form above, and also not of the var-form, it evaluates to itself.

Truthy and falsy

Allowed falsy values are: false, and null. Allowed truthy values are: true, any non-empty array, and
any object. Using other values that are “traditionally” falsy or truthy is regarded as undefined
behaviour.

21

eHealth Network

The reason to do this is that JsonLogic has a notion of truthy/falsy that differs from the usual
JavaScript one, precisely to aid in cross-platform adoption. CertLogic restricts this notion even
further to avoid confusion, or unjust reliance on behaviour that's perceived as “common” but
isn't (cross-platform).

Literals: arrays, booleans, integers, and strings

The usual array, boolean, integer (as a subset of JavaScript's Number type), and string literals are
usable. Literal for the following (types of) values are not allowed: objects, null, and dates.

A datetime (or timestamp) has to be constructed by performing a plusDays operation on a string
with 0 days added. This makes it possible to ensure consistent datetime representations across
platforms, without being able to implicitly rely on the behaviour of native datetime types in
combination with the other (allowed) operations.

Data access (var)
The data context can be accessed through an operation of the following form:

"Var": "<path>" }

The <path> is a string containing a path that “drills down into” the current data context. It must be
composed of “path fragments” which are either “Lispy” words (starting with a word character
followed by any number of word or number characters, or hyphens), or integers, and which are
separated by periods (.). It must match the regular expression /A((\w[\w\d-1*)|\d+)(\.((\w[\w\d-
1*)1\d+))*$/.

In terms of most mainstream programming languages: if it is a variable/slot holding the current data
context, then { "var": "<path>" } essentially means it.<path>. Data access of a null or non-existing
value evaluates to null.

An integer path fragment signifies array indexing. Array indices are 0-based, and accessing a non-
existing index evaluates to null.

The empty path "" serves as a shorthand for accessing the entire data context - alternatively, you can
read it as it (or this). The variant { "var": <integer index> } is superfluous as { "var": "<integer index>"
} achieves the same result. The variant which provides a default value instead of a missing/null result
is (currently) not allowed.

As noted before: the var data access operation is the only type of expression that can have a non-
array argument specification.

If-then-else (if)
Conditional logic can be implemented through an operation of the following form:

{

"if [
<guard>,
<then>,
<else>

]

}

If the <guard> evaluates to a truthy value, then the <guard> expression is evaluated, otherwise
the <else> expression.

Operations with binary operators

22

eHealth Network

The following binary operators from JavaScript are available: ===, and, >, <, >=, <=, in, +.

An operation with a binary operator has the following form:

{
"<operator>": [
<operand 1>,
<operand 2>,
<operand n>
]
}
For the ===, in, and + operators, n must equal 2.

The in operator checks whether <operand 1> is a member of <operand 2>, which must be an array -
possibly empty. (This must be checked beforehand through other means.)

The and operator can be used variadically: it can have any number of operands greater than 1. An
operation with the and operator returns its first operand that evaluates to a falsy value, or the
evaluation of the last value.

The comparison operators >, <, >=, <= (exempting equality===)can be used in (the
customary) binary form, or in the ternary form, with n equal to 3. The ternary form

{

"<op>": [
<operand 1>,
<operand 2>,
<operand 3>

]

}

has the following semantics: (<operand 1> <op> <operand 2>) and (<operand 2> <op> <operand
3>). The operands must be comparable values: integers, strings, or datetimes.

Negation (!)

The negation operation takes one operand, and returns true if that operand's falsy, and false if it's
truthy.

Offset datetime (plusDays)

A datetime offset operation has the following form:

{
"plusDays": [
<operand that evaluates to a string with a datetime in the allowed format>,
<integer: the number of days to add (may be negative)>
]
}

This operation is the only way to construct datetime values.
Reduction (reduce)

A reduction operation has the following form:

23

eHealth Network

{

"reduce": [
<operand>,
<lambda>,
<initial>

]

}

The <operand> must be an array - possibly non-empty. This must be checked beforehand by other
means. Often, the expression { "var": "<operand>.0" } can be used to check that <operand> is a non-
empty array.

The reduce operation is equivalent to a left-fold over the array <operand> with <initial> prepended,
using the provided <lambda> function. That function is provided with a modified data context of the
form { "current": <current>, "accumulator": <accumulator> }, with the <current> equalling the items
of the array (in that order), and <accumulator> equalling the result of the left-fold so far. In
particular, the reduce of an empty-array <operand> evaluates to <initial>. This is essentially
equivalent to JavaScript's Array.reduce function.

All other special array operations can be implemented using (only) a reduce operation with a
suitable <lambda>.

To be able to access values in the original data context, CertLogic may expand beyond JsonLogic at
some point by also adding a key-value pair with key "data" to the data object passed to the
<lambda>, whose value is the original data context.

24

eHealth Network

Appendix D - multiple events checking

This is currently not in scope.

Multiple scans (for information only, and for discussion)

At the EU level, only 1 QR code is to be scanned. At the MS level, scenarios can be worked
out where more than 1 QR code must be scanned. Examples:

o The requirement to show two Tests, with a certain interval

o Aperson that has had COVID-19 needs only 1 vaccination dosis
For these use cases, and for maximum flexibility, a methodology called “Two Points” can be
used:
FFT is reached when at least 2 points have been reached. The following rules apply:
At the beginning of the FFT check, the FFT status is 0.
MS decide on the weight of V, T and R for their acceptance rules. These can be 2, 1 or 0 or 4.
OR:V/R/T=2
V: divide “nr of vaccinations” by “nr of complete course” and multiply by 2. Example: “1/2” =
1 point, “1/1” or “2/2” = 2 points.
T: If the weight = 1, then two tests are needed for a FFT status. If it is 2, then 1 test is
enough.
R: If the weight = 1, then another proof is needed to reach the 2 points. If it is 2, the recovery
statement is enough for the FFT.

To do list

Add Rule Container format for Gateway
Add Valueset Description for Gateway
Add Wallet/Verifier Architecture Guide
Add Checklist Design

Add Architecture Proposals for API

Add JSON Logic Definitions/Requirements

25

