1 2 3 4 5 6 7 8 9 10 11	European Commission
12 13	Scientific Committee on Consumer Safety
14 15 16	SCCS
17 18	Scientific Advice on Titanium dioxide (TiO2)
 19 20 21 22 23 24 25 26 27 28 29 30 31 	(CAS/EC numbers 13463-67-7/236-675-5, 1317-70- 0/215-280- 1, 1317-80-2/215-282-2)
	Scientific Committees
32 33 34 35 36 37 38 39	on Consumer Safety on Health, Environmental and Emerging Risks The SCCS adopted this document by written procedure on 4 December 2023

2 ACKNOWLEDGMENTS

3 SCCS members listed below are acknowledged for their valuable contribution to the finalisation of this Scientific Advice. 4 5

- 6 For the Scientific Advice
- 7
- SCCS members 8
- 9 Dr U. Bernauer
- Dr L. Bodin 10
- 11 Prof. Q. Chaudhry (SCCS Chair)
- Prof. P.J. Coenraads 12 (SCCS Vice-Chair, Chairperson of the WG) Prof. M. Dusinska 13
- 14 Dr J. Ezendam
- 15 Dr E. Gaffet
- Prof. C. L. Galli 16
- Prof. E. Panteri 17
- 18 Prof. V. Rogiers
- 19 Dr Ch. Rousselle
- (Rapporteur)

(Rapporteur)

(SCCS Vice-Chair)

- 20 Dr M. Stepnik 21 Prof. T. Vanhaecke
- 22 Dr S. Wijnhoven
- 23
- 24 SCCS external experts
- 25 Dr. E. Benfenati
- Dr N. Cabaton 26
- 27 Prof. E. Corsini
- 28 Dr A. Koutsodimou
- 29 Dr. H. Louro
- 30 Prof. W. Uter
- 31 Dr N. von Goetz
- 32
- 33
- 34 35
- 36

37 All Declarations of Working Group members are available on the following webpage:

- Register of Commission expert groups and other similar entities (europa.eu) 38
- 39
- 40

SCCS/1661/23

2 1. ABSTRACT

1

3 4

5 6 7

8

9

The SCCS concludes the following:

1. In light of the EFSA Opinion on genotoxicity concerns for E171, does the SCCS consider Titanium dioxide safe in oral cosmetic products?

From the provided information, the SCCS has noted that the titanium dioxide (TiO₂) materials evaluated in this Scientific Advice belong to a wide range of grades (44 pigmentary and 40 nano grades) used in cosmetic products. The pigmentary grades differ from the food additive E171 in terms of crystalline forms, particle sizes, coatings, etc., with the exception of 13 uncoated pigmentary grades that can be considered as equivalent to E171.

Having considered all the information (including that evaluated by EFSA, 2021), the SCCS
considers that the available evidence is not sufficient to exclude the genotoxicity potential
of almost all of the types of TiO₂ grades used in oral cosmetic products. The only exception
are two nano grades (RM09 and RM11) for which the provided genotoxicity data indicate
no genotoxicity concern. More information is, however, needed on the potential uptake
and cellular effects of the nano grades in the oral mucosa to consider them safe for use
in oral-care products.

More experimental data are needed from studies carried out under valid protocols and appropriate testing guidelines to exclude the genotoxicity potential of the selected representatives of the other grades of TiO₂ (both pigmentary and nano) used in oral cosmetic products.

28 It is worth highlighting that the SCCS approach to risk assessment of TiO_2 ingredients in 29 orally-used cosmetic products is slightly different from that of EFSA. This is because 30 cosmetic products are not meant to be ingested orally, and any ingestion via the oral 31 route can only be unintended and incidental. Keeping this in mind, the amounts of orally-32 ingested cosmetic ingredients can only be expected to be far lower than the amounts 33 ingested when a TiO₂ material is used as a food additive, which is consumed via intake 34 of the food products. For the SCCS, the potential absorption/retention, translocation and 35 adverse effects of nanoparticles in the buccal mucosa are therefore important considerations for safety evaluation. 36

- In light of the EFSA Opinion, does the SCCS consider that previous Opinions
 issued by the SCCS on inhalation and dermal exposure to Titanium dioxide
 need to be revised?
- The conclusions drawn in previous SCCS Opinions on dermally applied cosmetic products
 (SCCS/1516/13, SCCS/1580/16) remain unchanged for the TiO₂ grades and the coatings
 evaluated in those Opinions. New data on dermal absorption will be required for other
 types of TiO₂ grades and coatings that are not covered in the Cosmetics Regulation
 1223/2009, and not covered by entry 27a in Annex VI.

According to the Cosmetics Regulation 1223/2009, the nanoform of TiO₂ is already restricted under entry 27a of Annex VI as not to be used in applications that may lead to exposure of the end-user's lungs by inhalation. The conclusions drawn in the previous Opinions (and SCCS/1583/17, SCCS/1617/20) on the safety of TiO₂ used in specific cosmetic products that may lead to exposure by inhalation also remain unchanged.

52

46

SCCS/1661/23

 In the event that the estimated exposure to Titanium dioxide from cosmetic products is found to be of concern, SCCS is asked to recommend safe concentration limits for each category of products and types of use.

Since the genotoxicity hazard of almost all of the grades of titanium dioxide could not be excluded (with the exception of RM09 and RM11), the SCCS cannot recommend any safe limits for the materials when used in cosmetic products that could lead to oral or inhalation exposure, other than those already indicated in the previous SCCS Opinions (SCCS/1516/13, SCCS/1580/16 and SCCS/1617/20).

9 10 11

12

13

1

2

3

4 5

6

7

8

4. In light of the potential removal of the E 171 purity specification from the food additives Regulation, the SCCS is requested to review and indicate the respective specifications for Titanium dioxide when used in cosmetics.

14 In view of the concerns on the potential genotoxicity of the TiO₂ grades considered in this 15 Scientific Advice, the SCCS is of the opinion that the Applicants should draw up a proposal 16 for specifications of the different TiO₂ grades used in those cosmetic products that could 17 lead to oral and inhalation exposure. The SCCS will be able to assist the Commission in 18 reviewing the proposal.

19 5. Does the SCCS have any further scientific concerns regarding the use of
 20 Titanium dioxide in cosmetic products?
 21

Studies have indicated that oral mucosal cells are prone to the uptake of nanoparticles (including TiO₂ nanoparticles), as they may penetrate the mucous layer and may be internalised by the epithelial cells. Considering that some oral products containing TiO₂ nanoparticles, such as toothpastes and mouthwashes, will be used every day and potentially more than once a day, further investigations are needed to exclude the risk to the consumer from long-term repeated exposures of the oral mucosa to TiO₂ nanoparticles.

The SCCS also recommends that safety assessment of the pigmentary TiO_2 grades used in cosmetics should take account of the fact that some of them contain a sizeable proportion of the particles in the nano size scale – some over 50% (in terms of particle number, median constituent particle size).

34

29

- 35
- 36

Keywords: SCCS, scientific advice, Titanium dioxide (TiO₂), Regulation 1223/2009, CAS/EC
numbers 13463-67-7/236-675-5, 1317-70-0/215-280- 1, 1317-80-2/215-282-2.

39 40

Opinion to be cited as: SCCS (Scientific Committee on Consumer Safety), Scientific Advice on
Titanium dioxide (TiO₂), CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280-1,
1317-80-2/215-282-2, preliminary version of 4 December 2023, SCCS/1661/23

- 44 45
- 46

1		
2 3 4 5 6 7 8 9	About the Scientific Committees Two independent non-food Scientific Comm advice it needs when preparing policy and pr and the environment. The Committees also emerging problems, which may pose an act These Committees are: the Scientific Co Scientific Committee on Health, Environme made up of scientists appointed in their per	nittees provide the Commission with the scientific roposals relating to consumer safety, public health o draw the Commission's attention to the new or ual or potential threat. mmittee on Consumer Safety (SCCS) and the ntal and Emerging Risks (SCHEER) and they are sonal capacity.
10 11 12	In addition, the Commission relies upon t (EFSA), the European Medicines Agency (E and Control (ECDC) and the European Cher	he work of the European Food Safety Authority MA), the European Centre for Disease prevention nicals Agency (ECHA).
13 14 15 16 17 18 19	SCCS The Committee shall provide Opinions or (notably chemical, biological, mechanical products (for example cosmetic products personal care and household products such tattooing, artificial sun tanning, etc.).	n questions concerning health and safety risks and other physical risks) of non-food consumer and their ingredients, toys, textiles, clothing, as detergents, etc.) and services (for example:
20 21 22 23	Scientific Committee members Ulrike Bernauer, Laurent Bodin, Qasim Ch Janine Ezendam, Eric Gaffet, Corrado Lodo Rousselle, Maciej Stepnik, Tamara Vanhaec	naudhry, Pieter Jan Coenraads, Maria Dusinska, vico Galli, Eirini Panteri, Vera Rogiers, Christophe ke, Susan Wijnhoven
24 25 27 28 29 30 31	Contact European Commission Health and Food Safety Directorate B: Public Health, Cancer and He Unit B3: Health monitoring and cooperation L-2920 Luxembourg <u>SANTE-SCCS@ec.europa.eu</u>	ealth security , Health networks
32 33	[©] European Union, 2023 ISSN	ISBN
34	Doi	ND
35		
36 37 38 39	The Opinions of the Scientific Committees who are members of the committees. The European Commission. The Opinions are original language only.	present the views of the independent scientists bey do not necessarily reflect the views of the published by the European Commission in their
40		
41 42 43	<u>SCCS - Opinions (europa.eu)</u>	

- 44
- 45
- 46

1	TABLE OF CONTENTS
2	ACKNOWLEDGMENTS
3	1. ABSTRACT
4	2. MANDATE FROM THE EUROPEAN COMMISSION
5	3. OPINION
6	3.1 CHEMICAL AND PHYSICAL SPECIFICATIONS
7 9 10 11 12 13 14 15 16 17 18	3.1.1 Chemical identity113.1.2 Physical form133.1.3 Molecular weight133.1.4 Purity, composition and substance codes133.1.5 Impurities / accompanying contaminants203.1.6 Solubility213.1.7 Partition coefficient (Log Pow)213.1.8Additional physical and chemical specifications223.1.9. Particle Shape, particle size and distribution253.1.10 Homogeneity and Stability323.2TOXICOKINETICS36
19 20 21	3.2.1 Dermal / percutaneous absorption
22 23	3.3.1 Function and uses373.4TOXICOLOGICAL EVALUATION37
24 25	3.4.1 Mutagenicity / genotoxicity
26	4. CONCLUSION
27	5. MINORITY OPINION
28	ANNEX: Safety concerns for titanium dioxide grades used in cosmetic products
29	6. REFERENCES
30	7. GLOSSARY OF TERMS
31	8. LIST OF ABBREVIATIONS
32	Annex A: Formula composition of the pigmentary and nano titanium dioxide grades83
33	Annex B: Impurity profile of the Raw Materials - Pigmentary and nano titanium dioxide
34	grades
35	Annex C: Partition Coefficient - Pigmentary and nano titanium dioxide grades
36	Annex D: Density of the Pigmentary and nano titanium dioxide grades

1	Appex F: pH value at isoelectric point – Pigmentary and pape titanium dioxide grades 103
' `	Appex E: pH values _ Digmentary and page titanium diavide grades
2	Annex F: pH values - Pigmentary and nano titanium dioxide grades
3	Annex G: UV/visible light absorption spectrum
4	Annex H: Photocatalytic Activity – Pigmentary and nano titanium dioxide grades108
5	Annex I: RedOx potential – pigmentary and nano titanium grades
6	Annex J: HR-TEM and TEM images
7	Annex K: Measurement methods - Appendix 1: Determination of primary particle size
8	distribution and shape by TEM120
9	Annex K: Measurement methods - Appendix 2: Determination of primary particle size
10	distribution and shape by SEM - Applicant #2 method (used for nano titanium dioxide)122
11	Annex K: Measurement methods - Appendix 3: Determination of primary particle size
12	distribution and shape by SEM - Applicant #1 method (used for pigmentary titanium
13	dioxide)124
14	Annex K: Measurement methods - Appendix 4: Determination of secondary particle size
15	distribution by Disc Centrifuge
16	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and Iso-
16 17	electric point pH
16 17 18	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and Iso- electric point pH
16 17 18 19	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and Iso- electric point pH
16 17 18 19 20	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and Iso- electric point pH
16 17 18 19 20 21	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and Iso- electric point pH
16 17 18 19 20 21 22	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and Iso- electric point pH
16 17 18 19 20 21 22 23	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and Iso- electric point pH
16 17 18 19 20 21 22 23 24	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and iso- electric point pH
16 17 18 19 20 21 22 23 24 25	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and iso- electric point pH
 16 17 18 19 20 21 22 23 24 25 26 	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and iso- electric point pH
 16 17 18 19 20 21 22 23 24 25 26 27 	Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and iso- electric point pH

1	Annex O: Surface Components / Surface reactivity - Pigmentary and Nano Titanium dioxide
2	grades
3	Annex P: Homogeneity and Stability - Pigmentary and nano titanium dioxide grades145
4	Annex Q: Dispersibility - Pigmentary and nano titanium dioxide grades
5	Annex R: TEM Observations of internalization of nanoparticles in V79 Cells
6	Annex S: DLS measurements of RM09 and RM11 - Gene mutation assay in Chinese hamster
7	V79 cells in vitro (V79/HPRT) and micronucleus test in Chinese hamster V79 cells in vitro
8	
9	Annex T. Tables and references from the document "Dossier on the Human Safety Evaluation
10	of Titanium Dioxide in Cosmetic Products (CAS No. 13463-67-7, 12026-28-7, 1317-70-0,
11	1317-80-2, 20338-08-3/ EC No. 236-675-5, 243-744-3, 1317-70-0, 215-282-2, 234-711-4).
12	(Submission I with focus on potential oral exposure). COSMETICS EUROPE INGREDIENT $\ensuremath{N^\circ}$
13	S75. 28 April 2023" pages 37 -53/84172
14	Annex U. The SCCS analysis of two in vitro study reports submitted by the Applicant, which
15	did not include any genotoxic endpoint186
16	Annex V: List of publications on TiO ₂ particles genotoxicity analysed by the SCCS \dots 206
17	Annex W. Comparison of approaches to evaluation of the genotoxicity of TiO_2 (shaded rows
18	show discrepancies) used by EFSA (2021), Kirkland et al. (2022), and the SCCS222
19	Annex X. SCCS and EFSA analysis of studies on TiO_2 genotoxicity
20	

SCCS/1661/23

2. MANDATE FROM THE EUROPEAN COMMISSION

4 Background

5

1

2 3

6 Titanium dioxide (TiO₂) (CAS/EC No. 13463-67-7/236-675-5, 1317-70-0/215-280-1, 1317-7 80-2/215-282-2) is a white, insoluble, inert substance with a high refractive index. In its 8 microcrystalline form, it is used as a white pigment or opacifying agent in make-up, skin care, 9 hair and oral products. In addition, since TiO₂ absorbs and scatters both UVA and UVB rays is 10 it also used as inorganic UV-filter primarily in sunscreens, but also in day creams, foundations and lip balms, to provide protection against UV radiation. The introduction of colourless, 11 ultrafine nanoparticles of TiO₂ improved its application on the skin while maintaining and 12 13 enhancing its UV-filter properties.

14 TiO₂ is authorized both as colorant under entry 143 of Annex IV and as UV-filter under entries 15 27 and 27a (nano form) of Annex VI to Regulation (EC) No. 1223/2009 (Cosmetics 16 Regulation). In light of its classification as a Carcinogen Category 2 (*i.e.* suspected human carcinogen) by inhalation route only and its inclusion in Annex VI to Regulation (EC) No. 17 18 1272/2008 (CLP Regulation) TiO₂ was re-assessed by the SCCS¹. Subsequently, entry 321in 19 Annex III was introduced and additional provisions in the existing entries of 143 of Annexes 20 IV and 27 and 27a of Annex VI were added that further restricted the use of TiO₂ in cosmetic 21 products.

In March 2021, the Panel on Food Additives and Flavourings (FAF Panel) of the European Food Safety Authority (EFSA) issued an opinion on the safety of TiO₂ (E171) as a food additive². In particular, based on new relevant scientific evidence considered by the panel to be reliable, including data obtained with TiO₂ nanoparticles and data from an extended one-generation reproductive toxicity (EOGRT) study, the panel indicated that a concern for genotoxicity could not be ruled out. In light of this and given the many uncertainties, the panel concluded that E171 should no longer be considered as safe when used as a food additive.

In May 2022, the Commission services received a dossier submission by industry accompanied
 by a comprehensive and up to date review of the genetic toxicity database for TiO₂ providing
 scientific evidence to demonstrate the safety of non-nano (pigmentary) and nano form of TiO₂
 in cosmetic products.

33 The Commission requests the SCCS to re-assess the safety of TiO₂ with focus on genotoxicity

34 and exposure via the inhalation and oral route (lip care, lipstick, toothpaste, loose powder,

hair spray), since the currently available scientific evidence supports an overall lack of dermal

- 36 absorption of TiO_2 particles³.
- 37

¹ <u>https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_238.pdf</u>

² https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2021.6585

³ https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_136.pdf

- 2 Terms of reference
 - In light of the EFSA Opinion on genotoxicity concerns for E171, does the SCCS consider Titanium dioxide safe in oral cosmetic products?
- In light of the EFSA Opinion, does the SCCS consider that previous Opinions issued by
 the SCCS on inhalation and dermal exposure to Titanium dioxide need to be revised?
- 9 3. In the event that the estimated exposure to Titanium dioxide from cosmetic products
 10 is found to be of concern, SCCS is asked to recommend safe concentration limits for
 11 each category of products and types of use.
- In light of the potential removal of the E 171 purity specification from the food additives Regulation. The SCCS is requested to review and indicate the respective specifications for Titanium dioxide when used in cosmetics.
- 5. Does the SCCS have any further scientific concerns regarding the use of Titanium dioxide in cosmetic products?

