

Session 3 – Managing uncertainty in the postlaunch phase

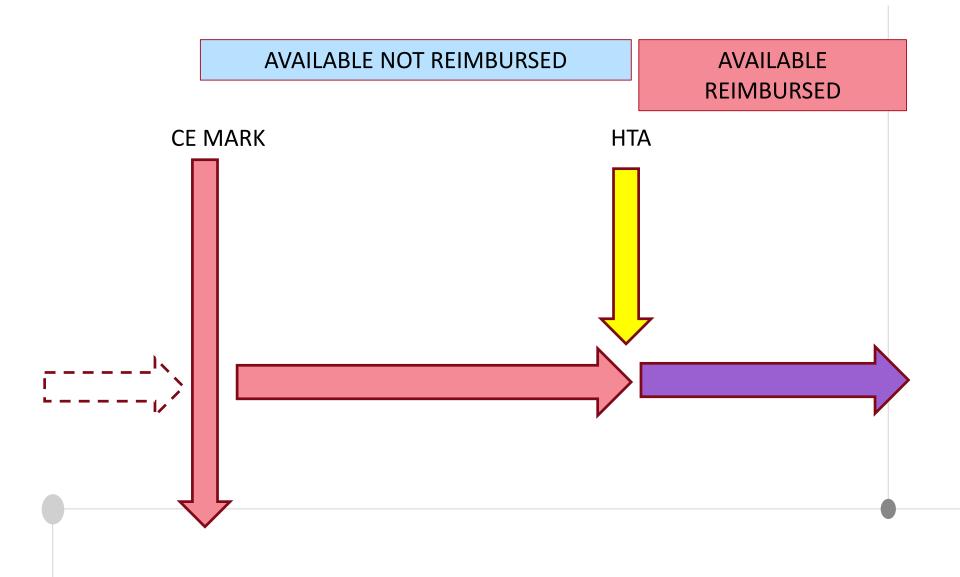
ARD

Piotr Szymanski Associate Professor of Cardiology European Society of Cardiology

Managing uncertainty in post-launch phase – key points

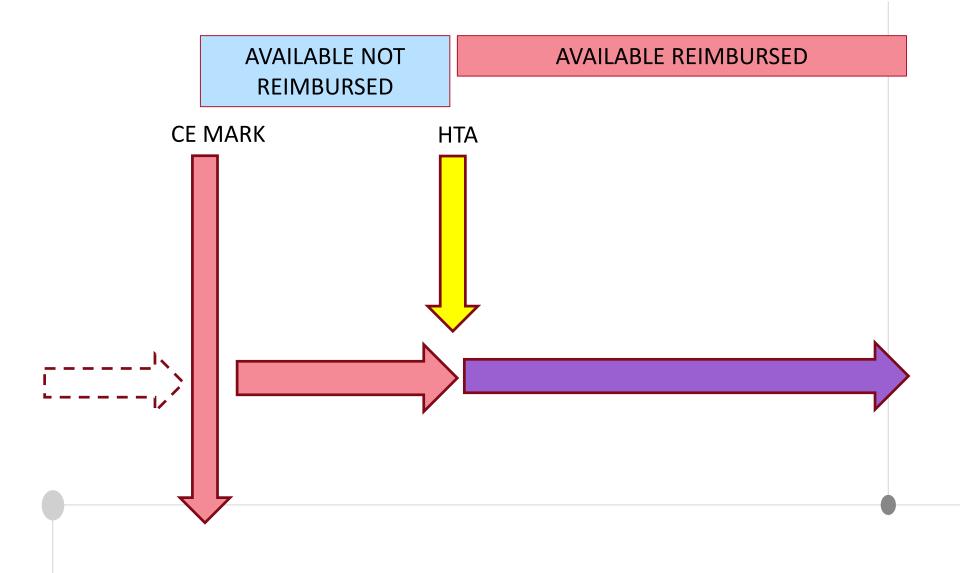
- 1. Evidence generation timeline
- 2. Uncertanity of evidence
- 3. Managing uncertainty

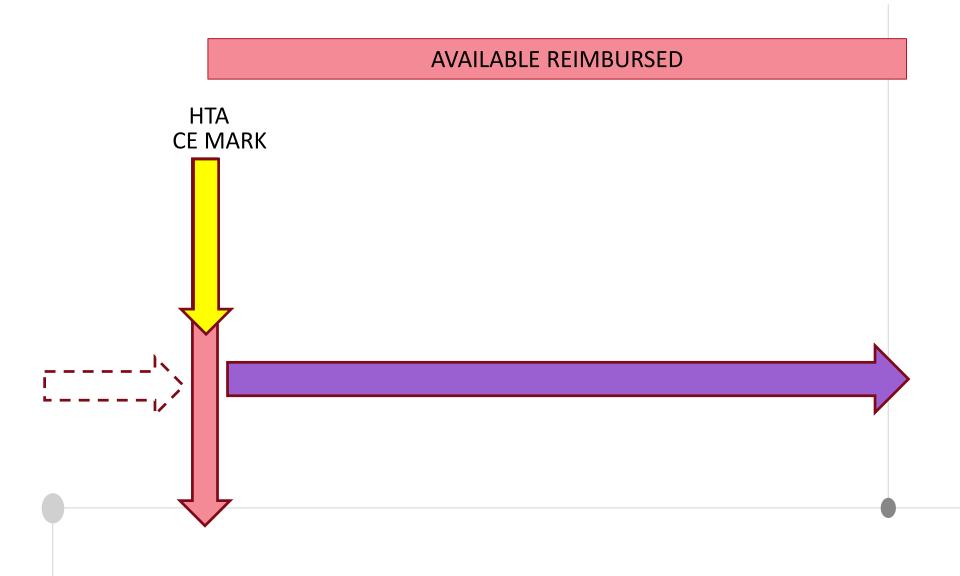
Managing uncertainty in post-launch phase – key points

