EUnetHTA Covid-19 Response and collaborative initiatives

HTA Network – 27th October 2020

Luciana Ballini – Regione Emilia-Romagna, Italy

Collaborative effort

17th of April 2020

EUnetHTA Task Force on SARS-COV-2 diagnostics

Work Plan

RAPID COLLABORATIVE REVIEW ON THE CURRENT ROLE OF ANTIBODY TESTS FOR NOVEL CORONAVIRUS SARS-COV-2 IN THE MANAGEMENT OF THE PANDEMIC

Project ID: RCR OT 01

What is the diagnostic accuracy of molecular methods that detect the presence of the SARS-CoV-2 virus in people with suspected COVID-19

Project ID: RCROT02

Expected early November

Published 22nd of June

ANTIBODY TESTS - Objectives and Scope

To provide a synthesis of the available evidence on several intended clinical uses of antibody tests, addressing the following questions:

Informed by liaison with DG SANTE, ECDC, JRC, Joint WHO Europe/ECDC Laboratory Network - EC Covid-19 Testing WG

Joint Research Centre (JRC)
EU Science Hub

Diagnostic use Evidence available

Whether and with which testing strategies, antibody tests can be reliably used for:

- 1 surveillance for early detection of new asymptomatic cases of SARS-CoV-2 acute infection in the general population and/or specific subpopulations;
- 2 diagnosis of SARS-CoV-2 acute infection in patients presenting symptoms suggestive of SARS-CoV-2 infection:

How antibody tests can be used for:

Other indications for use **Evidence NOT available**

- 3 measuring seroprevalence in communities;
- 4 ruling out risk of transmission in patients who recovered from SARS-CoV-2 infection;
- 5 assessing protective immunity in subjects with past and resolved SARS-CoV-2 infection.

Diagnostic Use

Table 4 - 2: Sensitivity and Specificity estimates for IgM+IgG tests

RAPID DIAGNOSTIC TESTS							
Time since symptoms onset	Overall Week 1		Week 2	Week 3	Week 4		
Pooled estimate	(9 studies)	(12 studies)	(13 studies)	(13 studies)	(10 studies)		
Sensitivity	68.8	33.8	71.5	81.6	87.8		
overall	(46.3 - 85)	(27 - 41.4)	(65.7 - 76.6)	(71.9-88.5)	(78.4-93.4)		
Heterogeneity T ²	1.39	0.08	0.10	0.51	0.0		
Specificity	93.2	92	90.2	89.7	92.1		
	(71.8 - 98).7	(84.7 - 96)	(75.9 - 96.4)	(72.8 - 96.6)	(83.2 - 96.5)		
Heterogeneity τ ²	4.14	0.87	2.54	3.23	0.95		
CLIA (chemiluminescent immunoassay) 4 studies							
Time since symptoms onset	Overall	Week 1	Week 2	Week 3	Week 4		
Pooled estimate	(2 studies)	(1study)	(1study)	(1 study)	No studies		
Sensitivity	91.8	83.3	87.9	97.1	-		
overall	(9.4-99.9)	(50.9-97.1)	(70.9-96)	(82.9-99.8)			
Heterogeneity τ ²	0.0				-		
Specificity	76.5	80	80	80	-		
	(14.3-98.4)	(69.3-87.8)	(69.3 - 87.8)	(69.3-87.8)			
Heterogeneity τ ²	0.0				-		
	ELISA (enzyme	-linked immunosor	bent assay)- 2 stud	ies			
Time since symptoms onset	Overall	Week 1	Week 2	Week 3	Week 4		
Pooled estimate	(2 studies)	(3 studies)	(3 studies)	(3 studies)	(3 studies)		
Sensitivity	84.5	37.8	84.8	88.1	90.7		
overall	(21.8 - 99.1)	(27 - 49.9)	(70.3 - 92.9)	(56.4 - 97.7)	56, 5-98,7		
Heterogeneity T ²	0.08	0.0	0.0	0.16	0.0		
Specificity	98.5	95.4	95.4	95.4	95.4		
	(0 - 100)	(8.6 - 100)	(8.6 - 100)	(8.6 - 100)	(8.6 - 100)		
Heterogeneity τ ²	19.0	3.48	3.48	3.48	3.48		