1 2 3 4	3. OPINION3.1 CHEMICAL AND PHYSICAL SPECIFICATIONS
5	
6	3.1.1 Chemical identity
7 8	
9	3.1.1.1 Primary name and/or INCI name
10 11 12	Titanium Dioxide
13	3.1.1.2 Chemical names
14 15 16 17 20 21 22 23 24 25 26 27 28 29 30 31 32	From Applicants Dioxotitanium, TiO ₂ Titanium dioxide, COLIPA No. S75 Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final For some specific RM TiO ₂ grades which have been tested, <i>i.e.</i> RM09 and RM11 RM09 (Molecular formula: TiO ₂ (SiO ₂) Chemical name: Titanium dioxide (and silicium dioxide) Ref.: 4023311_final Report.pdf, 4023313_final_report.pdf RM11 (Molecular formula: TiO ₂ (Al ₂ O ₃ and [C ₂ H ₆ OSi]n) Chemical name: Titanium dioxide (and aluminium oxide and silicone) Synonym: Titanium dioxide (and alumina and dimethicone) Ref.: 4023312_final Report.pdf, 4023314_final_report.pdf
33	3.1.1.3 Trade names and abbreviations
34 35 36 37 38	No information provided by the Applicant. Any available information in this regard has already been indicated in the previous SCCS Opinions relating to TiO ₂ material.
39	3.1.1.4 CAS / EC number
40 41 42 43 44 45 46 47	From Applicants CAS Number: 13463-67-7* * Also, Anatase CAS 1317-70-0; Rutile CAS 1317-80-2 EC n°: 236-675-5** ** Also, Anatase EC 215-280-1; Rutile EC 215-282-2 Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final
48 49 50	For some specific RM TiO ₂ grades which have been tested, <i>i.e.</i> RM09 and RM11 RM09 (Molecular formula: TiO ₂ (SiO ₂) CAS No.: 13463-67-7 (and 7631-86-9)

Ref.: 4023311_final Report.pdf, 4023313_final_report.pdf

Ref.: 4023312_final Report.pdf, 4023314_final_report.pdf

1

- 8
- 9
- 10

11 12

13

14

15

16

17 18

19

EC No: 236-675-5

EC No: 236-675-5

3.1.1.5 Structural formula

RM11 (Molecular formula: TiO₂ (Al₂O₃ and [C₂H₆OSi]n)

CAS No.: 13463-67-7 (and 1344-28-1 and 63148-62-9)

i) **Pigmentary Grades**

20	Anatase Form:	RM01, RM03, RM04, RM05, RM06, RM07, RM19, RM26, RM27,
21		RM67, RM67b, RM68, RM70a, RM70b, RM70c, RM70d, RM70e,
22		RM70f
23	Rutile Form:	RM02, RM08, RM28, RM29, RM30, RM31, RM32, RM33, RM34,
24		RM35, RM36, RM37, RM38, RM39, RM69, RM69b, RM72a, RM72b,
25		RM72c, RM72d, RM72e, RM72f, RM72g, RM72k, RM72i, RM72j-bis
26		
27	R	ef.: January 2023_PhysChem data on Cosmetics TiO2 grades_final
28		Table page 8/28 - Column: 6.6) / N7) Crystalline Form
29		
30		
31	ii) Nano Grad	les
32	Rutile form:	
33	RM09, RM40, F	RM41, RM42, RM43, RM44, RM45, RM46, RM47, RM48, RM49, RM51,
34	RM52, RM53, F	RM55, RM56, RM59, RM74d, RM80
35	Rutile with up to	1% anatase:
36	RM57, RM58, F	RM60, RM61

1 2 3 4 5 6 7 8 9	Rutile with 1% anatase: RM82 Rutile with up to 5% anatase: RM10, RM11, RM62, RM63, RM64, RM65, RM74a, RM74b, RM74c, RM74e, RM75, RM76, RM77, RM78, RM79, RM81 Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final Table from Page 15/28, Column N7a) % anatase
10 11 12 13 14 15 16 17 18 19 20 21 22	From Applicants The anatase % is derived from the relative intensity of well separated X-ray diffraction lines of anatase and rutile using a calibration curve. Suitable reflections may be 36.5° for rutile and 48° for anatase. From Ref.: CE-TiO2-23-003.0 - Att 1_Generic Description of Analytical Methods – final.pdf SCCS comment This opinion is limited to the TiO ₂ cyrstalline forms comprised of rutile, anatase or a mixture of the two forms. Other crystalline forms of TiO ₂ have not been assessed.
23 24 25 26 27	3.1.1.6 Empirical formula TiO2
28	3.1.2 Physical form
28 29 30 31 32 33 34 35 36 37	3.1.2 Physical form From Applicants Titanium dioxide grades used in cosmetics may be divided into two groups - pigmentary grades with median primary particle size >100nm whose primary function is to provide whiteness and opacity as well as some UV protection and - nano grades with median primary particle size <100nm whose primary function is to provide UV attenuation without excessive whiteness. Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	3.1.2 Physical form From Applicants Titanium dioxide grades used in cosmetics may be divided into two groups - pigmentary grades with median primary particle size >100nm whose primary function is to provide whiteness and opacity as well as some UV protection and - nano grades with median primary particle size <100nm whose primary function is to provide UV attenuation without excessive whiteness. Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final SCCS comment In line with the JRC report (2023), the SCCS recommends the use of the term "constituent particle" instead of "primary particle".
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	3.1.2 Physical form From Applicants Titanium dioxide grades used in cosmetics may be divided into two groups - pigmentary grades with median primary particle size >100nm whose primary function is to provide whiteness and opacity as well as some UV protection and - nano grades with median primary particle size <100nm whose primary function is to provide UV attenuation without excessive whiteness. Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final SCCS comment In line with the JRC report (2023), the SCCS recommends the use of the term "constituent particle" instead of "primary particle". 3.1.3 Molecular weight
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	3.1.2 Physical form From Applicants Titanium dioxide grades used in cosmetics may be divided into two groups - pigmentary grades with median primary particle size >100nm whose primary function is to provide whiteness and opacity as well as some UV protection and - nano grades with median primary particle size <100nm whose primary function is to provide UV attenuation without excessive whiteness.
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	3.1.2 Physical form From Applicants Titanium dioxide grades used in cosmetics may be divided into two groups - pigmentary grades with median primary particle size >100nm whose primary function is to provide whiteness and opacity as well as some UV protection and - nano grades with median primary particle size <100nm whose primary function is to provide UV attenuation without excessive whiteness.

2 Purity, composition (Pigmentary and Nano Grades):

3 All the raw materials that are described in the submission are in compliance with the relevant 4 specifications. However, as is common with quality control testing against pharmacopeia and similar regulatory specifications, in many cases the analytical measurements are only 5 recorded as a pass or fail against the specification. Therefore, it has not proved possible for 6 7 all suppliers to ascertain actual values from the analytical laboratories for all of the raw 8 materials. They are only able to obtain confirmation that they meet the relevant specifications as some of the equipment available within the suppliers may not have a precision for the 9 10 exact measurement however can detect whether it fits the specification or not. This is one of the reasons why it is a challenge to submit exact measured values to the SCCS. 11

12

13 Given that TiO₂ is manufactured from naturally occurring ores, there can be variability within 14 these different ores accounting for a different impurity analytical profile (specifically heavy metals) within the specification limits. In the case of heavy metals, the specification is a 15 16 maximum value. The principal raw material ores for manufacturing TiO₂ include ilmenite (iron titanium oxide, FeTiO₃), naturally occurring rutile (TiO₂) or titanium slag which all contain 17 naturally occurring heavy metals in variable amounts depending on the nature and geographic 18 19 source of these raw materials. This results in heavy metals being present as unavoidable trace 20 elements in the manufactured titanium dioxide product even though GMP are applied for 21 cosmetics ingredients. Depending on the raw material sourcing and the manufacturing 22 process, the heavy trace metals for cosmetics ingredients products are reduced by a 23 significant factor for some elements like lead, arsenic and antimony compared to products 24 marketed for "technical" applications. These trace elements are embedded in the lattice of 25 the TiO_2 and are not bioavailable. Therefore, rather than give a potentially unrepresentative 26 single data point, the ranges of values presented give an accurate account of this natural 27 variability.

28

Whilst we have validated methods to confirm the specification of our products, we must stress 29 30 that the values we have (particularly for total composition) are based on calculations, so there 31 is automatically some level of uncertainty. Considering this then it is difficult to obtain a 100% 32 absolute value. As per the analytical methods description, metal/metalloid components are analysed for their metal/metalloid content and further expressed as oxides. Under this 33 practice it is almost impossible to achieve a 100% composition. For example, it is not possible 34 35 to know whether aluminium is present as Al₂O₃ or Al(OH)₃ or similarly if the analysed 36 elemental silicon is related to silica, silicones or silanes. Only an approximation can be made 37 based on the manufacturing process.

38 39

40

From Ref.: CE-TiO2-23-003.0 - CE Response to clarifications requested by SCCS 10 03 23 – final.pdf

4142 Surface Coatings (Pigmentary and Nano Grades):

Where coatings are present, they are all homogeneous and, where there is more than one, they are multi-layered.

45

46 The aluminium species in the coatings of titanium dioxide materials are not crystalline alumina but poorly characterised oxyhydroxide species which can variously be described as AIOOH 47 and AI(OH)₃ but are generally described as AI(OH)₃. The description of the coating as alumina 48 49 is purely an analytical convention. Where alumina is referred to in addition to aluminium hydroxide e.g., "Alumina 0.3%, Aluminium Hydroxide 2.0%", then this is aluminium that is 50 contained in the lattice of the titanium dioxide having been added as a processing aid at 51 52 calcination (Calcination Salts) to control the crystal phase and primary particle size. This 53 alumina is part of the core titanium dioxide and is not a coating. 54

- 55 56
- 57

From Ref.: CE-TiO2-23-003.0 – CE Response to clarifications requested by SCCS 10 03 23 – final.pdf

1 Pigmentary grades

2 Pigment grades of titanium dioxide (CPR, Annex IV entry 143), must comply with the "purity

 $_3$ criteria as set out in Commission Directive 95/ 45/EC (E 171)", which was replaced by

Commission Regulation (EU) No 231/2012 of 9 March 2012 [4] laying down specifications for
food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European
Parliament and of the Council. In addition, it is specified that "Titanium dioxide in powder
form containing 1% or more of particles with aerodynamic diameter <10 µm, to be used in

8 compliance with Annex III, No 321".

9 For cosmetics applications, organic and inorganic surface treatments that have been approved

10 for cosmetics use may also be applied to the titanium dioxide.

11

The raw materials may be grouped into categories by composition as follows (specifications are given in Table 3.1.4.A1):

14

Table 3.1.4.A1: Pigmentary grades - Categories by composition (from Ref.: January
2023_PhysChem data on Cosmetics TiO2 grades_final.pdf)

17

	Composition	Pigmentary grades
а	Titanium Dioxide	RM01, RM02, RM03, RM04, RM26, RM28, RM67, RM67b, RM68, RM69, RM69b, RM70c, RM72c
b1	Titanium Dioxide with up to 2% alumina and/or silica	RM30
b2	Titanium Dioxide with more than 2% alumina and/or silica	RM31, RM37
c1	Titanium Dioxide with organics added	RM27, RM29, RM70a, RM70b, RM70d, RM70e, RM70f, RM72a, RM72b, RM72d, RM72e, RM72f, RM72g, RM72k
c2	Titanium Dioxide with up to 2% alumina and/or silica with organics added	RM05, RM06, RM07, RM08, RM19, RM32, RM33, RM34, RM35, RM36, RM72i, RM72j-bis
с3	Titanium Dioxide with inorganics (including >2% alumina and/or silica) with organics added	RM38, RM39

18

19 20 Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf Table page 8/28 – Column: Category

21

Table 3.1.4.A2: Pigmentary grades / Proposed specifications for titanium dioxide cosmetics grades Titanium Dioxide Pigments used in cosmetics (from Ref.: January 2023_PhysChem

data on Cosmetics TiO2 grades_final.pdf - Table 1.1 Proposed specifications for titaniumdioxide cosmetics grades)

Titanium Dioxide Pigments used in cosmetics						
Category name	(a)	(b1)	(b2)	(c1)	(c2)	(c3)
Composition (Titanium Dioxide +)	None	Alumina / silica (<2%)	Inorganics (incl. Alumina/ Silica >2%)	Organics only	Alumina / silica (<2%) + organics	Inorganics (incl. Alumina/ Silica >2%) + organics
Constituent particle size			Median >100 nm (<50% of <100nm particles by number)			
Loss on drying (105°C, 3 hours)	≤0.5%	≤0.5%	≤0.5%	≤0.5%	≤2.0%	≤0.5%
Loss on ignition on a volatile matter free basis	≤1.0%	≤1.0%	≤1.5%	≤21%	≤11%	≤2.5%

⁻ otal ≦ 0.5% ≦ 0.5%	≤2.0% ≤ 1.5%	≤8%	Total	≤2.0%	≤8%
≦0.5%	≤ 1.5%		≤0.5%		
		≤2%	≤0.5%	≤1.5%	≤2%
J/A	N/A	≤2%	≤1.5%	≤5.0%	≤4.0%
≦0.5%	≤0.5%	≤1%	≤0.5%	≤4.0%	≤1%
≤ 1 ng/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg
≤2 ng/kg	≤2 mg/kg	≤2 mg/kg	≤2 mg/kg	≤2 mg/kg	≤2 mg/kg
≤1 ng/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg
≤ 10 ng/kg	≤10 mg/kg	≤10 mg/kg	≤ 10 mg/kg	≤10 mg/kg	≤10 mg/kg
≤1 ng/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg	≤1 mg/kg
h 0.5 N	HCI				
	10.5% 19/kg 19/kg 19/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg 10/kg	$ \begin{array}{r} 0.5\% \leq 0.5\% \\ 1 \leq 1 \text{ mg/kg} \\ \frac{\text{ng/kg}}{\text{ng/kg}} \\ 2 \leq 2 \text{ mg/kg} \\ \frac{\text{ng/kg}}{\text{ng/kg}} \\ 1 \leq 1 \text{ mg/kg} \\ \frac{\text{ng/kg}}{\text{ng/kg}} \\ 1 \leq 10 \\ \frac{\text{ng/kg}}{\text{ng/kg}} \\ 1 \leq 1 \text{ mg/kg} \\ \frac{\text{ng/kg}}{\text{ng/kg}} \\ h 0.5 \text{ N HCI} \\ f.: January 2023_Pile 1 1 Proposed since in the set of the$	0.5% $\leq 0.5\%$ $\leq 1\%$ 1 $\leq 1 mg/kg$ $\leq 1 mg/kg$ $1g/kg$ $\leq 2 mg/kg$ $\leq 2 mg/kg$ 2 $\leq 2 mg/kg$ $\leq 2 mg/kg$ 1 $\leq 1 mg/kg$ $\leq 1 mg/kg$ $1g/kg$ ≤ 10 mg/kg $1g/kg$ mg/kg mg/kg 1 ≤ 10 mg/kg 1 $\leq 1 mg/kg$ mg/kg 1 $\leq 1 mg/kg$ mg/kg ng/kg mg/kg mg/kg ng/kg $h 0.5 N HCl$ f.: January 2023_PhysChem data the 1 1 Proposed specifications	0.5% $\leq 0.5\%$ $\leq 1\%$ $\leq 0.5\%$ 1 $\leq 1 mg/kg$ $\leq 1 mg/kg$ g/kg ng/kg mg/kg mg/kg g/kg 2 $\leq 2 mg/kg$ $\leq 2 mg/kg$ g/kg ng/kg mg/kg g/kg g/kg 1 $\leq 1 mg/kg$ g/kg g/kg 1 $\leq 1 mg/kg$ g/kg g/kg 1 ≤ 10 g/kg g/kg ng/kg mg/kg mg/kg ng/kg mg/kg g/kg ng/kg mg/kg g/kg ng/kg mg/kg g/kg ng/kg mg/kg g/kg ng/kg ng/kg mg/kg ng/kg ng/kg g/kg h 0.5 N HCl	0.5% $\leq 0.5\%$ $\leq 1\%$ $\leq 0.5\%$ $\leq 4.0\%$ 1 $\leq 1 mg/kg$ $\leq 1 mg/kg$ $\leq 1 mg/kg$ mg/kg ng/kg $\leq 1 mg/kg$ $\leq 1 mg/kg$ $\leq 1 mg/kg$ ng/kg $\leq 2 mg/kg$ $\leq 2 mg/kg$ $\leq 2 mg/kg$ ng/kg mg/kg mg/kg mg/kg ng/kg $\leq 1 mg/kg$ $\leq 1 mg/kg$ ng/kg mg/kg mg/kg ng/kg mg/kg $\leq 10 mg/kg$ ng/kg mg/kg mg/kg ng/kg ng/kg $\leq 1 mg/kg$ ng/kg $h 0.5 N HCl$ f.: January 2023_PhysChem data on Cosmetics TiO2 g $uble 1 1$ Proposed specifications for titanium dioxide co

The full detailed formula compositions of the 44 pigmentary titanium dioxide grades are
reported in Annex A "Formula Composition and coatings of the Pigmentary and Nano titanium
dioxide grades" - Table 3.1.4.A3: and Table 3.1.4.A4.

10 Coating of Pigmentary titanium dioxide grades

- 11 The full information on the coatings of the pigmentary grades is given in Annex A **"Formula** 12 compositions and coatings of the pigmentary and nano titanium dioxide grades":
- for the composition, in Table 3.1.4.A5,
 for the multilayer sequence, in Table 3.1.4.A6
- 14 15

26 27

28 29 *

1 2 3

4

5

- Among the 44 pigmentary titanium dioxide grades, the following 13 pigmentary titanium dioxide grades are reported to be uncoated:
- 18 RM01, RM02, RM03, RM04, RM26, RM28, RM67, RM67b, RM68, RM69, RM69b, RM70c, 19 RM72c.

2021 Surface Contamination (Pigmentary grades)

A surface contamination by TMP (trimethylolpropane or 2-Ethyl-2-(hydroxymethyl) propane 1,3-diol) is noted for the two following pigmentary grades: RM72i, RM72j-bis. No surface
 contamination has been reported for the other pigmentary grades.

Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf Table from Page 9/28 - Column N9.4) Surface Contamination

30 Doping (Pigmentary grades)

The RM08 pigmentary grade from the c2 category is doped with Alumina
 Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf
 Table from Page 6/28 - Column "N2.5) Doping material
 36

1	SCCS comments
2	One pigmentary titanium dioxide grade (RMO8) was flagged as having been doped with
3	alumina However the alumina doning concentration has not provided
1	alamina. However, the alamina doping concentration has not provided.
4	
5	
6	From Applicants
7	Nano Grades
8	
9	Nano titanium dioxide grades for use as UV filters must meet the following criteria (SCCS
10	Opinion 1516/13 (2014). CPR Annex VI entry 27a):
11	- nurity >99%
12	- rutile form or rutile with up to 5% anatase, with crystalline structure and physical
12	appearance as clusters of spherical peodle, or lanceelate shapes
1.0	appearance as clusters of spherical, needle, of fanceolate shapes,
14 4 E	- median particle size based on number size distribution >30 mm ²
15	- aspect ratio from 1 to 4.5, and volume specific surface area <460m²/cm³,
16	- coated with Silica, Hydrated Silica, Alumina, Aluminium Hydroxide, Aluminium
17	Stearate, Stearic Acid, Trimethoxycaprylylsilane, Glycerin, Dimethicone, Hydrogen
18	Dimethicone, Simethicone; or coated with one of the following combinations:
19	- Silica at a maximum concentration of 16% and Cetyl Phosphate at a maximum
20	concentration of 6%.
21	- Alumina at a maximum concentration of 7% and Manganese Dioxide at a maximum
22	concentration of 0.7%
22 72	Aluming at a maximum concontration of 3% and Triothoxy/canryly/silano at a maximum
23	- Aldmina at a maximum concentration of 576 and methoxycapilyryisilane at a maximum
24	concentration of 976,
25	- photocatalytic activity < 10 % compared to corresponding non-coated or non-doped
26	reference, nanoparticles are photostable in the final formulation.
27	
28	Nano TiO ₂ typically complies with USP and FDA criteria (21 CFR 73.1575) required for
29	attenuation grades which are (all tests conducted on uncoated, untreated material):
30	- Titanium dioxide contains not less than 99% and not more than 100.5% TiO ₂
31	- Loss on ignition (at 800°C) <13%
32	- Water soluble substances < 0.25%
33	- Acid soluble substances $< 0.5\%$
31	Arsenic (HCL soluble) > 1 nm
25 25	Lood (HCL soluble) < 10pm
30	- Lead (HCL soluble) < TOPPIT
30	- Antimony (HCI soluble) < 2ppm
37	- Mercury < Ippm
38	
39	
40	Ref.: January 2023_PhysChem data on Cosmetics TiO ₂ grades_final.pdf
41	
42	
43	The full formula compositions of the 40 nano titanium dioxide grades are noted in Annex A
44	"Formula compositions and coatings of the nigmentary and papo titanium dioxide grades" -
15	in Table 3.1.4 B1 and Table 3.1.4 B2
чJ	
46	
47	As reported in the Table 3.1.4.B2, the TiO ₂ content rangs from 99.0% up to more than 99.9%.
48	The loss on ignition is noted to be less or equal to 13% (RM09, RM10, RM11, RM64, RM65
49	RM75 RM76 RM78 RM79 RM80) The lowest loss on ignition is equal to 0.1% (RM81)
50	(R(M) C) + R(M) C + R(M) C + R(M) C C + R(M) C C C C C C C C
50 51	
JI	
	4 From Amiliante Mate According to a municus SCCS Opinica (SCCS/1516/12) " unbited minutes and its circums have all a formation of the

From Applicant: Note According to a previous SCCS Opinion (SCCS/1516/13) "...whilst primary particle size may be smaller (around 10 nm), the median particle size of TiO₂ nanomaterials in a cosmetic formulation must not be smaller than 30 nm in terms of number-based size distribution". This median measurement is based on I) CPS, II) Lumisizer and III) DLS particle size distribution measurements only. SEM or TEM measurements with median particle size based on number size distribution <30nm, are not in contradiction to the Cosmetic Products Regulation (EC) No 1223/2009 and fully in line with the SCCS opinion and science-based expectations.

1	
2	SCCS comments
3	For RM09, only Titanium dioxyde and Silica without concentration were reported in Ref.:
4	January 2023 PhysChem data on Cosmetics TiO ₂ grades final.pdf - Table 1.3 Physico-
5	chemical data for Nano Titanium Dioxide used in Cosmetics.
6	
7	
8	Coatings of the papo titanium dioxide grades
9	The 40 nano titanium dioxide grades are coated with Silica. Hydrated Silica. Alumina
10	Aluminium Hydroxide Aluminium Stearate Stearic Acid Trimethoxycaprylylsilane Glycerin
11	Dimethicone Hydrogen Dimethicone Simethicone or coated with one of the following
12	combinations:
12	- Silica at a maximum concentration of 16% and Cetyl Phosphate at a maximum concentration
14	of 6%
15	- Alumina at a maximum concentration of 7% and Manganese Dioxide at a maximum
16	concentration of 0.7%
17	- Alumina at a maximum concentration of 3% and Trietboxycanryly/silane at a maximum
1 / 1 Q	concontration of 0%
10	
20	Dof : January 2022, DhysCham data on Cosmotics TiOs grados, final odf
20	Ref.: Jahuary 2025_Physchem data on Cosmetics 1102 grades_final.put -
21	The full detailed information on the coatings of the name titanium diavide grades are reported
22	in Annou A "Formula compositions and costings of the ninnenter and none titerium effective
23	In Annex A Formula compositions and coatings of the pigmentary and hano titanium dioxide
24	grades":
25	- for the composition, in Table 3.1.4.83,
26	- for the multilayer sequence, in Table 3.1.4.84
27	
28	For the 40 nano Titanium dioxide grades for which the coating Section has been reported as
29	applicable by Applicants, all the 40 nano Titanium dioxide grades are reported to be coated.
30	
31	
32	Surface Contamination (Nano grades)
33	No surface contamination has been reported for any nano grades.
34	
35	Ref.: January 2023_PhysChem data on Cosmetics TiO ₂ grades_final.pdf
36	Table from Page 17/28 - Column 9.4) Surface contamination
37	
38	
39	Dispersing agents / Additives (Nano grades)
40	For the nano grade RM77, Sodium Hexametaphosphate as dispersing agent
41	andPhenoxyethanol, Sodium Methylparaben as additive have been reported.
42	
43	Ref.: January 2023_PhysChem data on Cosmetics TiO ₂ grades final.pdf
44	Table from Page 14/28 - Column N2.7) Dispersing agents and Column N2.8) Additives
45	
46	
47	Doning (Nano grades)
48	The following pape grades are doned with 1000 ppm Fe ⁻ RM 75 RM 76 RM77 RM80 The
49	RM66 nano grade is doned with Manganese ($< 1\%$)
50	ninoo hano grade is doped with Mangaliese (< 170).
51	Ref. January 2023 PhysChem data on Cosmetics TiO_2 grades final odf
52	Table from Page 11/28 - Column "NO 5) Doning material"
52	
55	
54	
55	
50	
() /	

Table 3.1.4.: Summary of the informations on the outermost layer for the pigmentary and the nano titanium dioxide grades (noted by SCCS)

Outermost Layer	Pigmentary grades*	Nano grades**	
	(Product Code)	(Product Code)	
No surface treatment	RM01, RM02, RM03, RM04, RM26, RM28, RM67, RM67b, RM68, RM69, RM69b		
No surface treatment (silica is separate processing aid)	RM70c, RM72c	/	
Silica	/	RM09 (10%), RM74d (20%), RM78 (17%)	
Hydrated silica	RM31 (5.0%)	RM47 (30%)	
Al ₂ O ₃	RM06 (1.3%)	RM77 i), RM81 (6%)	
Aluminium hydroxide	RM30 (2.3%), RM37 (3.7%) RM72i (0 - 5%)	RM41 (13.5%), RM45 (17%), RM46 (10.5%), RM55 (3.0%), RM59 (11%)	
Manganese dioxide	/	RM80 (1%)	
Glycerin	RM05 (0.6%), RM08 (0.6%), RM19 (0.3%)	1	
Triethoxycaprylylsilane	RM07 (0.8%), RM70a (5%)	RM74c (6%)	
	RM70b (5%), RM72a (< 5%)		
	RM72b (< 5%), RM72j-bis (< 6%)		
Methicone	RM27 (2%)	/	
Dimethicone	RM36 (3.8%), RM39 (1.0%)	RM11 (3%), RM44 (15.4%), RM58 (2.9%), RM74e (6%), RM82 (2.0 - 4.5%)	
Hydrogen Dimethicone	RM29 (1.5%), RM35 (2.0%)	RM10 (11%), RM43 (5.7%), RM51 (3.4%), RM52 (4.7%), RM57 (1.9%), RM61 (2.0%)	
		RM74a (< 10%)	
Simethicone	/	RM75 (2%)	
Algin	RM32 (9.1%)	/	
Stearic Acid	/	RM40 (20%), RM42 (11%), RM48 (8.0%), RM49 (13%), RM53 (15%), RM60 (4.7%)	

		RM56 (4.0), RM62 (4.7%), RM63 (13.5%), RM64 (6.5%), RM65 (4.6%), RM74b (15% max), RM76 (10%)
Isostearic Acid	RM33 (3.8%), RM38 (1.0%)	/
Isopropyl Titanium Triisostearate	RM72e (0 - 5%)	/
Phytic Acid	RM72f (0 – 5%)	/
Hexadecyl dihydrogen phosphate	/	RM79 (6%)
Lauroyl Lysine 4.8%	RM34	/
Sodium Glycerophosphate	RM70e (< 5%)	/
Hydrogenated Lecithin	RM70f	/
Tocopherol	RM72d (0 - 5%)	/
Arginine	RM72g (0 – 5%)	/
Rosa Damascena Flower Cera	RM70d (0 - 5%)	/
Aloe Barbadensis Leaf Extract	RM72k (1% max)	/

* From Ref.: Multi-layer coating sequence – Pigment.xls – 30 June 2023

** From Ref.: Multi-layer coating sequence – Nano.xls – 30 June 2023

2 3

4

5

1

3.1.5 Impurities / accompanying contaminants

6 From Applicants

7
8 The Applicants have provided the impurity profiles of the Raw materials s on the Water-soluble
9 substances (%), Acid-soluble substances (%), Arsenic (HCI-soluble) (mg/kg), Lead, (HCI10 soluble) (mg/kg), Antimony (HCI-soluble) (mg/kg), Mercury (HCI-soluble) (mg/kg), Cadmium
11 (HCI-soluble) (mg/kg).

12 These informations are discussed and reported in Annex B **"Impurity profile of the Raw** 13 Materials – **Pigmentary and Nano Titanium Dioxide Grades**":

- for pigmentary titanium dioxide grades in Table 3.1.5 A: Pigmentary grades Impurity Profile of Raw Materials.
- for nano titanium dioxide grades in Table 3.1.5 B: Nano grades Impurity profile
 of Raw materials.
- 18

14

15

Based on the information provided by Applicants, the SCCS has summarised maximumimpurities levels in the following Table 3.1.5.

- 21
- 22
- 23 24

Table 3.1.5.: Impurities for Pigmentary and Nano Titanium dioxide grades.

Impurities	Pigmentary grades	Nano grades
Water soluble substance	<u>≤ 0.5%</u>	<0.25%**
Acid soluble substance	≤ 1.5%	< 0.5%
Arsenic (HCI-soluble)	≤ 1 mg/kg	<1ppm
Lead (HCI-soluble)	≤ 10 mg/kg	<10ppm
Antimony (HCI-soluble)	≤ 2 mg/kg	<2ppm
Mercury (HCI-soluble)	≤ 1 mg/kg	<1ppm
Cadmium (HCI-soluble)	≤ 1 mg/k g	not provided

4

5 SCCS comments

6 For the nano titanium dioxide grades, the Applicants reported the maximum amount of watersoluble substance as < 0.25%. According to elements provided by Applicants in the Table 7 3.1.5 - B from Annex B ("Impurity profile of the Raw Materials - Pigmentary and Nano 8 Titanium Dioxide Grades"), the amount of water-soluble substance for RM81 is equal to 0.5% 9 10 (**).

11

3.1.6 Solubility

12 13

14 From Applicants

- 15 Insoluble in water and organic solvents
- 16 17

Ref.: January 2023 PhysChem data on Cosmetics TiO2 grades final.pdf

18 3.1.7 Partition coefficient (Log Pow)

19 20 From Applicants

21 The information provided by Applicants on the Partition coefficient is reported in Annex C

- "Partition Coefficient Pigmentary and Nano titanium dioxide grades": 22 23 For the pigmentary titanium dioxide grades: Table 3.1.7.A
- 24 For the nano titanium dioxide grades: Table 3.1.7.B
- 25 Table 3.1.7. Summary of the information provided by Applicants related to partition coefficent (done by the SCCS) 26

	Pigmentary grades	Nano grades
n/a (no organic	16 grades: RM01, RM02, RM03,	/
components):	RM04, RM26, RM28, RM30, RM31,	
	RM37, RM67, RM67b, RM68, RM69,	
	RM69b, RM70c, RM72c.	
Hydrophilic	4 grades: RM04, RM05, RM19,	11 grades: RM09, RM41, RM45,
	RM72f,	RM46, RM47, RM55, RM59, RM74d,
		RM77, RM78, RM80
Hydrophobic	13 grades: RM27, RM29, RM33,	26 grades: RM10, RM11, RM40,
	RM34, RM35, RM38, RM70d,	RM42, RM43, RM44, RM48, RM49,
	RM70e, RM70f, RM72d, RM72e,	RM51, RM52, RM53, RM56, RM57,
	RM72g, RM72k.	RM60, RM61, RM62, RM63, RM64,
		RM65, RM74a, RM74b, RM74c,
		RM74e, RM76, RM79, RM82
Amphiphylic	/	2 grades: RM75, RM81
Kow Measured - Calculated*	9 Grades: RM07: 9* at 20°C,	RM58: 2.6 – 4.3.
	RM08: - 1.75* at 25°C, RM32: - 2.6	
	– 1.9, RM36, RM39: 2.6 – 4.3,	

RM72a, RM72b: 1.1 at 20°C, RM72i:	
- 0.47 at 26°C, RM72j-bis: 3.9 at	
20°c	

3

4 5

6

7

8

9

3.1.8 Additional physical and chemical specifications

3.1.8.1. Organoleptic properties (colour, odour, taste if relevant)

- i) Pigmentary Grades: White Odourless Tasteless
 - Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final Table from Page 7/28 – Column 6.2) Organoleptic properties
- ii) Nano grades
- 10 3.1.8.2. Melting point

/

- 11 Rutile: > 1800°C
- 12 Anatase: Does not melt but transforms to rutile (MP >1800°C)
- 13 Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final
- 15 3.1.8.3. Boiling point
- 16 17

14

- 18 3.1.8.4. Flash point
- Not applicable
 20

/

/

- Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final
- 2122 3.1.8.5 Vapour pressure
- 23
- 24
- 25 3.1.8.6. Density 26
- 27 From Applicants
- The information on the density, porosity pour density and tap density has been reported by Applicants. The information has been noted in Annex D "*Density of the pigmentary and nano titanium dioxides grades*":
- 31 for the pigmentary titanium dioxide grades: Table 3.1.8.6.A
- for the nano titanium dioxide grades: Table 3.1.8.6.B
- Table 3.1.8.6.: Summary table of the density, porosity, pour density and tap density for the pigmentary and nano titanium dioxide grades (formulated by the SCCS based on the informations of Tables 3.1.8.6.A and 3.1.8.6.B in Annex D).

	Pigmentary grades	Nano grades
Density (g/cm ³)	3.62 (RM27) to 4.34 (RM28)	2.51 (RM44) to 4.26 (RM82)
Porosity	1.01 (RM33) to 2.27 (RM31)	1.20 (RM78) to 3.22 (RM57)
	Not reported: RM19, RM67,	Not reported: RM74a, RM74b,
	RM67b, RM68, RM69, RM69b,	RM74c, RM74d, RM74e
	RM70a, RM70b, RM70c, RM70d,	
	RM70e, RM70f, RM72a, RM72b,	
	RM72c, RM72d, RM72e, RM72f,	
	RM72g, RM72i, RM72j-bis, RM72k	
Pour Density (g/cm ³)	0.31 (RM 31) to 1.11 (RM72j-	0.10 (RM78) to 0.63 (RM64)
	bis)	
	Not reported: RM70a, RM70b,	
	RM72g.	
Tab density (g/cm ³)	0.595 (RM01) to 1.80 (RM39)	0.12 (RM78) to 0.99 (RM57)

Not reporte	d: RM19,	RM67,	Not reported: RM74a, RM74b,
RM67b, RM68	, RM69,	RM69b,	RM74c, RM74d, RM74e.
RM70a, RM70	o, RM70c,	RM70d,	
RM70e, RM70	, RM72a,	RM72b,	
RM72c, RM72	d, RM72e,	RM72f,	
RM72g, RM72i,	RM72j-bis,	RM72k	

3.1.8.7. Viscosity

3 4 5

/

1 2

6

7

3.1.8.8. pKa

8 From Applicants

9 The pKa data is not available. The Applicants has proposed to replace this data item with
10 the pH value at isoelectric point.

- 11 12
- Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf

The value of pH at isoelectric point are reported in Annex E "pH value at isoelectric point –
 Pigmentary and Nano titanium dioxide grades".

15 16 3.1.8.9. pH

17 From Applicants

- Typical method: TiO₂ dispersions were prepared by adding the 1 wt. % of TiO₂ powder to deionised water. The dispersions were placed on magnetic stirrer (1500 rpm) for 15 minutes at ambient temperature to ensure that the powder is fully dispersed. The pH is measured using a pH meter calibrated with standard buffers prior to use.
- 22 Ref.: CE-TiO2-23-003.0 Att 1_Generic Description of Analytical Methods final.pdf
- The pH values are reported in Annex F "pH values Pigmentary and Nano Titanium dioxide
 grades":
- 26 For the pigmentary grades: Table 3.1.8.9.A
 - For the nano grades: Table 3.1.8.9.B.
- 27 28

29 Table 3.1.8.9. Summary of the pH values (noted by the SCCS)

	Pigmentary grades	Nano grades
рН	3.9 (RM04, RM72j-bis) to 8.5 (RM03,	4.1 (RM74b) to 9.0 (RM45)
	RM08).	Not reported: RM10, RM11, RM40, RM42,
	Not reported: RM07, RM27, RM29,	RM43, RM44, RM48, RM49, RM51, RM52, RM53,
	RM33, RM34, RM35, RM36, RM38, RM39,	RM56, RM57, RM58, RM60, RM61, RM62, RM76,
	RM70d, RM72.	RM82

30 31

32 3.1.8.10. Refractive index

33 34

/

35

36

37 3.1.8.11. UV/visible light absorption spectrum

3839 From Applicants

The information provided by Applicants on the UV/visible light absorption spectrum are reported in Annex G "*UV/Visible light absorption spectrum"*:

- 42 For the pigmentary grades: Table 3.1.8.11.A
- 43 for the nano grades: Table 3.1.8.11.B
- 44

- 1 Table 3.1.8.11. Summary of the UV absorption values for the pigmentary and the nano
- titanium dioxide grades as a function of the wavelengths (formulated by the SCCS based on
 Tables 3.1.8.11.A and 3.1.8.11.B)
 - Tables 3.1.8.11.A and 3.1.8.11.B)

 UV Absorption
 Pigmentary grades
 Nano grades

 At 308 nm
 5.7 (RM01) to 90 (RM07)
 9.07 (RM82, RM01) to 92 (RM09, RM10)

 At 360 nm
 7.2 (RM02) to 88 (RM08)
 10 (RM45) to 85 (RM09)

 At 400 nm
 4 (RM38) to 89.9 (RM01)
 2 (RM44) to 62.99 (RM82)

9

6 SCCS comments

The UV Absorption values have not been reported for RM19 and RM81, pigmentary and nano
 titanium dioxide grades, respectively.