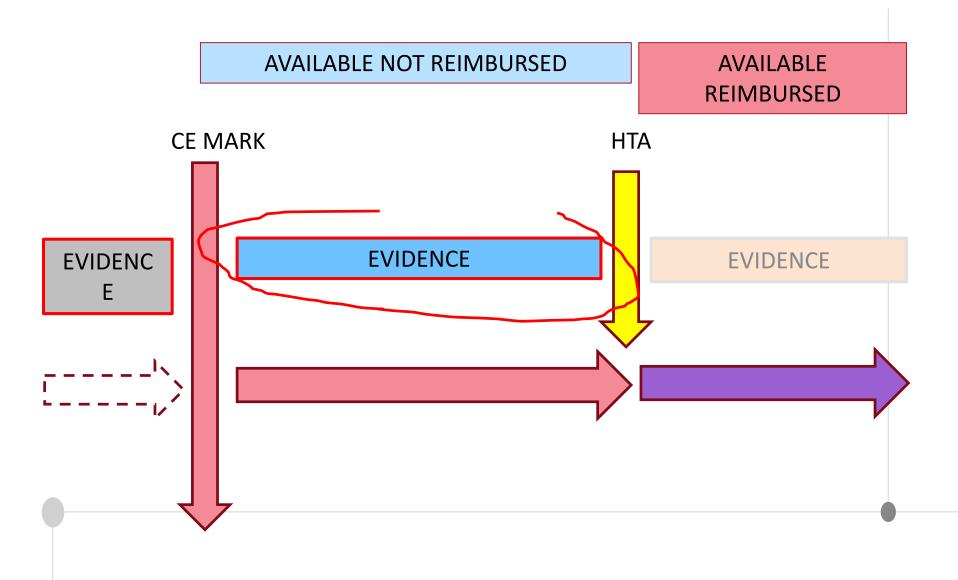


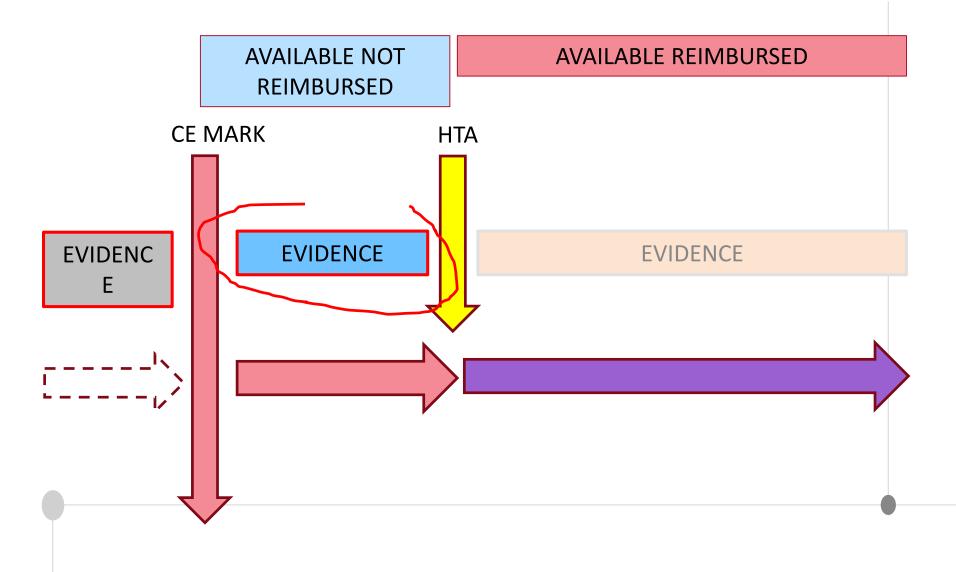
1. Evidence generation timeline

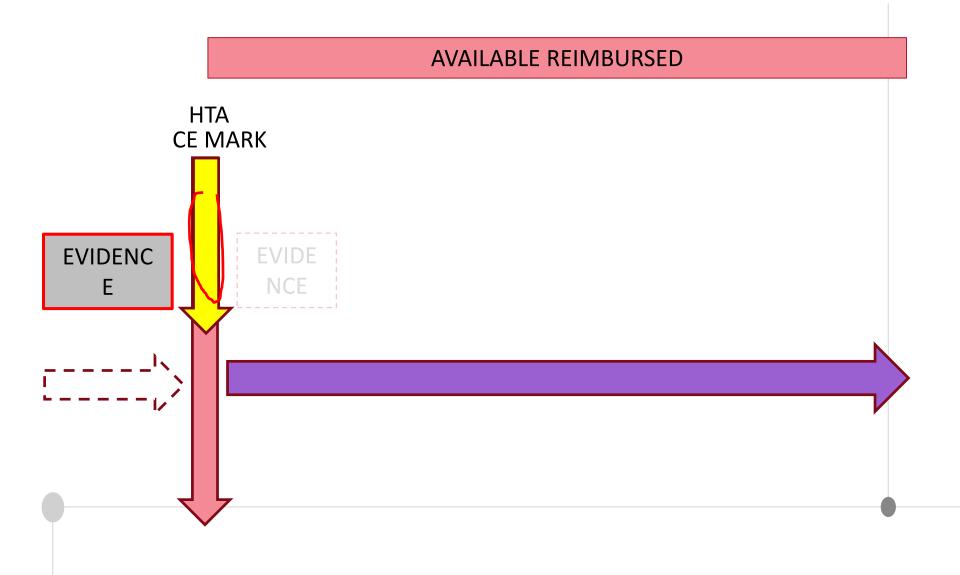
- 2. Uncertainty of evidence
- 3. Managing uncertainty