Impact on Decisions

BENEFITS

RISKS

Symptomatic subjects are diagnosed with COVID-19 at an early stage of disease, are promptly isolated and receive necessary healthcare. Contact tracing is activated (True Positive)

Symptomatic subjects are correctly classified as not infected with SARS-CoV-2 and might be diagnosed and receive healthcare for other condition; no contact tracing for SARS-CoV-2 infection is activated (True Negative)

Symptomatic subjects are incorrectly diagnosed with SARS-CoV-2 infection, might receive inappropriate health interventions and are unnecessarily put in isolation. Their contacts are unnecessarily traced (False Positive)

Symptomatic subjects are incorrectly diagnosed for a condition other than SARS-CoV-2 infection, might not receive appropriate care, are not placed in isolation and their contacts are not traced, representing a risk of transmission to others (False Negative)

Table 4 - 6: Natural frequencies - Week 1 from symptom onset

WEEK 1	N of patients out 1,000* submitted to test					
		Rapid IgM + IgG	CLIA IgM + IgG	ELISA IgM + IgG	RT-PCR	
Subjects with SARS-CoV-2 infection (N. 570)	Testing positive	193	475	215	507	
	Testing negative	377	95	355	63	
Subjects with- out SARS- coV-2 infection (N. 430) Testing positive	_	396	344	410	421	
		34	86	20	9	
	Total	1,000	1,000	1,000	1,000	

*Pre-test probability 57%

"Serving" different contexts

Population size	Pre-test probability	Number of false-positive results			Number of false-negative results			
		RDT	CLIA	ELISA	RDT	CLIA	ELISA	
100	1%	5	20	8	1	1	1	
	10%	4	18	7	6	2	7	
	25%	3	15	6	16	4	17	
	50%	2	10	4	31	8	33	
50.000	1%	2,277	9,900	3,960	311	83	331	
	10%	2,070	9,000	3,600	3,110	835	3,310	
	25%	1,725	7,500	3,000	7,775	2087	8,275	
	50%	1,150	5,000	2,000	15,550	4,175	16,550	
8.000.000	1%	364,320	1,58,4000	633,600	49,760	13,360	5,2960	
	10%	331,200	1,440,000	576,000	497,600	133,600	529,600	
	25%	276,000	1,200,000	480,000	1,244,000	334,000	1,324,000	
	50%	184,000	800,000	320,000	2,488,000	668,000	2648,000	

^{*} Test performance: RDT: sensitivity: 33.8 %, specificity: 92%, CLIA: sensitivity: 83.3 %, specificity: 80%, ELISA: sensitivity: 37.8 %, specificity: 95.4%

Dissemination

Live, work, travel in the EU

Report published on the 22nd of June

Results presented at:

- EC Testing Working Group on June 23rd
- EC IVD Competent
 Authorities meeting on July the 9th
- Joint WHO Europe/ECDC
 Laboratory Network on July
 the 15th

COVID-19 In Vitro Diagnostic Devices and Test Methods Database

Home > EUnetHTA publications repository

EUnetHTA publications repository

EUnetHTA Joint Action 3 is the scientific and technical component of EU cooperation on HTA. EUnetHTA 3 builds on years of long standing collaboration between HTA agencies, financially supported by the EU since early 2000. The current Joint Action (2016 – 2021) is co-funded by the EU Health Programme and includes government appointed organisations and a large number of relevant regional agencies and not-for-profit organisations that produce or contribute to HTA in Europe (i.e. 86 organisations from 26 Member States plus Norway, Serbia, Switzerland, Ukraine and United Kingdom).

Responding to the needs of policy makers and public health authorities for researched, timely and reliable information, EUnetHTA has launched its Covid-19-related repository of publications and outputs. The repository gathers publications by EUnetHTA and by HTA organisations on testing methods and devices, but also on treatment options, and other public health measures relevant to Covid-19.

The repository of HTA publications on testing methods and devices for SARS-COV-2 also responds to one of the follow-up actions to the Commission Communication on "Guidelines on Covid-19 in vitro diagnostic tests and their performance".

Access EUnetHTA repository >

https://covid-19-diagnostics.jrc.ec.europa.eu/

Thank you