- 10 3.1.8.12. Photocatalytic Activity
- The information provided by Applicants on the photocatalytic activity are reported in Annex
 H "Photocatalytic activity pigmentary and nano titanium dioxide grades".
 - For pigmentary grades: Table 3.1.8.12.A
 - For Nano grades: Table 3.1.8.12.B
- 15 16

- 17 Nano grades:
- 18 The photocatalytic activity compared to the uncoated / undoped material is ranging from 19 0.019 % (RM63) to less or equal to 10% (RM09, RM10, RM11, RM74a, RM74b, RM74c, RM74d, 20 RM74e, RM75, RM76, RM77, RM78, RM80, RM81, RM79, RM82).
- 21 22
- 23 3.1.8.13. RedOx Potential24
- The RedOx potential values are reported in Annex I "*RedOx potential pigmentary and nano titanium grades"*:
- 27 For the pigmentary grades: see Table 3.1.8.13.A
- For the nano grades: see Table 3.1.8.13.B
- 29
- 30 Pigmentary grades
- Among the 44 pigmentary grades, the redox potential has been measured for 5 grades RM01;
- 32 377 mV, RM28; 325 mV, RM30; 406 mV, RM31; 323 mV, RM70a; 349 mV. For RM70e, it is 33 noted as not measurable, too hydrophobic.
- 34
- 35 Nano grades
- 36 Among the 40 nano grades, the redox potential has been measured for 3 grades: RM09;
- 37 350 mV, RM41; 300 mV.
- 38
- 39 SCCS comments
- 40 No information on the RedOx potential has been provided for 39 pigmentary grades or for 37
- 41 nano grades.
- 42

2	3.1.9. Particle Shape, particle size and distribution
3	
4	From Applicants
5	Data on primary particle size of Pigmentary Titanium Dioxide Raw Materials for Cosmetics
6	measured by Scanning Electron Microscopy (SEM) was submitted by Cosmetics Europe to the
/	SCCS in March 2023. Additional data on primary particle size has now been generated using
0	Transmission electron wicroscopy (TEW) at the request of the SCCS.
10	From Ref.: PS TEM Pigment - Annexes 9 and 10 (April 2023)
11	
12	The methods used by Applicants for the determination of the Primary Particle Size Distribution
13	and Shape by SEM - Applicant #1 method (used for Pigmentary Titanium Dioxide), by SEM -
14	Applicant #2 method (used for Nano Titanium Dioxide) and by TEM have been reported (see
15 16	related Annex K. <i>Measurement methods</i> – Appendix 1, 2 and 3).
17	
18	The method used by Applicants for the determination of Secondary Particle Size Distribution
19	(Aggregates/Agglomerates) by Disc Centrifuge has been reported (see related Annex K
20	"Measurement methods – Appendix 4")
21	From Def . Titanium Diavida Crades used in Cosmotics. Data on Drimory and Secondary
22 23	Particle Size and Surface Properties and Measurement Method Descriptions. Third Package -
24	Report 2 (31 March 2023)
25	
26	
27	3.1.9.1 Particle shape, Aspect ratio
28	The full sets of data provided by Applicants, related to the particle shapes and the aspect ratio
30	values are reported in Annex L "Particle shape. Aspect Ratio – Pigmentary and nano titanium
31	dioxide grades";
32	- For the pigmentary grades: see Table 3.1.9.1.A1 (SEM observations) and Table
33	3.1.9.1.A2 (TEM observations).
34	- For the nano grades: see Table 3.1.9.1.B1
35	Table 3.1.9.1. Summary of the shape and aspect ratio for the pigmentary and nano titanium
36	dioxides grades (SEM and TEM observations) (formulated by SCCS based on Tables 3.1.9.1.A1
37 28	
0	

	Pigmentary grades	Nano grades	
Shape	Spheroidal (SEM, TEM): all grades	Spheroidal (RM09, RM11, RM55, RM56, RM57, RM58, RM59, RM60, RM61, RM62, RM64, RM65, RM74a, RM74b, RM74c, RM74d, RM74e, RM78, RM81, RM82) Lanceolate (RM10, RM40, RM41, RM42, RM43, RM44, RM45, RM46, RM47, RM48, RM49, RM51, RM52, RM53, RM63, RM75, RM76, RM77, RM79, RM80)	
Aspect ratio (SEM)	1.25 (RM05, RM06, RM07, RM19, RM26, RM32, RM67, RM70b, RM70c, RM70e, RM70f) to 1.33 (RM37, RM38)	/	
Aspect ratio (TEM)	1.20 (RM01) to 1.55 (RM37)	1.4 (RM60, RM62) to 4.4 (RM75)	

2 SCCS comments 3 For the nano titanium dioxide grades, no information has been provided on the particle 4 fraction with an aspect ratio larger than 3. 5 6 3.1.9.2. Particle size and distribution 7 8 Pigmentary titanium dioxide grades 9 High Resolution Transmission Electron Microscopy Investigation (HR-TEM) 10 For the pigmentary titanium grades, some typical high resolution TEM images (HR-TEM) of pigmentary grades that illustrate particular features for the different categories are shown 11 (see Annex J "HR TEM and TEM images"): 12 - Category a / pigmentary (Surface of Untreated Titanium Dioxide): Anatase RM01, Rutile 13 14 RM02 - Category b1 / pigmentary (Surface of Titanium Dioxide Treated with Low Levels of 15 Inorganics (<2% Alumina and/or Silica) only): RM 30 - Rutile treated with 0.3% 16 Alumina and 2.3% Aluminium Hydroxide 17 18 - Category b2 / pigmentary (Rutile treated with 0.3% Alumina, 2.3% Aluminium Hydroxide and 5% Hydrated Silica): RM31 - Rutile treated with 0.3% Alumina, 2.3% 19 20 Aluminium Hydroxide and 5% Hydrated Silica. - Category c1 / pigmentary (Surface of Titanium Dioxide Treated Only with Organics): 21 22 RM70f - Anatase with <5% Hydrogenated Lecithin 23 - Category c2 / pigmentary (Surface of Titanium Dioxide Treated with Low Levels of 24 Inorganics (<2% Alumina and/or Silica) and also with Organics): RM 35 -Rutile treated with 0.3% Alumina 0.3%, 2.2%vAluminium Hydroxide, 2% Hydrogen 25 Dimethicone 2.0% (RM35) 26 - Category c3 / pigmentary (Surface of Titanium Dioxide Treated with Inorganics (Including 27 28 >2% Alumina and/or Silica) and with Organics Added): RM38 - Rutile treated 29 with 0.2% Alumina, 3.7%, Aluminium Hydroxide, 0.4%, Zinc Oxide and 1% 30 Isostearic Acid. 31 32 Ref.: CE Cons TD_Phys-chem second data package_23 03 2023.pdf 33 34 Pigmentary titanium dioxide grades 35 Transmission electron Microscopy Investigations (TEM) 36 TEM images have been provided for every pigmentary grade analysed ((see Annex J "HR-TEM 37 and TEM images") 38 39 Ref.: CE Cons TD_Phys-chem second data package_Annex 1 and 2_Pigment_23 02 40 2023.pdf 41 42 43 Pigmentary titanium dioxide grades 44 Primary particles sizes, agglomerates / aggregates sizes, % nano, aspect ratio 45 The full size distribution of all the various pigmentary titanium grades have been provided by 46 47 Applicants. 48 The two provided sets of data related to the particle sizes are reported in Annex L "Particle 49 shape, Aspect Ratio - Pigmentary and nano titanium dioxide grades": 50 Table 3.1.9.1.A1: Primary particle sizes determined by SEM expressed by number and 51 by mass, % nano and aspect ratio determined by SEM, particle size of agglomerates / 52 aggregates measured by CPS DC expressed by mass and by number. Table 3.1.9.1.A2: The data related to the Primay particle sizes and aspect ratio values 53 54 determined by TEM are reported. 55 56 Table 3.1.9.2.A3. Summary of the constituent particle sizes (mean and median, Feretmin), % nano (size below 100 nm, number based) determined by SEM and TEM 57

observation	ns (formulated by the S	SCCS, based on Tables 3	3.1.9.1.A1 and 3.1.9.1.A2
from Anne:	x L)		
Pigmentary grades constituent Particles	Mean size Particle size	Median Size Particle size	% nano
SEM	108 - 388 nm	103 - 360 nm	0.0 - 45.9%
TEM	88 - 427 nm	85 - 406 nm	0.0 - 66.7%

3 4 5

5 6 7

Table	3.1.9.2.A4.	Summary	of	the	agglomerate	/	aggregate	sizes	of	the	Titanium
	pigmenta	ry grades (i	mas	s an	d number base	ed)	(formulated	d by th	ne S	CCS,	based on
	Tables 3.	1.9.1.A1 an	d 3	.1.9.	1.A2 from Anr	nex	L)				

Pigmentary grades Agglomerates / Aggregates	Mean size (Mass based)	Median Size (Mass based)	Mean size (Number based)	Median Size (Number based)
CPS DC	408 - 1295 nm	309 – 979 nm	101 - 874 nm	166 - 550 nm

8

9 Comparison of the size distribution (% nano) obtained by SEM and TEM 10 observations and measurements (RM26 and RM67)

1112 From Applicants

It can be noted that some differences are found between the data generated using different 13 14 methods due to the dispersion protocols used to prepare the samples for imaging, the nature 15 of the imaging methodology and the software used for image analysis. This can give rise to 16 different categorisations where materials are close to a categorisation threshold e.g., the 17 definition of a nanomaterial as >50% of primary particles <100nm. All the samples for which 18 significant differences are found are anatase which is less robust than rutile and it is even 19 possible that the more aggressive rubout technique has caused some crystal damage resulting 20 in generation of fine fragments.

21

There are six samples that give differing results but they derive from only two base titanium dioxide materials. RM26 is treated with dimethicone to make RM27; RM67 is treated with triethoxycaprylylsilane to derive RM70a and RM70b, and RM70c is RM67 additioned with nano silica as a processing aid.

26

27 Comparison of the images and the data derived from analysis of the images is shown below 28 for the base pigmentary materials, RM26 and RM67, and demonstrates the differences that 29 can arise. Hence it is important to consider more than one protocol and method before 30 reaching a definitive conclusion.

31

In each case, as two methods show that the % of primary particles <100nm is <50%, these
 materials would not be categorised as nanomaterials under the EU recommendation
 2011/696.

		Primary Particle Size by number (Feret min)			
Product Code	Measurement Method	Mean size [nm]	Median size [nm]	%Nano % by number < 100 nm	
RM26	CE SEM data	106	103	45.9%	
	Supplier TEM data	109	104	45.2%	
	CE TEM data	88	85	66.7%	

		Primary Particle Size by number (Feret min)			
Product Code	Measurement Method	Mean size [nm]	Median size [nm]	%Nano % by number < 100 nm	
	CE SEM data	120	115	30.5%	
RM67	Supplier SEM data ex LNE	110	102	48%	
	CE TEM data	101	96	53.2%	

From Ref.: PS TEM Pigment - Annexes 9 and 10.pdf (April 2023)

SCCS comments

- 6 For the RM26 pigmentary grade:
- the SCCS noted a significant difference for the % nano between the two TEM data
 provided: 45.2% and 66.7% from Supplier TEM data and Ce TEM data, respectively
- 9 The SCCS noted the difference between % nano (number-based) measured by SEM
- 10 (45.9 %) and TEM (45.2 up to 66.7%)
- 11 For the RM67 pigmentary grade:
- the SCCS noted a significant difference for the % nano between the two SEM data
 provided: 30.5% and 48% from CE SEM data and Supplier SEM Data, respectively.
- the % nano provided by CE TEM data is higher than 50.0% (53.2%). Therefore, the
 SCCS does not agree with the sentence from Applicants: "In each case, as two
 methods show that the % of constituent particles <100nm is <50%, these materials
 would not be categorised as nanomaterials under the EU recommendation 2011/696."
- 18 19

1 2 3

4 5

20 Nano titanium dioxide grades

- 21 High Resolution Transmission Electron Microscopy Investigation (HR-TEM)
- 22 Some typical high-resolution TEM (HR-TEM) images for nano grades have been provided by 23 Applicants (for detailed images, see Annex J "*HR*-*TEM and TEM images"*):
- Surface of Nano Titanium Dioxide Treated with Inorganics: RM60 Nano Titanium
- 25dioxide 91.2%, Aluminium Hydroxide 4.1%, Stearic Acid 4.7%, RM74d Nano26Titanium Dioxide with Silica coating.
- Different morphologies are studied for the following grades: RM46, RM53, RM59, RM62,
 RM78, RM74d.
 Further HR-TEM images show that a variety of morphologies and sizes can
 - Further HR-TEM images show that a variety of morphologies and sizes can be produced by a single process (Sulfate Process) and the same is true of the Chloride Precipitation Process (RM63, RM64).
- 33 Ref.: CE Cons TD_Phys-chem second data package_23 03 2023.pdf 34

35 Nano titanium dioxide grades

- 36 Transmission electron Microscopy Investigations (TEM)
- TEM images have been provided for every nano titanium grade analysed (see Annex J "*HR*-*TEM and TEM images"*)
- Ref: CE Cons TD_Phys-chem second data package_Annex 3 and 4_Nano_23 02 2023.pdf
- 41 42

30

31

2 Nano Titanium dioxide grades:

3 Primary particle sizes, agglomerates / aggregates sizes

4 The full-size distribution curve of the various nano titanium grades have been provided by 5 Applicants.

6 The full set of data related to the particle sizes of the nano titanium dioxide grades (primary 7 particles, agglomerates/aggregated particles) is reported in Annex L - Table 3.1.9.1.B1.

8

9 Table 3.1.9.2.B2. Summary of the primary particle sizes (mean and median) for nano 10 titanium dioxide grades (TEM observations and measurements), (formulated by SCCS, based on Tables 3.1.9.1.B1 from Annex L) 11

12

Nano grades Primary Particles	Mean size Particle size (by number)	Median Size Particle size (by number)
TEM	10 – 86 nm	9 - 81 nm

13

14 Table 3.1.9.2.B3. Summary of the mean and the median ranges of agglomerates / 15 aggregates of the nano titanium dioxide grades determined by CPS DC

16

Mean size	Median size	Mean size	Median size
(number)	(number)	(mass)	(mass)
46 – 168 nm	43 - 162 nm	118 - 1156 nm	59 – 832 nm

17 18

20

19 3.1.9.3. Aerodynamic diameter

21 The informations on Aerodynamic diameter provided by Applicants have been reported in 22 Annex M "Aerodynamic diameter - Pigmentary and Nano titanium dioxide grades": 23

- For the pigmentary grades: see Table 3.1.9.3.A
- For the nano grades: see Table 3.1.9.3.B -
- 24 25

Table 3.1.9.3. Summary of the Aerodynamic diameter (%<10 µm) as a function of the 26

27 nano titanium grades (formulated by SCCS based on Tables 3.1.9.3.A and 3.1.9.3.B. from 28 Annex M)

Aerodynamic diamter	Pigmentary grades	Nano Grades
0% below 10 µ m	RM03, RM04, RM05, RM07, RM08, RM30, RM32	RM40, RM78, RM79, RM81
Less than 1% below 10 µm	The other 37 grades	The other 36 grades

29

30

3.1.9.4. Surface (SSA, VSSA) 31

32

33 The information provided by Applicants on the Specific Surface Area (SSA) and Volume Specific Surface Area (VSSA) have been reported in Annex N "Specific Surface Area (SSA) 34 and Volume Specific Surface Area (VSSA) - Pigmentary and Nano titanium dioxide grades": 35 36

- For the pigmentary grades: see Table 3.1.9.4.A
 - For the nano grades: see Table 3.1.9.4.B

37 38

39 Table 3.1.9. Summary of the information related to constituent particles sizes (SEM/TEM), 40 Aspect ratio, % Nano, Agglomerates/Aggregates sizes (CPS DC) (formulated by the SCCS)

		Pigmentary grades	Nano grades
Constituent particle (SEM / TEM)	Mean size (by number)	88 - 427 nm (TEM) 108 - 388 nm (SEM)	10 – 86 nm (TEM)
	Median size (by number)	85 - 406 nm (TEM) 103 - 360 nm (SEM)	9 – 81 nm (TEM)
	Aspect ratio(*)	1.20 - 1.55 (TEM) 1.25 - 1.33 (SEM)	1.4 – 4.4 ^(*) (TEM)
	% Nano	0.0 - 66.7% (TEM) 0.0 - 45.9% (SEM)	100% (TEM)
Agglomerates / Aggregates	Mean size (by number)	101 - 874 nm	46 – 168 nm
(CPS DC)	Median size (by number)	166 – 550 nm	43 - 162 nm
	Mean size (by mass)	408 - 1295 nm	118 - 1156 nm
	Median size (by mass)	309 – 979 nm	59 - 832 nm
	Specific Surface Area	2 - 15.8 m²/g	8 - 117 m²/g
	Volumic Specific Surface Area	8 - 68.4 m ² .cm ³	34 - 402 m ² .cm ³

(*) No information has been provided on the particle fraction with an aspect ratio larger than 3.