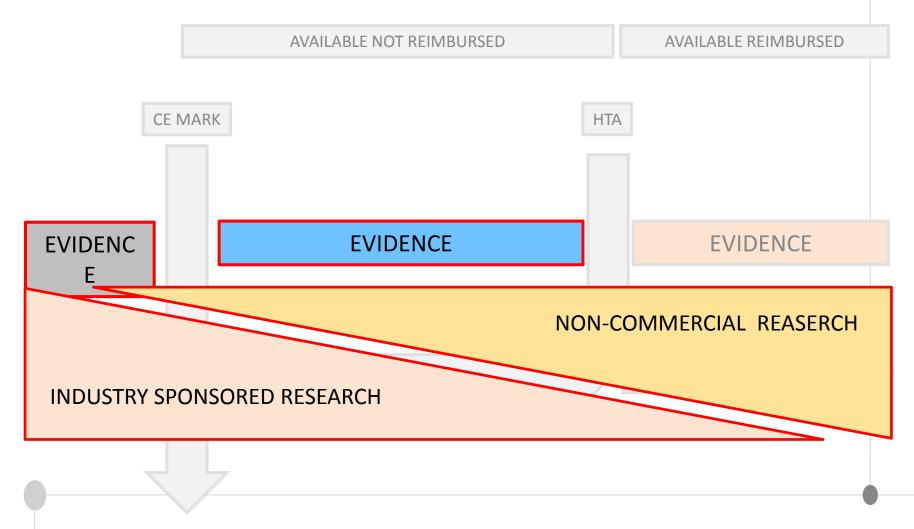

Launch of technology


Launch of technology


Launch of technology


Evidence generation


Evidence generation



Evidence generation

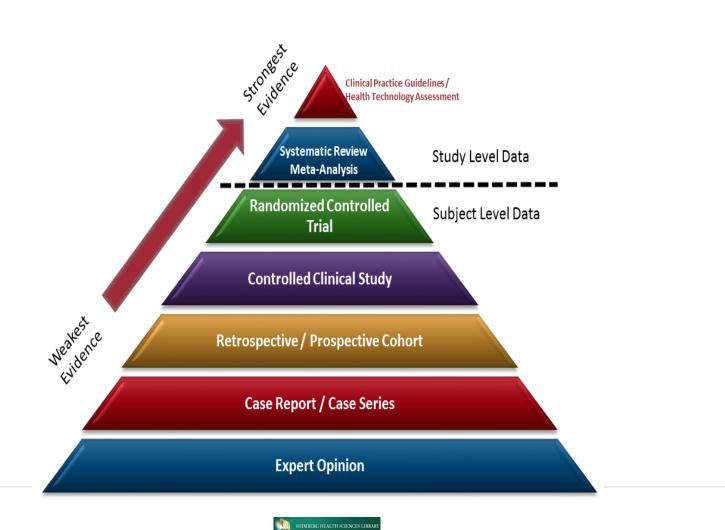
Evidence generation timeline Vertex Esc Source

Source of evidence

1/3 of clinical trials non-commercial

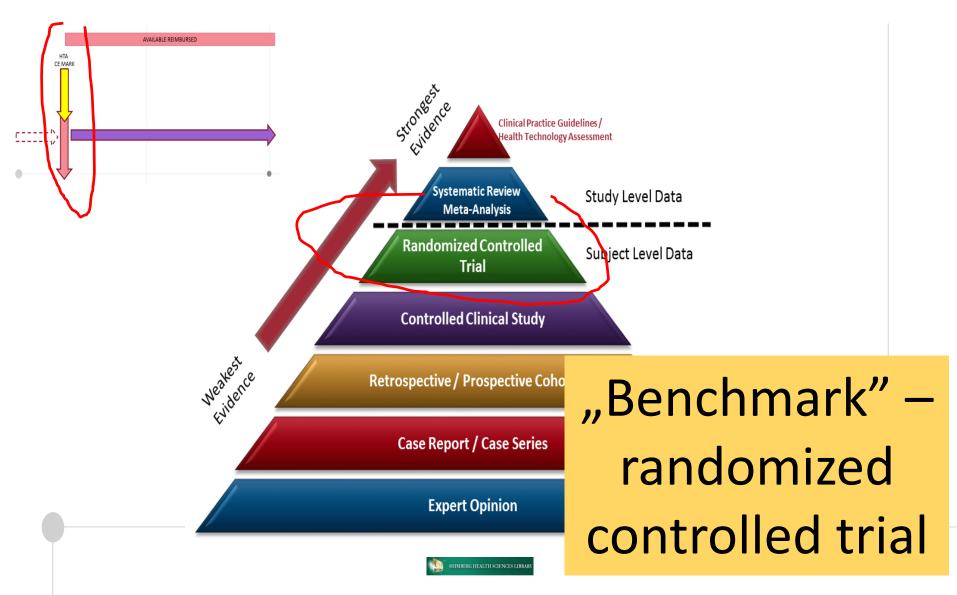
BMJ Open Development in the number of clinical trial applications in Western Europe from 2007 to 2015: retrospective study of data from national competent authorities

Tilde Dombernowsky,¹ Merete Hædersdal,¹ Ulrik Lassen,²



Managing uncertainty in post-launch phase – key points

- **1.** Evidence generation
- 2. Uncertainty of evidence
- 3. Managing uncertainty


Evidence pyramid

Evidence pyramid

JAMA. 2014 Jan 22-29;311(4):368-77

Quality of Evidence

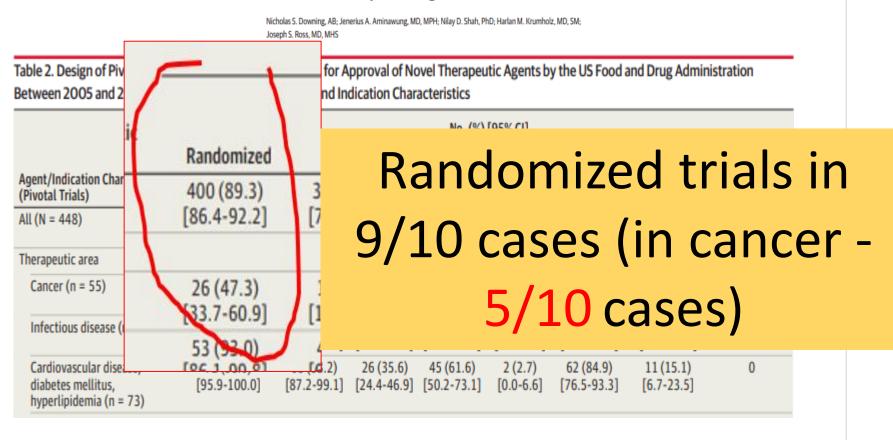
Original Investigation

Clinical Trial Evidence Supporting FDA Approval of Novel Therapeutic Agents, 2005-2012

Nicholas S. Downing, AB; Jenerius A. Aminawung, MD, MPH; Nilay D. Shah, PhD; Harlan M. Krumholz, MD, SM; Joseph S. Ross, MD, MHS

Table 2. Design of Pivotal Efficacy Trials Providing the Basis for Approval of Novel Therapeutic Agents by the US Food and Drug Administration Between 2005 and 2012, Stratified by Therapeutic Agent and Indication Characteristics

		No. (%) [95% CI]											
				Comparator		End Point							
Agent/Indication Characteristic (Pivotal Trials)	Randomized	Double- Blinded	Active	Placebo	None	Surrogate Outcome	Clinical Outcome	Clinical Scale					
All (N = 448)	400 (89.3) [86.4-92.2]	356 (79.5) [75.7-83.2]	143 (31.9) [27.6-36.3]	247 (55.1) [50.5-59.8]	58 (12.9) [9.8-16.1]	219 (48.9) [44.2-53.5]	130 (29.0) [24.8-33.2]	99 (22.1) [18.2-26.0]					
Therapeutic area													
Cancer (n = 55)	26 (47.3) [33.7-60.9]	15 (27.3) [15.1-39.4]	10 (18.2) [7.7-28.7]	16 (29.1) [16.7-41.5]	29 (52.7) [39.1-66.3]	46 (83.6) [73.5-93.7]	9 (16.4) [6.3-26.5]	0					
Infectious disease (n = 57)	53 (93.0) [86.1-99.8]	45 (78.9) [68.0-89.9]	39 (68.4) [56.0-80.9]	13 (22.8) [11.6-34.0]	5 (8.8) [1.2-16.3]	33 (57.9) [44.7-71.1]	24 (42.1) [28.9-55.3]	0					
Cardiovascular disease, diabetes mellitus, hyperlipidemia (n = 73)	72 (98.6) [95.9-100.0]	68 (93.2) [87.2-99.1]	26 (35.6) [24.4-46.9]	45 (61.6) [50.2-73.1]	2 (2.7) [0.0-6.6]	62 (84.9) [76.5-93.3]	11 (15.1) [6.7-23.5]	0					


JAMA.