3 4 5

6

7

1

2

3.1.9.5. Surface Components / Surface reactivity

8 From Applicants:

The identity of the surface components and functional groups are not measured but inferred
 from a knowledge of the chemical moieties that have been used to treat the surface. All
 surface treatments are cosmetic ingredients that are widely used in cosmetic formulations.
 Some of the surface species could be determined by methods such as infra-red spectroscopy
 From Ref.: CE response to SCCS Request of 13 June 2023_29062023.pdf

- The information related to Surface Components / Surface reactivity provided by Applicants
 are reported in Annex O "Surface Components / Surface reactivity Pigmentary and Nano
 Titanium dioxide grades":
- 18 For the Pigmentary grades: see Table 3.1.9.5.A
- 19 For the Nano grades: see Table 3.1.9.5.B
- 20

Table 3.1.9.5. Summary of the information provided for the surface components and/or functional groups for the pigmentary and nano titanium dioxide grades (noted by SCCS based on Table 3.1.9.5.A and Table 3.1.9.5.B from Appex (I)

on Table 3. T.9.5.A and T	able 3.1.9.5.B from Annex O).	_
Surface components, functional groups	Pigmentary titanium grades	Nano titanium Grades
Uncoated	RM01, RM02, RM03, RM04, RM26,	All the 40 nano titanium grades are coated.
	RM28, RM67, RM67b, RM68, RM69,	5
	RM69b, RM70c, RM72c.	
Alkyl chain,	RM33, RM38	RM40, RM42, RM48, RM49, RM53, RM56,
Carboxyl group		RM60, RM62, RM63, RM64, RM65, RM74b,
		RM76
-OH	RM26, RM28	RM09, RM77, RM78, RM80
-OH; -PO42-	RM01, RM02, RM03, RM04, RM06,	
	RM67, RM67b, RM68, RM69,	
	RM69b, RM70c, RM72c	
-OH; -(C3H5(OH)3)	RM19	
-OH; -(C3H5(OH)3); -PO42-	RM05, RM08	
Methyl group	RM29, RM35, RM36, RM 39	RM10, RM11, RM43, RM44, RM51, RM52,
Mathad analyse Old		RM57, RM58, RM61, RM74a, RM74e, RM82
Methyl group, - OH		
Hydroxyr group	RIVI3U, RIVI3T, RIVI3T, RIVI7ZI	RM41, RM45, RM46, RM47, RM55, RM59, RM66, RM73, RM74d, RM81
Caprylylsilane group	RM70a, RM70b, RM72a, RM72b	RM74c
Carboxyl group, Hydroxyl	RM32	
group		
Carboxyl group, Amino	RM34	
group	DMZQC	
Hydrogenated Lecithin	RM70t	
Hydroxyl, Caprylyisilane:	RM72J-DIS	DMZO
Cetyl group	DM70a	RM 79
Sodium Grycer opnosphate	RM70e	
Cosos Nucifora (Cosoput)	RIVI721	
Oil Aloe Barbadensis Leaf	RIVI72R	
Extract		
Sodium Cocoyl Glutamate	RM72a	
Cystine, Lauric Acid,	=9	
Arginine		
Bis-PEG-15 Dimethicone/	RM72e	
IPDI Copolymer, PEG-2-		
Soyamine, Isopropyl		
Titanium Triisostearate		
Persea Gratissima	RM72d	
(Avocado) Oil,		
Hydrogenated Vegetable		
UII, TOCOPHEROI	DM704	
Rosa Damascona Elower	KIVI / UU	
Cora Cora Alba		
Cera, Cera Alba		

5 6 7

SCCS comments

7 For the pigmentary and the nano titanium dioxide grades, the Applicant did not provide 8 explanation on the tested media, or on the stability of the surface components.

- 9
- 10 3.1.10 Homogeneity and Stability
- 11

12 From Applicants

13 The coating materials are applied to the surface to improve particle dispersion, inhibit or 14 abolish photoactivity and improve compatibility with other ingredients present in sunscreen

- 15 formulations. The coating materials are not UV absorbers and all these materials are common
- 16 cosmetic ingredients which are widely used for different purposes in cosmetic products.

- 1 Stability of the coating on the particle is important for the technical properties of TiO₂-2 containing formulas (stability of emulsion, colour, segregation of particles).
- Complete stability of coating materials on the TiO₂ particle has been demonstrated with
 variation in pH, temperature, shear force and time (up to 180 days) in studies previously
 submitted to the SCCS in 1998 (references 62, 63), in 1999 (references 68 and 72), 2000
 (reference 96), 2009 (references 113 and 116) and 2014.
- Hence, it can be concluded that the coatings are stable under the conditions and timespan of
 the *in vitro* tests performed.
- 10 11

- Ref.: CE-TiO2-23-003.0 CE Response to clarifications requested by SCCS 10 03 23 final
- 13 The information on the homogeneity and the stability provided by Applicants are reported in 14 Annex P "Homogeneity and Stability – Pigmentary and Nano Titanium Dioxide grades".
- 15

1617 SCCS comments

- The provided references (62, 63, 68, 72, 96, 113) are related to the stability studies of some
 few specific coatings on TiO₂ particles.
- Furthermore, no indication has been provided on the size, structure, or shape of the tested coated-TiO₂ particles.
- The set of reported data on the stability of the coatings of TiO₂ particles does not cover the full diversity of the coatings listed by Applicants for this Opinion.
- 24

25 3.1.11 Dispersibility

26

27 From Applicants

Nanogenotox guidance as well as EFSA guidance are available for methods of dispersion and
were used as reference for dispersion of materials in (key) studies. Therefore, the consortium
has looked at dispersibility of representative materials in conditions mimicking the ones
applied during toxicological testing utilizing both:

- 32 33
- the Nanogenotox protocol (with Bovine Serum Albumin dispersant) (see Annex K "Measurement methods - Appendix 8")
- and the method used for the SCCS evaluation of Titanium Dioxide (nano) with small
 changes regarding the dispersant and the fact that all material was prewetted to obtain
 optimal results for both hydrophobic and hydrophilic material (so called by Applicants
 "modified SCCS method"). (see Annex K "Measurement methods Appendix 9")

The results for a representative selection of grades (one from each of the six categories a-c3 for pigments and three nano grades of different polarity) which are highlighted in Annex Q *"Dispersibility"*, Tables 3.1.11.A1 and A2, and Table 3.1.11.B1 and B2 for pigmentary and nano grades respectively.

4243 SCCS comments

The method noted by the Applicants as "*modified SCCS method"* is in fact a specific method developed by the Applicants for providing information relating to the evaluation by the SCCS of a former Titanium dioxide (nano) Dossier (SCCS/1516/13). As such, it is not a method proposed or modified by the SCCS.

48

49 Dispersibility of Pigmentary grades

50 From Applicants

The histograms for particle size (agglomerate / aggregates particles) (both by number and mass) determined using the so-called by Applicants "*modified SCCS method*" have been provided. The particle size data reported by Applicants have been reported in the Table 3.1.11.A1 and in Table 3.1.11.A2 (Annex Q) for the so-called by Applicants "*modified SCCS* disconsibility method."

55 *dispersibility method"* and the "Nanogenotox dispersibility" protocol, respectively.

SCCS/1661/23

1

2 Table 3.1.11.A3 from Annex Q "Dispersibility" compares the particle sizes of TiO₂ cosmetics grades dispersed using the Nanogenotox protocol and the so called by Applicants "Modified 3 4 SCCS protocol" (described in the March 2023 submission) to establish the effect of dispersion 5 energy and measured using CPS DC The median sizes derived using the Nanogenotox protocol are around 10% larger than those obtained using the so-called by Applicants "modified SCCS 6 7 protocol" (difference is even larger for the hydrophobic grade RM70a).

8 SCCS comments 9

10 Among the 44 pigmentary titanium grades, one pigmentary grade for each of the 6 categories has been tested. RM01 (a), RM30 (b1), RM31 (b2), RM70a (c1), RM05 (c2), RM39 (c3). 11

12 The SCCS notes the influence of the so-called by Applicants "modified SCCS Dispersibility" and of the "Nanogenotox dispersibility" methods on the particle sizes (mean and median 13 14 particles sizes by mass and by number), as compared with initial ones reported in Annex Q "Dispersibility" - Table 3.1.9.A1. The comparisons are reported in Tables Annex Q 15 Dispersibility" - Table 3.1.11.A1: Table 3.1.11.A2. 16

17 Dispersibility of Nano grades 18

19 From Applicants

20 The histograms for particle size (agglomerate / aggregates particles) (both by number and mass) determined using the so called by Applicants "modified SCCS method" have been 21 provided. 22

The particle size data provided by Applicants have been reported in Annex Q "Dispersibility", 23

24 Table 3.1.11.B1 and Table 3.1.11.B2 for the so-called by Applicants "modified SCCS 25 dispersibility method" and the Nanogenotox dispersibility protocol, respectively.

26

In Annex Q "Dispersibility", Table 3.1.11.B3 compares the particle sizes of TiO₂ cosmetics 27 28 grades dispersed using the Nanogenotox protocol and the so called by Applicants "Modified SCCS protocol" to establish the effect of dispersion energy and measured using CPS DC. 29

30 The median sizes by number are close for the different protocols (the Nanogenotox protocol 31 sizes always being larger), with the greatest difference being for the hydrophobic sample, 32 RM11. The median sizes by mass are much larger using the Nanogenotox protocol.

All of the nano samples measured are well above the 30nm threshold for secondary particle 33 size set by the SCCS Opinion of 2014 irrespective of the dispersion protocol applied. 34

- 35
- 36

Ref.: Dispersibility Nanogenotox - Report, 4th Data Package, 21 April 2023

37 38 SCCS comments

Among the 40 nano titanium grades, 3 nano grades have been tested in toxicity studies: 39 RM09, RM11, RM75. 40

The SCCS notes (see in Annex Q "Dispersibility" - Table 3.1.11.B1) that the particle sizes 41 42 reported by the applicant as being obtained using what the Applicants call the "modified SCCS dispersibility method") " " are the same as the ones corresponding to the initial state 43 44 provided in Annex Q - Table Table 3.1.9.1.B1

- 45
- 46 Stability of the dispersed RM09 and RM11 during the following genotoxicity tests: 47
 - Gene Mutation Assay in Chinese Hamster V79 Cells in vitro (V79/HPRT)
 - Micronucleus Test in Chinese Hamster V79 Cells in vitro
- 48 49
- 50 From Applicants

51 52 RM09:

53 The stability of the dispersion and the agglomeration/aggregation behavior as well as cellular uptake of the test item were investigated in the parallel study ICCR Study Number 4023311 54 55 "RM09: Gene Mutation Assay in Chinese Hamster V79 Cells in vitro (V79/HPRT)" performed

under comparable conditions: In the accelerated stability study, it was demonstrated via 56

1 dynamic light scattering (DLS) measurements that the test item RM09 showed stable particle 2 sizes without increased aggregation/agglomeration for at least 24 hours. 3 4 From Ref.: 4023313 final report.pdf 5 (RM09: Micronucleus Test in Chinese Hamster V79 Cells in vitro) 6 7 RM11: 8 To reflect the stability of the dispersion and the agglomeration/aggregation behavior of the test material during cell culture exposure in the genotoxicity experiment, particle size 9 determination of the test dispersion using dynamic light scattering (DLS) was performed in 10 the parallel study (ICCR Study Number 4023312 "RM11: Gene Mutation Assay in Chinese 11 12 Hamster V79 Cells in vitro (V79/HPRT)") as well (external assignment under non-GLP). In the V79/HPRT study, the test item preparation and exposure were performed under comparable 13 conditions, and thus, the results from the TEM and DLS analyses are considered transferable 14 15 between the two studies. 16 17 From Ref.: 4023314_final_report 18 (RM11: Micronucleus Test in Chinese Hamster V79 Cells in vitro) 19 20 The DLS measurements of RM09 and RM11 performed in gene mutation assay in Chinese hamster V79 cells in vitro (V79 / HPRT) and micronucleus test in Chinese hamster V79 Cells 21 22 in vitro are reported in Annex S. 23 24 SCCS comments 25 26 27 **Dispersion protocols** 28 For the dispersion protocols used by Applicants for the V79/HPRT tests on RM09 and RM11 and for the parallel DLS study (see Annex S), the SCCS has noted the following parameters: 29 30 31

Table 3.1.11. Dispersion protocols parameters for the V79/HPRT tests on RM09 and RM11and for the parallel DLS study

	RM09 ⁱ⁾	RM11 ⁱⁱ⁾	Both RM09 and
			RIVELT
From Report	V79/HPRT test	V79/HPRT test	DLS
			measurement
Quantity	0.0126 g (12.6 mg)	18 mg	6 mg
Ethanol	60 uL	90 uL	30 uL
Volume	11.94 mL	17.9 mL	6 mL
Probe sonicator	Bandelin SonoPlus	Bandelin SonoPlus	Sonics Vibra Cell
	Ultraschall	Ultraschall	VC505
	Homogenisator HD	Homogenisator HD	
	2200	2200	
Power	200 W	200 W	500 W
Duration	32 min	32 min	13 min
Amplitude	10%	10%	10%
Energy	3216 J/mL *	2145 J/mL *	6500 J/mL *

35

i) from Ref.: 4023311_final Report.pdf - Report: RM09: Gene Mutation Assay in Chinese
 Hamster V79 Cells *in vitro* (V79/HPRT)

i)* 200 W x (32 x 60 seconds) x 0.1 (amplitude) / 11.94 mL = 3216 J/mL sample volume
 (from SCCS)

- 1 ii) from Ref.: 4023312_final Report Report -RM11: Gene Mutation Assay in Chinese Hamster 2 V79 Cells in vitro (V79/HPRT)
- 3 ii)* (200 W x 0.1 (amplitude) x (32 x 60)) / 17.9 mL = 2145 J/mL sample volume (from 4 SCCS)
- 5

22

iii) from Ref .: Report 1 (corrected)" 30 June 2023 - Titanium Dioxide Grades used in 6 7 Cosmetics Data on Dispersibility and Measurement Method Descriptions - Section Appendix 2 8 Dispersibility with Bovine Serum Albumin (BSA) dispersant as used for in vitro 9 genotoxicological studies (following the Nanogenotox method) and Ref.: Dispersibility data 10 on Cosmetics TiO2 grades - Report (corrected).docx - 30 June 2023

- iii)* (500 W x 780 s x 0.1 (amplitude)) / 6 mL = 6500 J/mL sample volume (from Applicant) 11 12
- 13 Considering the above Table, the SCCS has noted at least two important differences between 14 the dispersion protocol and the particle size measurement methods between the 2 gene 15 mutation assays performed on RM09 and RM11 and the parallel accelerated study used for DLS measurement of the dispersion stability. 16
- a) The three energy values per volume used for the V79/ HPRT tests applied to RM09 and 17 RM11 and for the DLS measurements applied to RM09 and RM11 are different (3216 18 19 J/mL, 2145 J/mL and 6500 J/mL, respectively).
 - b) The sonication power used for the V79/ HPRT tests applied to RM09 and RM11 (i.e. 200 W) is different from the sonication power used for the DLS measurements applied to RM09 and RM11 (*i.e.* 500 W).
- 23 24 Only the dispersion energy used for the gene mutation assays applied to RM11 (i.e. 2145 25 J/mL) is in the range of the typical probe sonication dispersion conditions noted by SCCS 26 between 600 J/mL and 2,500 J/mL sample volume (SCCS/1655/23 - Guidance on the Safety Assessment of Nanomaterials in Cosmetics). 27
- The highest dispersion energy (*i.e.* used for DLS measurements) is 2.6 times higher than the 28 29 uppest range limit of the typical dispersion conditions noted by SCCS in SCCS/1655/23. 30
- 31 Centrifugation step before DLS measurements (not used for preparation of RM09 and 32 RM11 suspensions for the V79/HPRT tests)
- 33 The SCCS noted that the centrifugation step was used for DLS measurements but was not 34 applied to the RM09 and RM11 dispersions used for the V79/HPRT tests. Such centrifugation 35 step introduced a change in the agglomerates/aggregates size distribution by decreasing the number of the larger aggregates and the concentration was modified compared to the original 36 one by extracting the largest agglomerates/aggregates (from Ref. CE response to SCCS 37 38 Request of 13 June 2023 29062023.pdf).
- Therefore, the agglomerates/aggregates size distribution obtained in the parallel accelerated 39 40 dispersion study is not expected to be representative of the agglomerates/aggregates size 41 distributions of the performed gene mutation assays on RM09 and RM11.
- 42
- 43 3.2 TOXICOKINETICS
- 44

- 45 3.2.1 Dermal / percutaneous absorption

46

- 3.2.2 Other studies on toxicokinetics
- 48 49
| 1 | | | | | | | |
|---|---|--------------|-----------------|-----------------------------|--|--|--|
| 2
3 | 3.3 EXPOSURE ASSESSMENT | | | | | | |
| 4 | 3.3.1 Function and u | ses | | | | | |
| 5
6
7
8
9
10
11
12
13 | Titanium dioxide grades used in cosmetics may be divided into two groups: - pigmentary grades with median primary particle size >100nm whose primary function is to provide whiteness and opacity as well as some UV protection and - nano grades with median primary particle size <100nm whose primary function is to provide UV attenuation without excessive whiteness. | | | | | | |
| 14
15
16
17
18
19
20 | The different types of titanium dioxide, product types, target consumers and intended use concentrations in the Cosmetics Europe Titanium Dioxide oral products are presented in the following Table:
Table 3.3.1. Functions and cosmetics uses of titanium dioxide (Pigmentary and Nano grades) | | | | | | |
| | Type of titanium
dioxide | Product type | Target consumer | Intended use concentrations | | | |
| | Pigmentary | Toothpaste | Adult, Children | 3% | | | |

Pigmentary

Nano

21 22

Ref.: SCCS request July 2023_ConsTD resp_16082023.pdf (Augsut 2023)

Adult, Children

Adult, Children

15% 8%

23

24 3.4 TOXICOLOGICAL EVALUATION

25

In view of the mandated questions, the toxicological evaluation in this Scientific Advice was
mainly focused on assessment of the available evidence on mutagenicity/ genotoxicity. As
such, other toxicological aspects that had already been evaluated in the relevant previous
SCCS Opinions were not considered in this Scientific Advice.

Lip care or lipstick

(with SPF)

Lip care or lipstick

30

3.4.1 Mutagenicity / genotoxicity

31 32 33

34

OVERVIEW OF THE ASSESSMENT BY THE SCCS

In order to conclude on potential genotoxicity of TiO₂ when used in cosmetics products, the SCCS collected and analysed all the available data, either provided by the Applicant and that published in scientific literature for the assessment of genotoxic effects of TiO₂ nano- and pigmentary materials both in *in vitro* and *in vivo* models. To this end, the SCCS (re)reviewed the information from the following sources:

41 1. Several genotoxicity studies on TiO₂ grades used in cosmetics submitted by the Applicant.
42 The analysis is presented in paragraphs "3.4.1.1 Mutagenicity / genotoxicity in vitro" and

43 "3.4.1.2 Mutagenicity / genotoxicity in vivo".