4;311:368-77

Original Investigation

Clinical Trial Evidence Supporting FDA Approval of Novel Therapeutic Agents, 2005-2012

JAMA.

4;311:368-77

Original Investigation

Clinical Trial Evidence Supporting FDA Approval of Novel Therapeutic Agents, 2005-2012

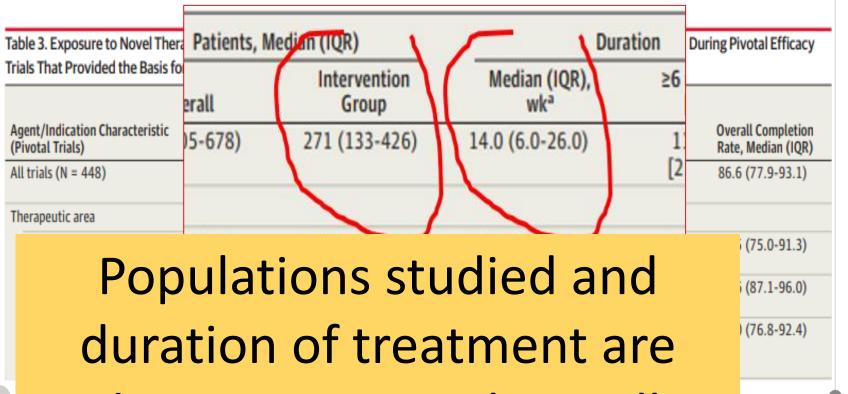
Nicholas S. Downing, AB; Jenerius A. Aminawung, MD, MPH; Nilay D. Shah, PhD; Harlan M. Krumholz, MD, SM; Joseph S. Ross, MD, MHS

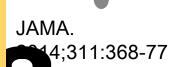
Table 2. Design of Pivotal Efficacy Trials Providing the Basis for Approval of Novel Therapeutic Agents by the US Food and Drug Administration Between 2005 and 2012, Stratified by Therapeutic Agent and Indication Characteristics

				No. (%)	[9		En	
				Comparator	T	Surrogate	Cli	
Agent/Indication Characteristic (Pivotal Trials)	Randomized	Double- Blinded	Active	Placebo	le	Outcome	Out	Clinical Scale
All (N = 448)	400 (89.3) [86.4-92.2]	356 (79.5) [75.7-83.2]	143 (31.9) [27.6-36.3]	247 (55.1) [50.5-59.8]	1.9) 6.1	219 (48.9) [44.2-53.5]	130 [24.8	99 (22.1) [18.2-26.0]
l fherapeutic area					0.1]	[++.2-33.3]	[24.0	
Cancer (n = 55)	26 (47.3) [33.7-60.9]	15 (27.3) [15.1-39.4]	10 (18.2) [7.7-28.7]	16 (29.1) [16.7-41.5]	[15 (0)		0
Infectious disease (n = 57)	53 (93.0)	45 (78.9)	39 (68.4)	13 (22.8)		46 (83.6)	9 (1	0

hyperlipidemia

Surrogate outcomes in ½ of trials




Original Investigation

Clinical Trial Evidence Supporting FDA Approval of Novel Therapeutic Agents, 2005-2012

Nicholas S. Downing, AB; Jenerius A. Aminawung, MD, MPH; Nilay D. Shah, PhD; Harlan M. Krumholz, MD, SM; Joseph S. Ross, MD, MHS

disproportionately small

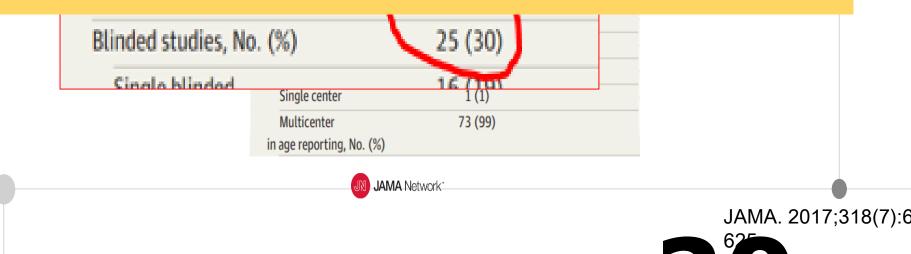
Quality of Evidence – Medical Esc Devices Characteristics of Clinical Studies Used

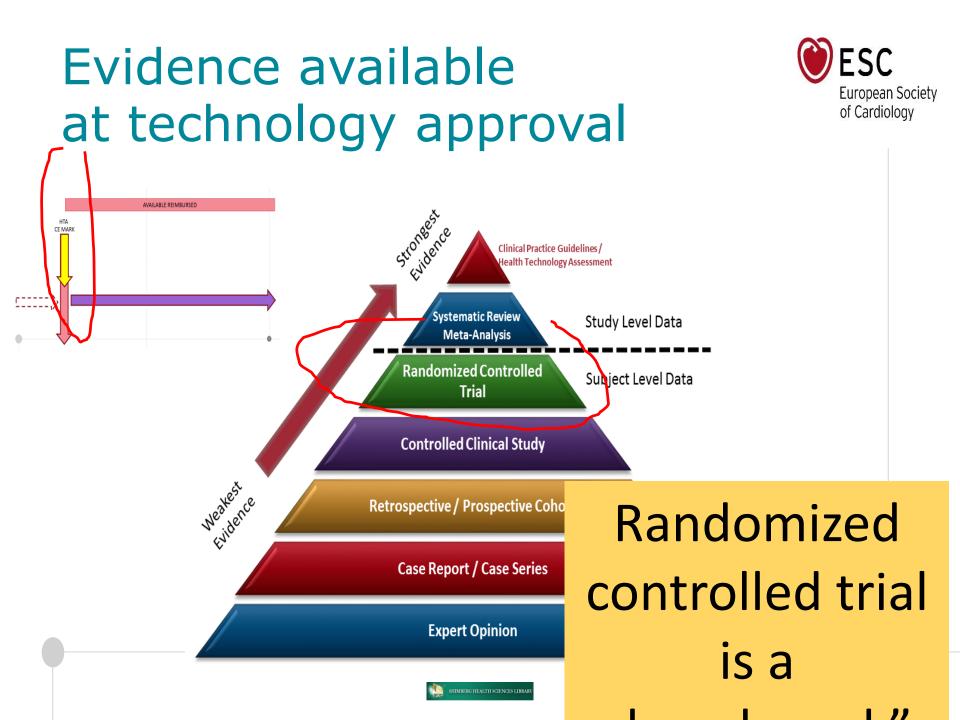
Characteristics of Clinical Studies Used for US Food and Drug Administration Approval of High-Risk Medical Device Supplements