1	
2 3 1	The Applicant submitted several file packages between April 2022 – August 2023, containing numerous documents, including the following study reports:
ч 5	
6	1 ToyTracker study
7 8 9 10	 Gene mutation assay in Chinese Hamster V79 cells in vitro (V79/HPRT) on RM09 Gene mutation assay in Chinese Hamster V79 cells in vitro (V79/HPRT) on RM11 Micronucleus test in Chinese Hamster V79 cells in vitro on RM09 Micronucleus test in Chinese Hamster V79 cells in vitro on RM11
11 12 13 14	 Micronucleus test in human peripheral blood mononuclear cells in vitro on ET/T-E The alveolar macrophage assay MucilAir-Rat-RF
15	ii) IN VIVO:
16 17	9. An <i>in vivo</i> study in rats instilled intratracheally with 11 commercial TiO ₂ samples (Creutzenberg, 2022)
18 19 20	10. The study in rats exposed by inhalation to nanograde TiO ₂ (6 nm) published by Akagi <i>et al.</i> (2023).
21 22	As the <i>in vitro</i> study reports #7 and #8 did not contain genotoxicity endpoints, the results were not considered by the SCCS in the WoF, and only shortened descriptions of the results.
23 24	were included in the Annex V. The analysis of the second <i>in vivo</i> study (Akagi <i>et al.</i> , 2023) is included in the analysis of the published literature data in "Annex X. SCCS and EESA analysis
25 26	of studies on TiO_2 genotoxicity".
27	2. The SCCS considered all the evidence that had already been assessed by the SCCS in
28 29	previous Opinions, and by EFSA in the Opinion on E171 (EFSA, 2021).
30 31 32	3. Other papers published on genotoxicity of TiO_2 particles complementing the analysis performed by the SCCS and EFSA. The SCCS analysis of publications until April 2023, is presented in paragraph "3.4.1.3". The overall SCCS assessment of the genotoxicity of TiO_2
33 34	grades used in cosmetic product s ".
35 36	
37 38	3.4.1.1 Mutagenicity / genotoxicity in vitro
39	The general conclusions on mutagenicity/genotoxicity study results (both <i>in vitro</i> and <i>in vivo</i>)
40	of TiO ₂ grades used in cosmetics as provided by the Applicant are presented below, as well
41	as in Annex T (Tables 8-12). References provided by the Applicant to the general conclusions
42	are included in the References section of this Scientific Advice.
43	
44	The general conclusions by the Applicant on mutagenicity/genotoxicity study
45 46	results of TiO ₂ grades used in cosmetic products:
47	i) The Cosmetic Europe Titanium Dioxide Consortium (Applicant) submitted in May 2022 a
48	report on the human safety evaluation of titanium dioxide (TiO ₂) in cosmetics with focus on
49	genotoxicity for consideration by the SCCS (CE, 2022). That report summarised the findings
50	of a scientific evaluation on the genotoxicity of titanium dioxide used in cosmetic products
51	thereby addressing in detail the genotoxicity concerns raised by EFSA in its most recent review
52	(2021) without relying on any (pre- or post-2009) in vivo genotoxicity studies.
53	The applicant's assessment report compliments the scientific work done in parallel by an
54	independent expert panel on the genotoxicity of titanium dioxide which has also been
55	submitted for consideration by the SCCS by the Titanium Dioxide Manufacturer Association
56	
50	(TDMA, 2022). The expert panel conducted a weight of evidence (WoE) assessment of the

- December 2021) irrespective of the titanium dioxide grades. Also, the expert panel review 1 2 included the available data identified in the EFSA evaluation as well as additional studies 3 available since the initial EFSA review including data generated in industrial and contract research laboratories on behalf of titanium dioxide producers. 4
- 5 This assessment by the expert panel constitutes one of the most comprehensive and up to
- 6 date reviews of the genotoxicity database for titanium dioxide. The expert panel has recently 7 published their WoE assessment on the genotoxicity of titanium dioxide (Kirkland et al., 8 2022).

9 In the expert panel review, datasets from publications and study reports were reviewed for 10 reliability using the ToxR Tool (Schneider et al., 2009) which applies modified Klimisch scores (Klimisch, 1997). The publications and the study reports used in the expert panel review 11 12 included the most relevant test systems and endpoints, as described in the Guidance

- Document on Revisions to OECD Genetic Toxicology Test Guidelines (OECD, 2015). 13
- 14 Each study dataset was assigned a modified Klimisch reliability score of 1 (reliable without 15 restrictions), 2 (reliable with restrictions) or 3 (unreliable) using the principles of the ToxR Tool, together with expert judgement. The standard ToxR Tool template was modified to 16 17 include nanoparticle (NP) characterisation as detailed in Card and Magnuson (2010). They 18 were then reviewed for quality, study design and acceptability of the data using expert
- 19 judgement (WoE evaluations).
- 20 The publication therefore reviewed in detail a total of 192 datasets (in vitro and in vivo studies) from relevant test systems and endpoints, out of which only those considered of 21 sufficient quality, reliability, and relevance (i.e., "moderate" or "higher" weight based on WoE 22 23 evaluations) for the assessment of genotoxic hazard (a final total of 34 datasets) were taken 24 into account. The numbers of datasets in the different categories are given in Table 8.
- 25 Since the Ames test is not recommended for testing insoluble particles, Ames tests were not 26 included under in vitro studies for the final evaluation. In vitro studies measuring formation 27 of reactive oxygen species, epigenetic DNA methylation and cell transformation were 28 discussed in the EFSA opinion, but not included in the expert panel review (see table above)
- 29 since they are considered to provide only supporting information rather than direct evidence of genotoxic effects (OECD, 2015; Expert panel report on genotoxicity, 2022; Kirkland et al., 30 31 2022).
- 32 As further explored below (in vitro, Table 9; in vivo, Table 11), many of the studies were 33 performed with NPs of titanium dioxide. Some comments on the characterisation of the NPs are provided in both tables. It is clear that whilst some studies included quite extensive 34 35 characterisation (nano scores of 8-10), others did not (nano scores of 1-3), and this variability 36 in characterisation was seen for datasets giving both negative and positive results.
- 37 Additionally, the Applicant provided data from mutagenicity (HPRT assay) and cytogenicity in 38 vitro micronucleus test) studies performed (See section In vitro studies and Table 10) according to OECD guideline and GLP-compliant. These studies incorporated the most recent 39 genotoxicity testing requirements for nanomaterials as outlined in SCCS (2019), ENV/JM/MONO(2014), and the OECD (Draft 2021). They were performed with two 40 41 42 representative titanium dioxide nano grades as typically used in cosmetic products (i.e., 43 RM09, RM11). As required by entry 27a of Annex VI to R 1223/2009, the crystal phase of 44 both test materials was rutile based, with hydrophilic and hydrophobic coatings. Both selected 45 materials had a primary particle size of 20-25 nm which is typical for nano titanium dioxide materials used in cosmetics (i.e., the median primary particle size of the 42 samples assessed 46 47 is 25.5 nm).
- To comply with the Cosmetic Regulation provisions on animal testing (Article 18), in this 48 49 dossier the applicant considered only in vivo studies which were conducted before March 50 2013. However, studies conducted post-2013 for other purposes than cosmetics are also 51 presented in Annex I.
- 52
- 53 54 ii) In vitro studies - Expert panel WoE of data until 2021
- 55 56 Of the 93 in vitro datasets reviewed in the quality assessment of all in vitro data, only 14 57 (comprising 9 MN, 3 CA, a single HPRT and a single TK gene mutation data set) with a

1 weighting of "moderate", "moderate to high" or "high" from publications and study reports

were considered relevant for the expert panel assessment. Ten out of the 14 *in vitro* data sets
were conducted with nano-grade titanium dioxide.

Kirkland *et al.* (2022) reported that there was no evidence of induction of gene mutations *in vitro*, although only 2 mammalian cell gene mutation studies achieved a final weight of **"moderate". Most** *in vitro* tests for MN and CA were negative. Only 2 *in vitro* MN studies in Table 9 were positive or weakly positive, and the concentrations at which these effects were seen induced oxidative damage, apoptosis, and necrosis, although these changes were also seen in negative studies. Therefore, it is highly likely that the increases in MN were secondary to oxidative stress and cytotoxicity.

11 It should be noted that there was much variability across the different datasets in terms of 12 the particle concentrations tested in mammalian cells *in vitro*. This may be due to different 13 forms of titanium dioxide being tested, cell type, method of formulation, etc., but it makes 14 comparison of any effects between studies very challenging.

15 In line with OECD Guidance, failure to expose mammalian cells for at least 1 cell cycle, or, for 16 shorter exposures, failure to clearly demonstrate that the particles entered the cells, was not 17 considered acceptable by Kirkland et al. (2022), particularly when negative results were 18 obtained. Therefore, some in vitro MN, CA and gene mutation studies that gave positive or 19 equivocal results with short treatments suggested that intracellular exposure had occurred, 20 so were considered reliable and retained a "moderate" weight (so were considered relevant to the assessment of genotoxic potential and were included in Table 9). The studies that gave 21 22 negative results with short treatments and with no clear demonstration of cellular uptake, 23 were considered unreliable and were given "low to moderate" or "low" weights and not 24 considered relevant (and were excluded from Table 9). 10 (ten) in vitro MN/CA and 2 (two) 25 in vitro mammalian cell gene mutation studies that were negative did include sufficiently long 26 exposures (prior to cytochalasin B treatment in the MN studies) to provide robust negative 27 results. Table 9 below summarises those in vitro studies achieving moderate weight after WoE 28 assessment (CE, 2022; TDMA, 2022; Kirkland et al., 2022).

- 29
- 30 iii) *In vitro* studies- Newly conducted *in vitro* studies

31

32 In order to generate high-weight *in vitro* data on representative titanium dioxide nano grades, 33 HPRT and micronucleus tests were performed according to current OECD guidelines, which 34 were specifically tailored for the testing of nanomaterials, were performed. Both RM09 and RM11 were tested in both assays up to a concentration of 100 µg/mL based on the 35 36 recommendations set out for the *in vitro* genotoxicity testing of manufactured nanomaterials. 37 This maximum concentration was selected, because higher concentrations of poorly soluble 38 nanomaterials are considered not physiologically relevant and because artefactual effects may result from the precipitate (OECD TGs 476 and 487). The V79 cells were exposed to the RM09 39 40 without exogenous metabolic activation. The cells were not exposed to the test substance in 41 presence of a metabolic activation system since both the test substance core and the coating are inorganic and not metabolised by enzymes. In contrast, RM11 was tested both in absence 42 43 and presence of a metabolic activation (Elespuru et al., 2018 and Doak et al., 2012). In order 44 to demonstrate cellular nanoparticle uptake, transmission electron microscopic analysis was 45 included in the HPRT assay, which was performed under comparable conditions as the micronucleus test. Due to the organic coating of RM11 and the inclusion of a metabolic 46 47 activation system in the assay, the test substance was additionally tested using a 4-hour exposure. In the micronucleus assay, the treatment with the cytokinesis blocker cytochalasin 48 49 B was not carried out in parallel to the test item as described in the current OECD TG 487 50 (2016), but in succession as described in OECD TG 487 (2010) (Chapter 40, Table 1: -S9 Extended exposure, Option B), since cytochalasin B has been shown to inhibit uptake of 51 nanoparticles by endocytosis (Elespuru et al., 2018). Dynamic light scattering (DLS) analyses 52 53 were performed to demonstrate the stability of the dispersion. Summary of the recently 54 conducted in vitro studies with representative titanium dioxide nano grades are presented 55 below.

3

iv) In vivo studies

Kirkland *et al.* (2022) reviewed in detail a total of 20 studies comprising 11 MN (bone marrow and peripheral blood), 2 CA, 2 transgenic rodent (TGR) mutation studies (gpt and Spi mutants), 3 comet assays (2 in liver and lung and a single study in liver) and two 8-OHdG adduct studies in the lung, in their review. However, only 7 studies were pre-2013 and are therefore summarised in Table 11. Post-2013 studies are presented in Annex I.

9

10 The SCCS note: the Annex I **of the Applicant's document** (ADDITIONAL STUDIES 11 CONDUCTED POST 2013, page 73/84) contains Summary of additional collateral and 12 confirmatory evidence not used by the Applicant in the final safety assessment.

13

The seven pre-2013 studies comprised 5 *in vivo* MN/CA, 1 comet and 1 8-OHdG adduct studies. Of the 5 MN/CA studies, 3 studies showed positive or weakly positive (approximately 2-fold) increases in MN. These positive responses were associated with inflammation, oxidative stress and/or apoptosis. In addition, one study scored a Klimisch 3 in the ToxR tool and was thus considered unreliable. Therefore, there are reasons to question whether any of these positive *in vivo* MN/CA responses are biologically relevant and indicative of a direct DNA-damaging effect of titanium dioxide.

- As per Kirkland *et al.* (2022), two positive MN studies used oral gavage dosing and one used drinking water administration, however absorption via the oral route has been shown to be very low. With such low oral bioavailability, bone marrow exposure would be negligible, therefore, the plausibility of the positive MN results is questionable.
- 25 One *in vivo* 8-OHdG study used a single intratracheal instillation of doses up to 1.2 mg and 26 **the study outcome was negative. Table 11 summarises the "moderate", "moderate-high" or** 27 **"high" weight** *in vivo* studies conducted pre-2013.
- 28 Overall, the genetic toxicity of pigmentary and nanograde titanium dioxide was assessed in 29 various in vitro and in vivo studies using both rutile and anatase forms. Of the 21 relevant datasets reviewed (i.e., 14 in vitro and 7 pre-2013 in vivo), only 5 (24%) were positive. All 30 31 were from chromosomal damage studies (MN or CA assays), and it is accepted by many 32 regulatory guidelines that chromosome breakage can be secondary to physiological stress 33 (ICH, 2013; Kirkland et al., 2007). Since, as discussed above, all the positive findings were 34 associated with high cytotoxicity, oxidative stress, inflammation, apoptosis or combinations 35 of these, it is highly likely that the observed genotoxic effects of titanium dioxide, including 36 those with nano particles, are secondary to physiological stress, as has been described recently in a comparable review (Krug, 2022). There were no positive results from gene 37 38 mutation studies which is consistent with DNA/chromosomal damage being secondary to physiological stress, although data from robust in vivo gene mutation studies would be useful 39 in reaching firm conclusions. Further, four recently conducted OECD guideline compliant in 40 41 vitro genotoxicity tests (HPRT and micronucleus tests) with two representative nano titanium 42 dioxide grades have demonstrated negative results. As shown in Table 12, the profile of 43 genotoxicity results from the most robust studies with titanium dioxide does not fit the 44 response pattern which would be expected for a genotoxic carcinogen (CE, 2022; 2023; 45 TDMA, 2022; Kirkland et al., 2022).
- 46

47 **Applicant's c**onclusion on genotoxicity

Overall, the conclusion from the robust datasets reviewed, that achieved "moderate", 48 49 "moderate to high" or "high" weight, did not support a direct DNA-damaging mechanism for 50 titanium dioxide in either the nano or pigmentary form. This conclusion is in line with the outcomes of the recent reviews by Food Safety Authorities of England, Canada, Australia, and 51 New Zealand (COT, 20229; Health Canada, 2022; FSANZ, 2022). Additionally, four recent 52 53 high-weight studies (CE, 2023) with two representative titanium dioxide nano grades have 54 demonstrated negative results in OECD guideline compliant in vitro genotoxicity tests, which 55 were specifically tailored for the testing of nanomaterials. These studies confirm the 56 conclusion drawn on the lack of a direct genotoxic potential.

Ref.: Dossier on the Human Safety Evaluation of Titanium Dioxide in Cosmetic Products 1 2 (CAS No. 13463-67-7, 12026-28-7, 1317-70-0, 1317-80-2, 20338-08-3/ EC No. 236-675-5, 243-744-3, 1317-70-0, 215-282-2, 234-711-4). (Submission I with focus on potential 3 4 oral exposure). COSMETICS EUROPE INGREDIENT Nº S75. 28 April 2023", pages 37-53/84. 5 6 7 Description of the study reports submitted by the Applicant and comments by the 8 SCCS 9 10 IN VITRO STUDY #1. ToxTracker 11 12 Guideline: none 13 Test system: mouse embryonic stem (mES) reporter cell lines 14 Test substance: 11 TiO₂ test substances: E, G1-1, G2-5, G3-1, G4-19, G5-4, G6-3, G7-15 5, G8-2, G9-5, G10-4 16 Batch (Purity): not provided 17 Vehicle: cell culture medium (undisclosed) 18 Assay medium: cell culture medium (undisclosed) 19 Concentrations: 0, 0.125, 0.25, 0.5, 1, 2 mg/mL 20 Treatment: 4 h exposure, without and with metabolic activation; 24 h exposure, only without metabolic activation 21 22 S9: Aroclor 1254-induced rat liver S9 (Moltox) 23 cisplatin (DNA damage), diethyl maleate (oxidative stress), Positive controls: 24 tunicamycin (unfolded protein response) and aflatoxin B1 (metabolic 25 activation of progenotoxins by S9) 26 Negative control: Vehicle 27 GLP: No 28 Study period: 13/03/2019 and 22/03/2019

30 <u>Cytotoxicity testing/dose range finding</u>

To prepare the test substances for exposing mES cells, provided powders were mixed in cell 31 32 culture medium at a concentration of 2 mg/ml for 24 hours at 37°C. For substance testing, first a dose range finding was performed using wild-type mES cells (strain B4418). Wild type 33 mES cells were exposed to 20 different concentrations of the 11 TiO₂ test substances (E, G1-34 1, G2-5, G3-1, G4-19, G5-4, G6-3, G7-5, G8-2, G9-5, G10-4) or positive reference 35 36 coumpunds, with a maximum concentration of 2 mg/ml. Cytotoxicity was estimated by cell 37 count after 24 h exposure using a flow cytometer and is expressed as the percentage of viable 38 cells after 24 h exposure compared to vehicle control exposed cells. From this dose range 39 finding, 5 concentrations were selected.

40 <u>Toxtracker assay</u>

29

The six independent mES reporter cell lines were seeded in gelatin-coated 96-well cell culture plates in 200 µl mES cell medium (50.000 cells per well). 24 h after seeding the cells in the 96-well plates, medium was aspirated and fresh mES cell medium containing 10% fetal calf serum and the diluted chemicals was added to the cells. For each tested compound, five concentrations were tested in 2-fold dilutions (0.125, 0.25, 0.5, 1, 2 mg/mL).

46 Induction of the GFP reporters was determined after 24 h exposure using a flow cytometer. Only GFP expression in intact single cells was determined. Mean GFP fluorescence was 47 48 measured and used to calculate GFP reporter induction compared to a vehicle control 49 treatment. Cytotoxicity was estimated by cell count after 24 h exposure using a flow cytometer and was expressed as percentage of intact cells after 24 h exposure compared to 50 vehicle exposed controls. For cytotoxicity assessment in the ToxTracker assay, the relative 51 cell survival for the six different reporter cell lines was averaged, because the cytotoxicity 52 53 levels are very similar. Metabolic activation was included in the ToxTracker assay by addition 54 of S9 liver extract from aroclor 1254-induced rats (Moltox). Cells were exposed to five 55 concentrations of the test samples in the presence of 0.25% S9 and required co-factors (RegenSysA+B, Moltox) for 24 h. 56

Positive reference treatments with cisplatin (DNA damage), diethyl maleate (oxidative stress), 1 2 tunicamycin (unfolded protein response) and aflatoxin B1 (metabolic activation of 3 progenotoxins by S9) were included in all experiments. Solvent concentration was the same 4 in all wells and never exceeded 1% for DMSO. In case auto-fluorescence of the test 5 substances was observed in the dose range finding, wild type mES cells were exposed to the 6 test samples at the same concentrations as used in the ToxTracker. The mean fluorescence 7 caused by the compound was then subtracted from the ToxTracker results of the respective 8 compound.