Sarah Y. Zheng, MD; Sanket S. Dhruva, MD, MHS; Rita F. Redberg, MD, MSc

Table 2. Characteristics and Strength of Clinical Studies Supporting Premarket Approval Panel-Track Supplements

Characteristic	Value	Studies for Which Data Were Available, No. (%) (n = 83)
Study strength		
Randomized studies, No. (%)	37 (45)	
Blinded studies, No. (%)	25 (30)	
Single blinded	16 (19)	
Double blinded	9 (11)	
Studies stating No. of sites, No. (%)	74 (89)	
Single center	1 (1)	
Multicenter	73 (99)	
in age reporting, No. (%)		


JAMA Network

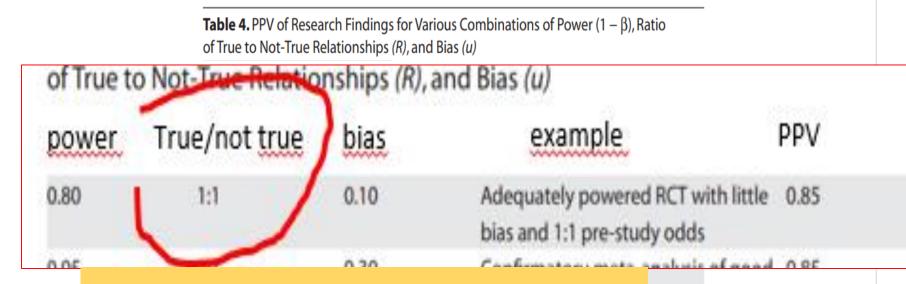

JAMA. 2017;318(7):6

Quality of Evidence – Medical Esc Devices Characteristics of Clinical Studies Used

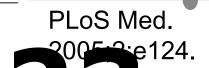
for US Food and Drug Administration Approval

less than half of clinical studies submitted for approval of high-risk medical devices were randomized

Essay


Why Most Published Research Findings Are False

Randomized controlled trial is a "benchmark" – but may be false



Quality of Evider Why Most Published Research Findings Are False Joh P.A. Loanidis

Even with good quality RCT, due to issues related to power, bias, pre-test probability, the proportion of true to false results is

Quality of Evider Why Most Published Research Findings Are False Joh R. Loanidis



Table 4. PPV of Research Findings for Various Combinations of Power $(1 - \beta)$, Ratio of True to Not-True Relationships (*R*), and Bias (*u*)

	pow	True/not	bias	example	PPV
	er	true	0.10	Adequately powered RCT with little bias and 1:1 pre-study odds	0.85
	True/	not	0.30	Confirmatory meta-analysis of good quality RCTs	- 0.85
	True/not		0.40	Meta-analysis of small inconclusive	0.41
0.20	tru	e I)	Underpowered, but wel	l-performed 0.23
				phase I/II RCT	

epidemiological study

In case of underpowered RCT the risk rises 5-fold

Contradicted and Initially Stronger Effects in Highly Cited Clinical Research ORIGINAL CONTRIBUTION

Design All original clinical research studies published in 3 major general clinical journals or high-impact-factor specialty journals in 1990-2003 and cited more than 1000 times in the literature were examined.

Main Outcome Measure The results of highly cited articles were compared against subsequent studies of comparable or larger sample size and similar or better controlled designs. The same analysis was also performed comparatively for matched studies that were not so highly cited.

Results Of 49 highly cited original clinical research studies, 45 claimed that the intervention was effective. Of these, 7 (16%) were contradicted by subsequent studies, 7 others (16%) had found effects that were stronger than those of subsequent studies, 20 (44%) were replicated, and 11 (24%) remained largely unchallenged. Five of 6 highlycited nonrandomized studies had been contradicted or had found stronger effects vs 9 of 39 randomized controlled trials (P=.008). Among randomized trials, studies with contradicted or stronger effects were smaller (P = .009) than replicated or unchallenged studies although there was no statistically significant difference in their early or overall citation impact. Matched control studies did not have a significantly different share of refuted results than highly cited studies, but they included more studies with "negative" results.

Conclusions Contradiction and initially stronger effects are not unusual in highly cited research of clinical interventions and their outcomes. The extent to which high citations may provoke contradictions and vice versa needs more study. Controversies are most common with highly cited nonrandomized studies, but even the most highly cited randomized trials may be challenged and refuted over time, especially small ones. JAMA. 2005;294:218-228 www.jama.com

JAMA 2005;294:2

Contradicted and Initially Stronger Effects in Highly Cited Clinical Research - ORIGINAL CONTRIBUTION

Design All original clinical research studies published in 3 major general clinical journals or high-impact-factor specialty journals in 1990-2003 and cited more than 1000

Results vention ers (16% (44%) v

1/4 of 49 highly cited clinical studies remained largely unchallenged by subsequent studies

cited research of clinical interventions and their outcomes. The extent to which high citations may provoke contradictions and vice versa needs more study. Controversies are most common with highly cited nonrandomized studies, but even the most highly cited randomized trials may be challenged and refuted over time, especially small ones.

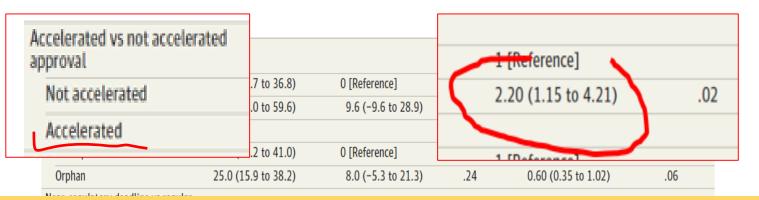
JAMA. 2005;294:218-228

www.jama.com

Quality of evidence and postmark ESC safety JAMA | Original Investigation

Postmarket Safety Events Among Novel Therapeutics Approved by the US Food and Drug Administration Between 2001 and 2010

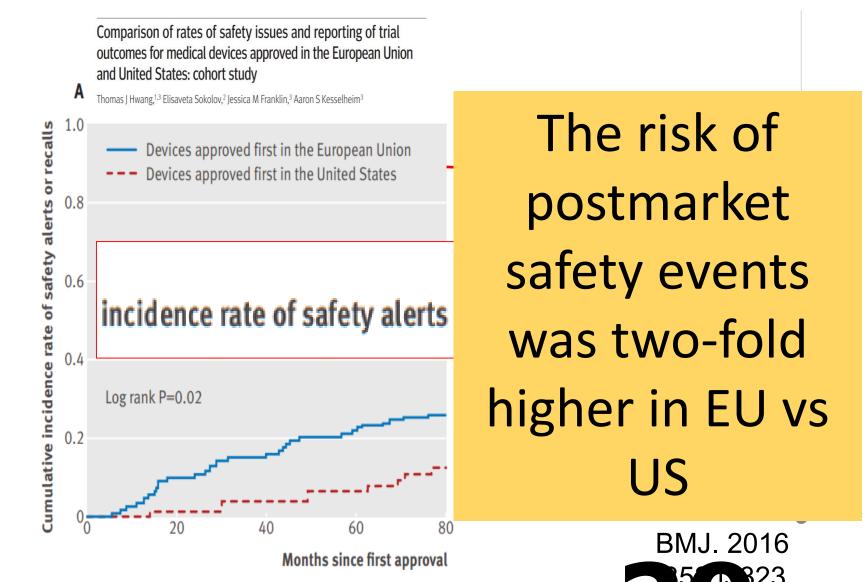
Nicholas S. Downing, MD; Nilay D. Shah, PhD; Jenerius A. Aminawung, MD, MPH; Alison M. Pease, BS; Jean-David Zeitoun, MD, MHPM; Harlan M. Krumholz, MD, SM; Joseph S. Ross, MD, MHS


Figure 1. Timeline of Novel Therapeutics Approved by the US FDA, 2001-2010, That Experienced Postmarket Safety Events, Grouped by Therapeutic Area

Autoimmune, musculoskeletal,	Valdecoxib	(1							1	 Therapeutic approval date
and dermatology	Pimecrolimus		•			٠	/								 Therapeutic approvacuate
	Adalimumab			•		1			٠						 Postmarket safety communication
	Ibandronate			•		1				•					-
	Efalizumab			•		1		•							 Boxed warning
	Golimumab							(• •		•				
	Pegloticase									•					Drug withdrawal
Cancer and hematology	Alemtuzumab	•													
	Zoledronic acid	•								•	•				
	Darbepoetin alfa						• •				•				
	Ibritumomab		•												
	Cetuximab				•	•									
	Lenalidomide											•	•		
	Sunitinib									•					
	Dasatinib										•				
	Lapatinib						•	•							
	Eltrombopag							•					•		
	Ofatumumab								٠				•		
Cardiovascular, diabetes,	Olmesartan		•										•		
and hyperlipidemia	Rosuvastatin			•	•						•				
	Exenatide				•										
	Sitagliptin						•	\mathbf{N}						•	
	Aliskiren						•				(•			
	Dronedarone								•	•	•				
	Saxagliptin Dabigatran								•					••	JAM <u>A. 20</u> 17;317

Quality of evidence and postmark ESC safety JAMA | Original Investigation Cardiology

Postmarket Safety Events Among Novel Therapeutics Approved by the US Food and Drug Administration Between 2001 and 2010


Nicholas S. Downing, MD; Nilay D. Shah, PhD; Jenerius A. Aminawung, MD, MPH; Alison M. Pease, BS; Jean-David Zeitoun, MD, MHPM; Harlan M. Krumholz, MD, SM; Joseph S. Ross, MD, MHS

The risk of postmarket safety events is over two-fold higher with accelerated approval

Quality of evidence and postmark ESC safety – medical devices

Missing evidence in the postapproval phase

Postapproval studies of drugs initially approved by the FDA on the basis of limited evidence: systematic review

Alison M Pease,¹ Harlan M Krumholz,^{2,3,4,5} Nicholas S Downing,⁶ Jenerius A Aminawung,⁷ Nilay D Shah,⁸ Joseph S Ross^{3,4,5,7}

ABSTRACT

OBJECTIVE

To characterize the prospective controlled clinical studies for all novel drugs that were initially approved by the Food and Drug Administration on the basis of limited evidence.

DESIGN

Systematic review.

DATA SOURCES

Drugs@FDA database and PubMed.

STUDY INCLUSION

All prospective controlled clinical studies published after approval for all novel drugs initially approved by the FDA between 2005 and 2012 on the basis of a single pivotal trial, pivotal trials that used surrogate markers of disease as primary endpoints, or both.

RESULTS

Between 2005 and 2012 the FDA approved 117 novel drugs for 123 indications on the basis of a single pivotal trial, pivotal trials that used surrogate markers of disease, or both (single surrogate trials). We identified 758 published controlled studies over a median of 5.5 years (interquartile range 3.4-8.2) after approval, most of which (554 of 758; 73.1%) were studies for indications approved on the basis of surrogate markers of disease. Most postapproval studies used active comparators—67 of 77 (87.0%) indications approved on the basis of single pivotal