9 This experiment was conducted as a non-GLP study, however general principles to conduct 10 proper scientifically correct *in vitro* experiments were adhered to, and in particular care was

11 taken for proper handling of test article (stock) solutions to prevent/minimise degradation of 12 the test articles based on instructions/compound information from the sponsor. For all

13 ToxTracker analyses, Toxys strictly follows the Good Cell Culture Practice guidelines from the

- 14 OECD.
- 15

16 <u>TOXTRACKER results and discussion (from the study report)</u>

17 The validity of the ToxTracker assay was confirmed using exposure to the reference 18 compounds specific for the pathways evaluated. The genotoxic compound cisplatin showed 19 induction of the DNA damage response (Bscl2, Rtkn) and p53-mediated cellular stress (Btg2). 20 Diethyl maleate (DEM) induced primarily the oxidative stress related reporters Srxn1 and 21 Blvrb, tunicamycin induced the unfolded/misfolded protein stress response (Ddit3). The 22 positive control compound aflatoxin B1, which requires metabolic activation to become 23 genotoxic, selectively induced the Bscl2 and Rtkn reporters when tested in the presence of 24 S9 liver extract. Generally, the controls showed GFP induction levels compliant with historical

25 data and demonstrated the functionality of the mES reporter cell lines.

26 Cytotoxicity

The test substances did not dissolve in the cell culture medium and at the highest tested concentrations, precipitation was observed at the end of the treatment. At the maximum tested concentrations in the absence of a metabolising system cytotoxicity was observed for all test samples. In the presence of a metabolizing system, there was no increase in cytotoxicity observed for any of the samples. The six ToxTracker reporter cell lines showed a comparable cytotoxic response to the test samples. For this reason, the cell survival graphs in the GFP induction figures show the average cytotoxicity of the six different cell lines.

34 Genotoxicity

None of the tested substances activated the Bscl2-GFP or Rtkn-GFP markers for DNA damage more than 2-fold and therefore none of the test materials were classified as genotoxic. Btg2-GFP, the reporter for p53 activation, was activated in response to exposure to test substance G7-5, both in the absence and presence of S9. For test substances G4-19 and G5-4, a weak activation (>1.5 fold) of the Btg2-GFP reporter was observed in the absence and presence of S9, but induction levels did not reach the 2-fold threshold for a positive ToxTracker result. Test substance G10-4 weakly activated the Btg2-GFP reporter only in the absence of S9.

42 Oxidative stress

43 Induction of the Srxn1-GFP reporter is associated with activation of the Nrf2 antioxidant 44 response and activation of the Blvrb-GFP reporter is associated with the Hmox1 antioxidant response. Activation of the Srxn1-GFP reporter was observed for test substances G2-5, G4-45 19, G6-3, G7-5 and G10-4 in absence and presence of a S9 metabolising system. For test 46 47 substance G5-4, Srxn1-GFP was activated more than 2-fold in the absence of S9, but in the presence of S9 the induction was weak (>1.5 fold) and did not reach the 2-fold threshold for 48 a positive ToxTracker result. Test substances E and G9-5 weakly activated the Srxn1-GFP 49 reporter both in the absence and presence of S9, while test substance G3-1 only weakly 50 activated Srxn1-GFP in the presence of S9. For the titanium dioxide samples, we only 51 52 observed activation of Blvrb-GFP in one instance, after after exposure to test substance G2-53 5 in the presence of S9, but induction levels did not reach the 2-fold threshold for a positive 54 ToxTracker result.

55 Protein damage

56 The Ddit3-GFP reporter, associated with protein damage and the unfolded protein response, 57 was activated by test substances G4-19, G6-3 and G10-4 in the absence and presence of S9.

A weak activation (>1.5 fold) of Ddit3-GFP in both the absence and presence of S9 was 1 2 observed for test substances G3-1, G7-5 and G8-2, but induction levels did not reach the 2fold threshold for a positive ToxTracker result. Test substances E and G5-4 weakly induced 3 4 (>1.5 fold) the Ddit3-GFP reporter in the absence of S9, but in the presence of S9 the 5 induction exceeded the 2-fold threshold for a positive ToxTracker result. Test substance G2-5 activated Ddit3-GFP in the absence of S9, but in the presence of S9 only a weak activation 6 7 (>1.5 fold) of the reporter was observed. For test substance G9-5, a weak activation (>1.5 fold) of the protein stress reporter was observed only in the presence of S9, but induction 8 9 levels did not reach the 2-fold threshold for a positive ToxTracker result.

10

11 **The Applicant's summary of** the ToxTracker assay results:

12

	DNA d	lamage	p	53	Oxidativ	ve stress	U	PR
	-S9	+S9	-S9	+S9	-S9	+S9	-S9	+S9
Test compounds	2					_	1	
E								1
G1-1								
G2-5								
G3-1								
G4-19								
G5-4								
G6-3								
G7-5								
G8-2								
G9-5								
G10-4				1		1		
Controls								
Cisplatin								
Diethyl maleate								
Tunicamvcin								
Aflatoxin B1								

Positive (>2-fold induction) Weak activation (1.5 to 2-fold induction)

Negative (<1.5-fold induction)

- Ref.: ToxTracker Test report. Draft version 1.0. Toxys project code: 18032. 26 March 2019.
 Hendriks G., Derr R. & Brandsma I.
- 17
- 18

19 The SCCS note:

20 In response to the SCCS request, the Applicant provided the following information on the

- correspondence of TiO_2 samples used in the Toxtracker study to the TiO_2 raw materials used in cosmetic products:
- 23

G- sample	Description	Exact equivalent RM (same grade)	Analogous RMs (similar PhysChem characteristics)
G6-3	Nano rutile coated with alumina and stearic acid	RM42	RM40, RM48, RM49, RM56, RM60, RM62, RM76, RM63, RM64, RM65, RM74b
G8-2	Nano rutile coated with silica	RM09	RM47, RM74d, RM78
E171-E	Uncoated pigmentary anatase (E171 spec)	RM67	RM01, RM03, RM04, RM26, RM67b, RM68
G3-1	Uncoated pigmentary rutile		RM02, RM28, RM69, RM69b
G4-19	Pigmentary rutile coated with alumina		RM06, RM30, RM72i

3 G6-3, G8-2 and E171-E are cosmetics grade TiO₂.

4 G3-1 and G4-19 are not marketed for use in cosmetics but have similar physicochemical 5 characteristics to some cosmetics grades.

6 7

17

8 The SCCS comments on the results from ToxTracker study report

9 Although the ToxTracker methodology looks promising for genotoxicity assessment, it still
10 needs to be validated, especially when applied to nanomaterials.

11 In the opinion of the SCCS, the ToxTracker study results are of limited value due to the 12 scarcely described methodology and without referring to a protocol for dispersion used for 13 sample preparation.

As for the DNA damage reporter assays, although the results for all materials tested were negative, no proof of cell internalisation was provided. The SCCS therefore considers the study as inconclusive.

18 The SCCS has also noted that:

- No reference is made to the use of serum in exposure medium, nor is the biological medium used for NPs dispersion indicated. It is stated that the test substances did not dissolve in the cell culture medium and at the highest tested concentrations, precipitation was observed at the end of the treatment. For preparation of test item, no reference to sonication or dilutions were provided.
- Cytotoxicity was observed for all test samples at the maximum tested concentrations
 in the absence of a metabolising system. In the presence of a metabolising system,
 no increase in cytotoxicity was observed for any of the samples.
- The results concerning genotoxicity were reported as negative, because none of the
 eleven tested titanium dioxide samples activated the Bscl2-GFP or Rtkn-GFP markers
 for genotoxicity more than 2-fold, while the result for positive controls did. Activation
 of the cellular stress reporter gene was observed for only one test substance, G7-5,
 and activation of both the oxidative stress reporter and the reporter for protein damage
 was observed after exposure to several test substances.
- 33
- 34
- 35

IN VITRO STUDY #2. Gene mutation assay in Chinese Hamster V79 cells in vitro (V79/HPRT) on RM09, ICCR 4023311

3

Draft report	Sokolowski, A., 2023
Evaluation status:	New study
Title:	RM09: Gene Mutation Assay in Chinese Hamster V79 Cells in vitro (V79/HPRT)
Document No:	ICCR Study Number: 4023311
Guideline followed in study:	OECD 476 (2016)
Current guideline:	OECD 476 (2016)
Guideline and	OECD 476 (2016)
deviations from	Deviations:
guideline in force at	- 24-hour treatment to ensure sufficient particle uptake
that time:	- Without metabolic activation only, since test item core and coating are inorganic materials, which are not metabolised by S9 fraction
GLP:	Yes
Testing Facility:	ICCR-Roßdorf GmbH, In den Leppsteinswiesen 19, 64380 Rossdorf, Germany
Test material:	NANO: RM09 (purity ≥99%; surface modification: coated with amorphous silica; particle number size distribution: number weighted median x50: 20 nm measured by SEM, Feret min)
Test material preparation:	Following the Nanogenotox protocol (Jensen et al. 2011); suspended in 0.05% w/v bovine serum albumin (BSA)-water solution containing 0.5% ethanol using ultrasonication
Test system:	Chinese hamster lung fibroblast V79 cell line
Negative controls:	Solvent control and negative control (deionised water)
Positive controls:	Ethylmethane sulfonate
Test concentrations:	0.8, 1.6, 3.1, 6.3, 12.5, 25, 50, and 100 μg/mL
Number of experiments and replicates:	1 experiment using duplicate cultures
Exposure (duration):	24 hours
Particle uptake analysis:	Yes, uptake was analysed via TEM.
Dispersion analysis:	Yes, dispersion was analysed via DLS.

4 5

6 The gene mutation potential of RM09 was examined in a HPRT assay in V79 Chinese hamster 7 lung fibroblasts in the absence of metabolic activation (Sokolowski, A., 2023). In order to get a well dispersed and stable suspension, RM09 was prepared following the recommendations 8 9 of the Nanogenotox protocol (Jensen et al., 2011). The cell cultures were treated with RM09 10 for 24 hours. A short-term treatment as outlined by the current OECD TG 476 (2016) is considered inadequate for nanomaterials as cellular uptake of the test item needs to be 11 12 demonstrated. The exposure duration of 24 hours was selected in order to expose the cells 13 for at least one cell cycle to ensure sufficient cellular uptake as recommended by OECD 14 Nanomaterials Working Party recommendation (OECD, 2014) and as published previously (Elespuru et al., 2018 and Doak et al., 2012). The test material was tested up to a 15 concentration of 100 µg/mL, based on the recommendations set out for the in vitro 16 17 genotoxicity testing of manufactured nanomaterials (OECD, 2021). The maximum 18 concentration (100 µg/mL) was selected since higher concentrations of poorly soluble 19 nanomaterials are considered not physiologically relevant (OECD, 2021) and to avoid artefactual effects resulting from precipitate (OECD TG 476). The V79 cells were exposed to 20 RM09 without exogenous metabolic activation. The cells were not exposed to the test item in 21 22 presence of a metabolic activation system, since both the test item core and the coating are 23 inorganic and not metabolized by enzymes. Solvent, negative, and positive control cultures 24 were run concurrently.

2 The test material was tested up to precipitating concentrations as observed microscopically 3 and by the unaided eye. Cytotoxicity as determined by the relative survival was not observed 4 at any concentration tested. The HPRT test with RM09 showed statistically significantly 5 increased mutation rates at some precipitating concentrations, i.e., at 6.3, 25.0, and 100 µg/mL. However, no such effect was observed at 0.8, 1.6, 3.1, 12.5, and 50 µg/mL. All values 6 7 obtained were within the 95% confidence interval of the historical negative control data range. 8 Trend analysis revealed that the combined duplicate cultures show a positive concentration-9 response relationship. However, this effect was mainly due to culture 2 and was not reproduced in culture 1. The outcome was considered to be negative as per expert judgement. 10 11 However, in order to confirm this test outcome, a repeat experiment was performed under 12 the same conditions. In the repeat experiment, the mutation frequencies observed in the 13 treatment group did not show a statistically significant difference from the solvent control 14 culture and showed no concentration-response relationship. Thus, the outcome of the repeat experiment confirmed the outcome of the first experiment. The positive control induced 15 16 distinct and statistically significant increases in the mutant frequency confirming the sensitivity of the test system Solvent and negative control cultures showed mutant 17 frequencies that fell within acceptable ranges of the historical control data base and 18 19 demonstrated the validity of the assay.

In the accelerated stability study, it was demonstrated via DLS measurements that RM09 showed stable particle sizes without increased aggregation/agglomeration for at least 24 hours. The cellular uptake of RM09 nanoparticles by V79 cells was demonstrated at all concentrations evaluated (i.e., 25, 50, and 100 µg/mL) and the test item was observed exclusively in cytoplasmic vesicles but not in the cell nucleus.

In conclusion, under the experimental conditions reported, the test item did not induce gene
mutations at the HPRT locus in V79 cells. Therefore, RM09 is considered to be non-mutagenic
in this HPRT assay, when tested in the absence of S9 up to the top recommended
concentration for nanomaterials.

29

30 TEM Observations of Internalization of Nanoparticles in V79 Cells

31 Cross-sections of V79 cells could be examined by chemical staining with osmium tetroxide

32 (enhancement of contrast) and ultramicrotomy with a transmission electron microscope.

For all three concentrations examined (25, 50, 100 μ g/mL), the TEM ultra-thin sections revealed V79 cell in which the RM09 nanoparticles could be detected.

The nanoparticles are almost entirely found with the cells. Most of the observed V79 cells showed agglomeratres of RM09 nanoparticles. Only occasionally separated particles or single small agglomerates can be observed.

In general, no RM09 nanoparticle agglomerates were observed in the nuclei of the cells.

In conclusion, cellular uptake of RM09 was demonstrated at all concentrations evaluated and
 observed exclusively in cytoplasmic vesicles but not in the cell nucleus.

41

42 Short Report Nano characterization of the test solution with dynamic light43 scattering (DLS) (non-GLP) (detailed report in Annex S)

Four samples were measured in three replicates via DLS at 37°C for 24 hours with one datapoint per hour.

For sample 24h RM09 0.8 μ g/mL – S9 mix the z – average diameter at T0 (first measurement point after preparation of the sample mixture) was 50 nm and 57 nm at Tend (last measurement point of the accelerated stability measurement). Signal intensity was approximately 1-fold above the formulation signal level. The higher intensity of the sample signal in comparison with the background signal of the formulation buffer, the less likely an impact of background noise on the experiment data. 24 h RM09 100 μ g/mL – S9 mix had a z-average of 135 nm at T0 and 137 nm at Tend. An interference of the FBS with DLS

53 measurements could not be observed.

54 Samples were centrifugated before the experiment, as an initial intensity test showed high 55 scattering due to large particles in the samples, which led to abortion of data collection.

56 For neither of the samples, a clear trend toward larger particle sizes could be measured within

57 the tested time frame.

SCCS/1661/23

1

2

3

4

- Ref.: Sokolowski A., ICCR Study Number: 4023311, 2023. RM09: Gene Mutation Assay in Chinese Hamster V79 Cells *in vitro* (V79/HPRT)
- 5 The SCCS note:

6 The following complementary information was provided by the Applicant on the 7 representativeness of RM09 and RM11 used in the genotoxicity studies (document: "CE 8 response to SCCS Request of 13 June 2023_29062023.pdf"):

9 "To be representative it was decided to have one hydrophobic grade and one hydrophilic grade
10 and also to have one grade coated with silica and one grade coated with alumina. The primary
11 particle size of each sample chosen was in the range 20-30 nm which is typical of the entire
12 dataset (mean size of the 42 samples is 26.5 nm and median is 25.5 nm).

- RM11 (20 nm mean primary particle size Feret min by number, 6% alumina and 3% dimethicone) is representative of hydrophobic cosmetic nano grades and is coated with alumina (it has also been extensively studied by OECD WPMN and Nanogenotox since it is the same grade as NM102).

- RM09 (26 nm mean primary particle size Feret min by number, 10% silica) is representative
of hydrophilic cosmetic nano grades – coated with amorphous silica (this grade has been
extensively characterised by TDMA and used in their studies as G8-2).

Although marketed typically as an intermediate any additional treatment is optional and it can also be used directly in sunscreens in appropriate (hydrophilic) formulations. If used in hydrophobic formulations, an appropriate formulation step to improve compatibility is necessary. During such formulating steps RM09 itself remains unchanged though dispersants may become adsorbed on the surface to improve the compatibility with a particular formulation phase. (Therefore, RM09 is not an intermediate in REACH terms)".

26

27 SCCS comments on the *in vitro* study #2: ICCR 4023311

Based on the analysis of the study results, the SCCS is of the opinion that the results on RM09
testing in the *in vitro* gene mutation test, despite some shortcomings (as noted below), are
negative.

32 The SCCS has noted that:

- The study design is not fully compatible with OECD TG 476 because it does not use a 33 34 short incubation time and does not include application of S9 mix. However, using such 35 an approach in case of TiO_2 particles coated with inorganic substance(s) may be justified, and in line with the SCCS/1655/23 Guidance on the Safety Assessment of 36 37 Nanomaterials in Cosmetics. The SCCS is also aware that there is work ongoing on 38 adapting new TG for genotoxicity testing with new exposure conditions, including applying only prolonged incubation period and recommendations specific for using 39 40 S9mix for nanomaterials testing.
- As described in ICCR Study Number 4023311, the negative and solvent control as well
 as the stability of the highest and lowest test item concentrations were measured by
 DLS each hour for 24 hours in order to analyze the stability of the dispersion and the
 agglomeration/aggregation behaviour of the test item over the time. For TEM analysis,
 RM09 at 25, 50 and 100 µg/mL for 24 h cell exposure was used.
- Based on the analysis of Annex 2 to ICCR Study Number 4023311, the SCCS is of the opinion that cellular uptake of RM09 was convincingly demonstrated, however, at RM09 concentrations higher than those recommended by the OECD TG 490 (paragraph 29).
 According to the information on precipitation provided by the Applicant, the highest acceptable concentration tested should be 6.3 µg/mL (Exp I) or 12.5 µg/mL (Exp IA), and these concentrations were not tested for cellular uptake, *i.e.* the lowest concentration tested by the Applicant for uptake was 25 µg/mL.
- 53 The results of the first experiment (24h treatment) showed significantly higher mutation 54 frequency (MF) in the highest analysed concentration, with linear regression analysis 55 showing a borderline trend (p = 0.058). However, in the repetition experiment, negative 56 results were obtained. The study description in the table provided by the Applicant 57 indicates that only one experiment was performed, while in the text section presenting

the results, the Applicant refers to a first experiment (where 1 culture had positive findings) and then a repetition experiment, where both cultures were negative.