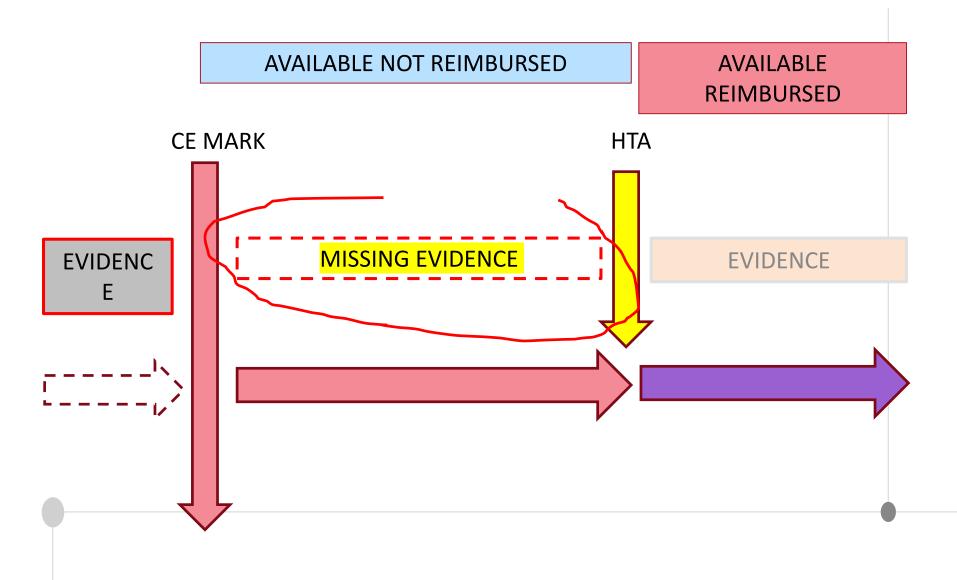
surrogate marker trials, and 100 of 127 (78.7%) approvals based on single surrogate trials-and examined surrogate markers of efficacy as primary endpoints-51 of 77 (66.2%), 512 of 554 (92.4%), and 110 of 127 (86.6%), respectively. Overall, no postapproval studies were identified for 43 of the 123 (35.0%) approved indications. The median total number of postapproval studies identified was 1 (interquartile range 0-2) for indications approved on the basis of a single pivotal trial, 3 (1-8) for indications approved on the basis of pivotal trials that used surrogate markers of disease as primary endpoints, and 1 (0-2) for single surrogate trial approvals, and the median aggregate number of patients enrolled in postapproval studies was 90 (0-509), 533 (122-3633), and 38 (0-666), respectively. The proportion of approved indications with one or more randomized, controlled, double blind study using a clinical outcome for the primary endpoint that was published after approval and showed superior efficacy was 18.2% (6 of 33), 2.0% (1 of 49), and 4.9% (2 of 41), respectively

CONCLUSIONS

The quantity and quality of postapproval clinical evidence varied substantially for novel drugs first approved by the FDA on the basis of limited evidence, with few controlled studies published after approval that confirmed efficacy using clinical outcomes for the original FDA approved indication.

BMJ 2017;357

Postapproval studies of drugs initially approved by the FDA on the basis of limited evidence: systematic review


Alison M Pease,¹ Harlan M Krumholz,^{2,3,4,5} Nicholas S Downing,⁶ Jenerius A Aminawung,⁷ Nilay D Shah,⁸ Joseph S Ross^{3,4,5,7}

no postapproval studies were performed for 43 of the 123 (35%) indications approved on the basis of limited evidence (single pivotal trial or surrogate endpoints)

Missing evidence for HTA

Managing uncertainity in post-launch phase – key points

- **1.** Evidence generation
- 2. Uncertainity of evidence
- 3. Managing uncertainity

Clinical registries – technolog ESC comparisons

Vascular complications more frequent with Mynx vs comparators

> a prospective, propensity-matched analysis of the safety of the Mynx vascular-closure device, as compared with alternative approved vascular-closure devices, with data from the CathPCL Registry of the

Registry-Based Prospective, Active Surveillance of Medical-Device Safety

Frederic S. Resnic, M.D., Arjun Majithia, M.D., Danica Marinac-Dabic, M.D., Ph.D.,

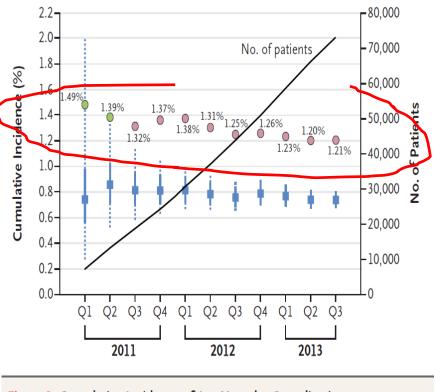
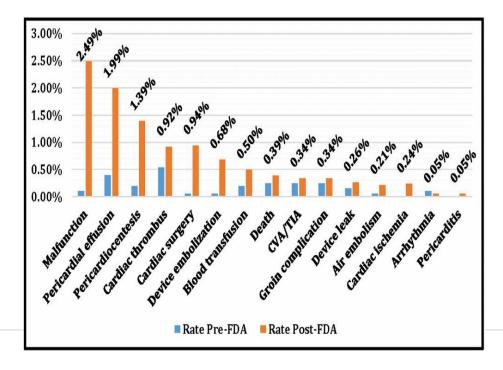
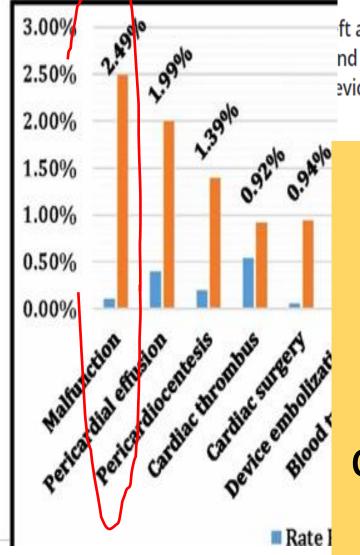


Figure 1. Cumulative Incidence of Any Vascular Complication among Recipients of the Mynx Device and Alternative Devices


N Engl I Med 2017; 3

Postmarket surveillance

Safety profiles of percutaneous left atrial appendage closure devices: An analysis of the Food and Drug Administration Manufacturer and User Facility Device Experience (MAUDE) database from 2009 to 2016


Mohammad-Ali Jazayeri MD, Venkat Vuddanda MD, Mohit K. Turagam MD, Valay Parikh MD,

J Card Electrophysiol. 20

Postmarket surveillance

ft atrial appendage closure nd Drug Administration evice Experience (MAUDE)

Risk of malfunction several dozen higher post- as compared to pre-**FDA** approval

ol. 20

Variations in annual implanted variations for CRTD/per million

.68.2

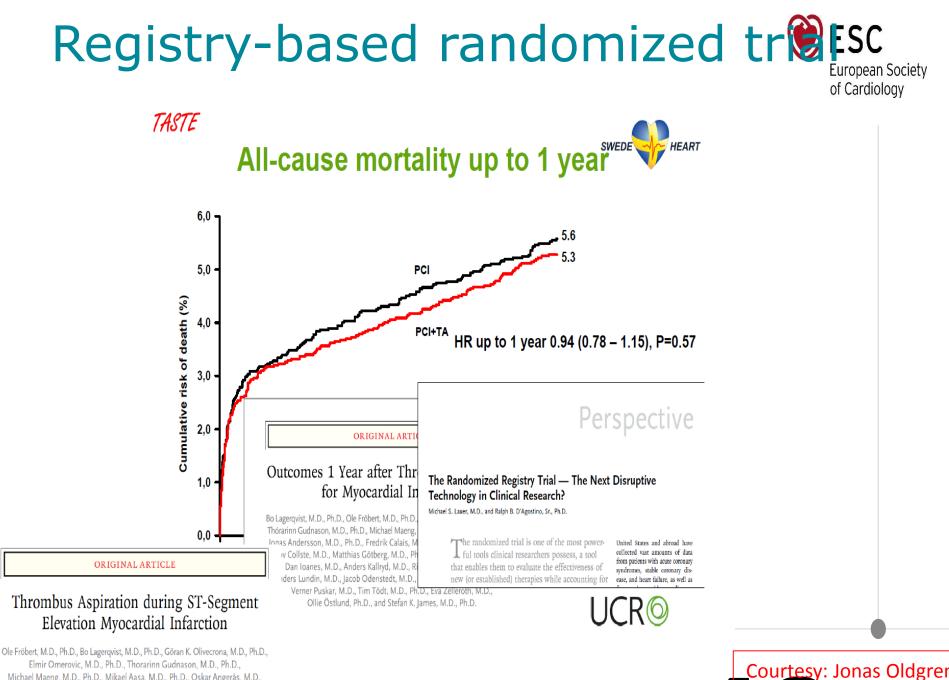
180

120

60

Kyrgyzstan 0.2 Ukraine 0.3 Morocco 0.5 Albania 0.7 Algeria 0.9 Egypt 1.2 Armenia 1.3 Azerbaijan 2.1 Bulgaria 2.2 Macedonia, FYR 2.4 Bosnia and Herzegovina 2.6 Kazakhstan 5.2 Tunisia 5.5 Russia Romania Croatia Lithuania 10.9 Serbia Cyprus Montenegro Estonia Iceland Lebanon Turkey Latvia Snain 39.9 Greece 11 0 Luxembourg 43.1 Slovenia 45.1 Switzerland Portugal Hungary 50.6 Finland 51.3 Malta Norway Slovakia Ireland Austria Sweden Belgium Poland United Kingdom France Israel Denmark Netherlands Germany Czech Republic Italy

Variations in uptake may result in variable learning curves, differences in complication rates, cost-effectiveness, etc.

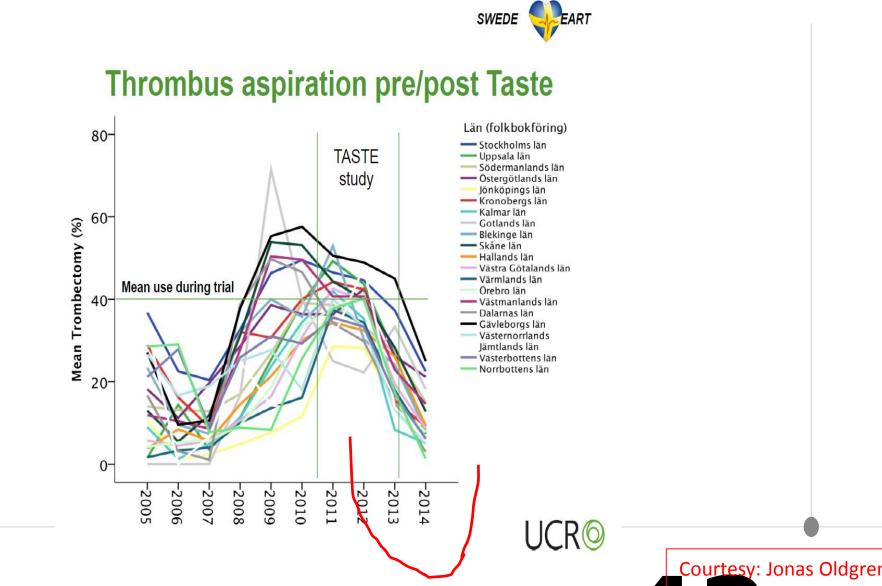

ESC Atlas of Cardiology database, 2017

Quality of Evider Why Most Published Research Findings Are False John R. Loannids

Table 4. PPV of Research Findings for Various Combinations of Power $(1 - \beta)$, Ratio of True to Not-True Relationships (*R*), and Bias (*u*)

	pow	True/not	bias	example	PPV	
	er	true	0.10	Adequately powered RCT with little bias and 1:1 pre-study odds	0.85	
	0.95	2:1	0.30	Confirmatory meta-analysis of good- quality RCTs	- 0.85	
	True/	not	0.40	Meta-analysis of small inconclusive studies	0.41	
	•		0.20	Underpowered, but well-performed	0.23	
0.80	tru	e	0.30	Adequately po	owered exploratory	y 0.20
				epidemiological study	cal study	
	0.20	1:10	0.30	Underpowered exploratory epidemiological study	0.12	
				vational domized	<	
			anc	Johnzeu		LoS Med.
						2005-2-e124

Michael Maeng, M.D., Ph.D., Mikael Aasa, M.D., Ph.D., Oskar Angerås, M.D., Fredrik Calais, M.D., Mikael Danielewicz, M.D., David Erlinge, M.D., Ph.D.,


A change in guidelines

Title	Citation		Class	LOE	
2012 ESC Guidelines ST- segment elevation myocardial infarction .	European Heart Journal 2012 Oct;33(20):2569-619	Routine aspiration should be considered	lla	В	CLASS IIa –USE
2014 ESC/EACTS guidelines on myocardial revascularization	Eur Heart J. 2014 Oct 1;35(37):2541-619	May be considered in selected patients	llb	A	
2015 ACC/AHA focused update PPCI	JACC	Routine thrombectomy not useful		A	
Marican Heart Association.					CLASS III
2015 ACC/AHA focused update PPCI	JACC	Selective and bailout Thrombectomy not well	llb	С	- DO NOT
6 view Heart Association.		established			use
2017 ESC Guidelines ST- segment elevation myocardial infarction	European Heart Journal 2017	Routine use of thrombus aspiration is not recommended.			
				_	

A change in clinical practice

Conclusions

- The benefits of introduction of a new technology should be weighed against <u>inevitable uncertainty of</u> <u>evidence</u>
- Approval of new technologies on the basis of limited evidence should result in risk management plan, including systematic collection of real world data and pragmatic clinical trials, to reduce uncertainity.

Conclusions

- Adequate quality real world data are fundamental to judge the clinical benefits related to the use of new health technologies compared to existing ones
- Joint clinical assessments should be coordinated, <u>but not aligned with CE</u> <u>marking</u>, to allow for the collection of real world data
- <u>A coordinated effort should be</u>

Piotr Szymanski pszymanski@ikard. pl

7 June 2018