IN VITRO STUDY #3. Gene mutation assay in Chinese Hamster V79 cells in vitro (V79/HPRT) on RM11, ICCR 4023312

4 5 6

Draft Report:	Sokolowski, A., 2023					
Evaluation status:	New study					
Title:	RM11: Gene Mutation Assay in Chinese Hamster V79 Cells in vitro (V79/HPRT)					
Document No:	ICCR Study Number: 4023312					
Guideline followed in study:	OECD 476 (2016)					
Current guideline:	OECD 476 (2016)					
Guideline and deviations from guideline in force at that time:	OECD 476 (2016) Deviations: None					
GLP:	Yes					
Testing Facility:	ICCR-Roßdorf GmbH, In den Leppsteinswiesen 19, 64380 Rossdorf, Germany					
Test material:	NANO: RM11 (purity ≥99%; surface modification: coated alumina and dimethicone; particle number size distribution: Number weighted median x50: 19 nm measured by SEM, Feret min)					
Test material preparation:	Following the Nanogenotox protocol (Jensen et al. 2011); suspended in 0.05% w/v bovine serum albumin (BSA)-water solution containing 0.5% ethanol using ultrasonication					
Test system:	Chinese hamster lung fibroblast V79 cell line					
Negative controls:	Solvent control and negative control (deionised water)					
Positive controls:	Ethylmethane sulfonate (without metabolic activation) and 7,12- dimethylbenz(a)anthracene (with metabolic activation)					
Test concentrations:	0.8, 1.6, 3.1, 6.3, 12.5, 25, 50, and 100 μg/mL					

7 8

9 Sokolowski, A. (2023) investigated the potential of RM11 to induce gene mutation at the Hprt locus (OECD TG 476, 2016) in V79 Chinese hamster lung fibroblasts in both the absence and 10 presence of metabolic activation. In order to get a well dispersed and stable suspension, RM11 11 was prepared following the recommendations of the Nanogenotox protocol (Jensen et al., 12 13 2011). The test material was tested up to a concentration of 100 µg/mL based on the 14 recommendations set out for the in vitro genotoxicity testing of manufactured nanomaterials 15 (OECD, 2021). The maximum concentration (100 µg/mL) was selected since higher concentrations of poorly soluble nanomaterials are considered not physiologically relevant 16 (OECD, 2021) and to avoid artefactual effects resulting from precipitate (OECD TG 476). The 17 cell cultures were treated with RM11 for 24 hours. A short-term treatment as outlined by the 18 19 current OECD TG 476 (2016) is considered inadequate for nanomaterials as cellular uptake of the test item needs to be demonstrated. The exposure duration of 24 hours was selected 20 21 in order to expose the cells for at least one cell cycle to ensure sufficient cellular uptake as 22 recommended by OECD Nanomaterials Working Party recommendation (OECD, 2014) and as published previously (Elespuru et al., 2018 and Doak et al., 2012). Due to the organic coating 23 of RM11 and the inclusion of a metabolic activation system in the assay, the test material was 24 25 additionally tested using a 4-hour exposure. RM11 was tested both in absence and presence 26 of a metabolic activation system, since the coating is of organic nature and could potentially be metabolised by enzymes of the S9 fraction. Solvent, negative, and positive control cultures 27 were run concurrently. 28 29 The test material was tested up to precipitating concentrations as observed microscopically

30 and by the unaided eye. Cytotoxicity as determined by the relative survival was not evident

at any concentration tested. In the 4-hour experiments with RM11 in absence and presence 1 2 of metabolic activation, statistically significantly increased mutation frequencies were not 3 observed at any concentrations tested when compared to the concurrent solvent control. In 4 the 24-hour experiment without metabolic activation, the mutation frequency was sporadically statistically significantly increased. However, all values obtained with both 5 6 treatment schedules (4- and 24-hour exposure) were clearly within the 95% confidence 7 interval of the historical negative control data range. Moreover, the trend tests did not indicate 8 a positive concentration-response relationship under the conditions tested. Thus, the sporadic 9 statistically significant increases were considered to be of no biological relevance and to be 10 chance findings. The positive controls induced distinct and statistically significant increases in 11 the mutant frequency. Thus, the sensitivity of the test system was demonstrated. Solvent 12 and negative control cultures showed mutant frequencies that fell within acceptable ranges 13 of the historical control data base, and thus, demonstrated the validity of the assay.

In the accelerated stability study, it was demonstrated via DLS measurements that RM11 showed stable particle sizes without increased aggregation/agglomeration for at least 24 hours. The cellular uptake of RM11 nanoparticles by V79 cells was demonstrated at all concentrations evaluated (i.e., 25, 50, and 100 µg/mL) and the test item was observed exclusively in cytoplasmic vesicles but not in the cell nucleus.

In conclusion, under the experimental conditions reported, the test item did not induce gene
mutations at the HPRT locus in V79 cells. Therefore, RM11 is considered to be non-mutagenic
in this HPRT assay, when tested in the absence and presence of S9 up to the top
recommended concentration for nanomaterials.

23

24 TEM Observations of Internalization of Nanoparticles in V79 Cells

Cross sections of V79 cells could be examined by chemical staining with osmium tetroxide (enhancement of contrast) and ultramicrotomy with a transmission electron microscope.

For all three concentrations examined (25, 50 and 100 μ g/mL), the TEM ultra-thin cuts show V79 cell in which the RM11 nanoparticles could be detected. Nevertheless, many cells show no obvious internalization of RM11 nanoparticles and many of the RM11 nanoparticle agglomerates can be observed outside the cells. The majority of the RM11 nanoparticles (inside and outside the cells) are present in agglomerated form. Only occasionally separated particles or single smaller agglomerates can be seen.

33 In general, no RM11 nanoparticle agglomerates were observed in the nuclei of the cells.

In conclusion, cellular uptake of RM11 nanoparticles was demonstrated at all concentrations
 evaluated and observed exclusively in cytoplasmic vesicles but not in the cell nucleus.

36

37 Short Report Nano characterization of the test solution with dynamic light38 scattering (DLS) (non-GLP) (detailed report in Annex S)

For sample 4h RM11 0.8 μ g/mL – S9 mix, the z-average diameter at T0 was ca. 183.3 nm and 290 nm at Tend, with a high standard deviation for both data points due to a signal intensity that was approximately 1-fold above the scattering level of the formulation buffer. 4h RM11 100 μ g/mL – S9 mix had a z-average diameter of 168 nm at T0 and 176 nm at

43 Tend.

44 All samples containing S9 mix showed comparable z-average diameters at T0 and at Tend, when compared to each other, as well as comparable scattering intensities, including the 45 Water and LM samples. The normalized intensities of the solvent control sample with S9 mix 46 (T0: 1.0 x 10⁶ kCnt/s and Tend: 1.7 x 10⁶ kCnt/s) were in a comparable range to the values 47 measured for the samples containing the test material and S9 mix (0.8 μ g/mL: T0: 1.0 x 10⁶ 48 49 kCnt/s and Tend: 1.7 x 10⁶ kCnt/s - 100 µg/mL: TO 1.2 x 10⁶ kCnt/s and Tend: 1.7 x 1010⁶ 50 kCnt/s). Therefore, the data possibly reflects the z-average diameter of the S9 components instead of the z-average diameter of the nanoparticles. 51

52

24 h RM 11 0.8 µg/mL - S9 had a z-average diameter of approx. 24 nm at T0 and 32 nm at
Tend, wit a low signal amplitude. An interference of the FBS with the DLS measurements
could not be observed. RM 11 24 h + 10 % FBS Konz 8 had a z-average diameter of 109 nm
at T0 and of 118 nm at Tend.

SCCS/1661/23

Samples were centrifuged before the experiment, as an initial intensity test at 20°C showed
high scattering due to large particles in the samples, which led to abortion of data collection.
For neither of the samples, but the samples containing the S9 mix, a clear trend toward larger
particles sizes could be measured with the tested time frame.

Ref.: Sokolowski, A., ICCR Study Number: 4023312, 2023. RM11: Gene Mutation Assay in Chinese Hamster V79 Cells *in vitro* (V79/HPRT)

9 SCCS comments on *in vitro* study #3: ICCR 4023312

- Based on the analysis of the study results, the SCCS is of the opinion that the results on RM11 testing in the *in vitro* gene mutation test, despite some shortcomings (as noted below), are negative.
- 14 The SCCS has noted that:
- As described in ICCR Study Number 4023312, the negative and solvent control and the stability of the highest and lowest test item concentrations were measured by DLS each hour for 24 hours in order to analyse the stability of the dispersion and the agglomeration/aggregation behaviour of the test item over the time. For TEM analysis, RM11 at 25, 50 and 100 µg/mL for 24 h cell exposure was used.
- Based on the analysis of Annex 3 to ICCR Study Number 4023312, the SCCS is of the opinion that cellular uptake of RM11 was convincingly demonstrated, however, only at RM11 concentrations higher than those recommended by the OECD TG 490 (paragraph 29). According to the information on precipitation provided by the Applicant, the highest acceptable concentration tested should be 6.3 μg/mL (4 or 24 h of exposure), and these concentrations were not tested for cellular uptake, *i.e.* the lowest concentration tested by the Applicant for uptake was 25 μg/mL.
- Significantly higher MF frequency was observed in two analysed concentrations
 compared to the solvent control after 24h treatment, but these were within the 95%
 confidence interval of the historical negative control data range.
- 30

5 6

7

8

13

IN VITRO STUDY #4. Micronucleus test in Chinese Hamster V79 cells in vitro on RM09, ICCR

1 2 3

4023313

Draft report: Naumann, S., 2023 Evaluation status: New study Title: RM09: Micronucleus Test in Chinese Hamster V79 Cells in vitro Document No: ICCR Study Number: 4023313 Guideline followed OECD 487 (2016) in study: OECD 487 (2016) Current guideline: Guideline and OECD 487 (2016) deviations from Deviations: quideline in force at - 24-hour treatment only to ensure sufficient particle uptake that time: - Without metabolic activation only, since test item core and coating are inorganic materials, which are not metabolised by S9 fraction GLP: Yes **Testing Facility:** ICCR-Roßdorf GmbH, In den Leppsteinswiesen 19, 64380 Rossdorf, Germany Test material: NANO: RM09 (purity ≥99%; surface modification: coated with amorphous silica; particle number size distribution: number weighted median x50: 20 nm measured by SEM, Feret min) Following the Nanogenotox protocol (Jensen et al. 2011); suspended in 0.05% w/v Test material preparation: bovine serum albumin (BSA)-water solution containing 0.5% ethanol using ultrasonication Test system: Chinese hamster lung fibroblast V79 cell line Negative controls: Solvent control and negative control (deionised water) Positive controls: Mitomycin C (clastogenic control) and Griseofulvin (aneugenic control) Test concentrations: 1.1, 3.5, 10.7, 18.7, 57.1, and 100 µg/mL Number of 1 experiment using duplicate cultures experiments and replicates: Exposure (duration): 24 hours Particle uptake Yes, uptake was analysed via TEM. analysis: The TEM study was performed within the context of ICCR Study Number: 4023311. However, the test item preparation and exposure were performed under comparable conditions, i.e., same test material preparation protocol as well as the same test system (V79 Chinese hamster lung fibroblasts) cultured in MEM (minimal essential medium) with 10% foetal bovine serum and the same exposure time (24 hours and the same top concentration tested.) Dispersion analysis: Yes, dispersion was analysed via DLS. The DLS study was performed within the context of ICCR Study Number: 4023311. However, the test item preparation and exposure were performed under comparable conditions, i.e., same test material preparation protocol as well as the same test system (V79 Chinese hamster lung fibroblasts) cultured in MEM (minimal essential medium) with 10% foetal bovine serum and the same exposure time (24 hours and the same top concentration tested.)

6 Naumann, S. (2023) examined the clastogenic and aneugenic potential of RM09 in an *in vitro* 7 micronucleus test (OECD 487, 2016) with V79 Chinese hamster lung fibroblast. In order to 8 get a well dispersed and stable suspension, the test material was prepared following the 9 recommendations of the Nanogenotox protocol (Jensen et al., 2011). The test material was 10 tested up to a concentration of 100 μ g/mL, based on the recommendations set out for the in vitro genotoxicity testing of manufactured nanomaterials (OECD, 2021). The maximum 11 concentration (100 µg/mL) was selected since higher concentrations of poorly soluble 12 nanomaterials are considered not physiologically relevant (OECD, 2021) and to avoid 13 artefactual effects resulting from precipitate (OECD TG 487, 2016). The cells were exposed 14

⁴ 5 6

to RM09 only without exogenous metabolic activation, since both the test item core and the 1 2 coating are inorganic and not metabolized by enzymes. The cell cultures were treated with 3 RM09 for 24 hours only. A short-term treatment as outlined by the current OECD TG 487 4 (2016) is considered inadequate for nanomaterials as cellular uptake of the test item needs 5 to be demonstrated. The exposure duration of 24 hours was selected in order to expose the 6 cells for at least one cell cycle to ensure sufficient cellular uptake as recommended by OECD 7 Nanomaterials Working Party recommendation (OECD, 2014) and as published previously 8 (Elespuru et al., 2018 and Doak et al., 2012). The treatment with the cytokinesis blocker 9 cytochalasin B was not carried out in parallel to the test item as described in the current OECD 10 TG 487 (2016), but in succession as described in OECD TG 487 (2010) (Chapter 40, Table 1: 11 -S9 Extended exposure, Option B), since cytochalasin B has been shown to inhibit uptake of 12 nanoparticles by endocytosis (Elespuru et al., 2018). Solvent, negative, and positive control 13 cultures were run concurrently. In the main experiment, RM09 was tested up to precipitating concentrations as observed

14 15 microscopically and by the unaided eye. Cytotoxicity, as determined by the cytokinesis-block 16 proliferation index, was not evident at any concentration tested. Under all conditions tested, 17 RM09 did not show statistically significant increases in the micronucleus rate, when compared 18 to the concurrent solvent control. Moreover, the micronucleus frequencies observed were all 19 well within the 95% confidence interval of the historical control data range and the values did 20 not show a positive concentration-response relationship. The solvent control values were 21 comparable to the concurrent negative control values and well within the 95% confidence 22 interval of the historical control data. The positive controls induced distinct and statistically 23 significant increases in the micronucleus frequency, when compared to the solvent controls. 24 Thus, the sensitivity of the test system and the validity of the assay was demonstrated.

In an accelerated stability study, it was demonstrated via DLS measurements that RM09
showed stable particle sizes without increased aggregation/agglomeration for at least 24
hours (please refer to Sokolowski, A., 2023 [ICCR Study Number: 4023311]). The cellular
uptake of RM09 nanoparticles by V79 cells was demonstrated in a TEM study (please refer to
Sokolowski, A., 2023 [ICCR Study Number: 4023311]) at all concentrations evaluated (i.e.,
25, 50, and 100 µg/mL) and the test item was observed exclusively in cytoplasmic vesicles
but not in the cell nucleus.

In conclusion, under the experimental conditions reported, the test item did not induce micronuclei as determined by the *in vitro* micronucleus test in Chinese hamster V79 cells. Therefore, RM09 is considered to be non-clastogenic and non-aneugenic in this *in vitro* micronucleus test, when tested in the absence of S9 up to the top recommended concentration for nanomaterials.

Ref.: Naumann, S., ICCR Study Number: 4023313, 2023. Report RM09: Micronucleus Test
 in Chinese Hamster V79 Cells in vitro

41 SCCS comment on the *in vitro* study #4: ICCR 4023313

Based on the analysis of the study results, the SCCS is of the opinion that the results on RM09
testing in the *in vitro* micronucleus test are negative.

45 The SCCS has noted that:

37

40

- The study design is not fully compatible with OECD TG 487 because it does not use a 46 47 short incubation time and does not include application of S9 mix. However, using such an approach in case of TiO₂ particles coated with inorganic substance(s) may be 48 49 justified, and in line with the SCCS/1655/23 Guidance on the Safety Assessment of 50 Nanomaterials in Cosmetics. The SCCS is also aware that there is work ongoing on adapting new TG for genotoxicity testing with new exposure conditions, including 51 52 applying only a prolonged incubation period and recommendations specific for using 53 S9 mix for nanomaterials testing.
- Information on the stability of the dispersions and the cellular uptake of the test item
 is provided in ICCR Study Number 4023311, where identical RM and the same
 conditions of suspension preparation and V79 cells exposure for TEM analysis were
 used.

- 1 As described in ICCR Study Number 4023311 the negative and solvent control and the 2 stability of the highest and lowest test item concentrations were measured by DLS each hour for 24 hours in order to analyse the stability of the dispersion and the 3 4 agglomeration/aggregation behaviour of the test item over the time. For TEM analysis 5 RM09 at 25, 50 and 100 µg/mL for 24 h cell exposure was used. Based on the analysis of Annex 2 to ICCR Study Number 4023311, the SCCS is of the opinion that cellular 6 7 uptake of RM09 was convincingly demonstrated however, at RM09 concentrations were higher than recommended by OECD TG 487. According to the information on 8 9 precipitation provided by the Applicant, the highest acceptable concentration tested (based on OECD TG 487 recommendation) should be 10.7 µg/mL, and this 10 concentration was not tested for cellular uptake, *i.e.* the lowest concentration tested 11 12 by the Applicant for uptake was 25 µg/mL.
- The SCCS noted that positive control cell cultures treated with Griseofulvin showed a
 mean micronucleus frequency of 3.75%, which was below the minimum value of the
 historical positive control range for Griseofulvin (4.10 19.60%).
- 16

IN VITRO STUDY #5. Micronucleus test in Chinese Hamster V79 cells in vitro on RM11,

2 ICCR 4023314

3

1

Draft report:	Naumann, S., 2023
Evaluation status:	New study
Title:	RM11: Micronucleus Test in Chinese Hamster V79 Cells in vitro
Document No:	ICCR Study Number: 4023314
Guideline followed in study:	OECD 487 (2016)
Current guideline:	OECD 487 (2016)
Guideline and deviations from guideline in force at that time:	OECD 487 (2016) Deviations: None
GLP:	Yes
Testing Facility:	ICCR-Roßdorf GmbH, In den Leppsteinswiesen 19, 64380 Rossdorf, Germany
Test material:	NANO: RM11 (purity ≥99%; surface modification: coated alumina and dimethicone; particle number size distribution: Number weighted median x50: 19 nm measured by SEM, Feret min)
Test material preparation:	Following the Nanogenotox protocol (Jensen et al. 2011); suspended in 0.05% w/v bovine serum albumin (BSA)-water solution containing 0.5% ethanol using ultrasonication
Test system:	Chinese hamster lung fibroblast V79 cell line
Negative controls:	Solvent control and negative control (deionised water)
Positive controls:	Mitomycin C (clastogenic control; without metabolic activation), Griseofulvin (aneugenic control; without metabolic activation), and cyclophosphamide (clastogenic control; with metabolic activation)
Test concentrations:	1.1, 3.5, 10.7, 18.7, 57.1, and 100 μg/mL
Number of experiments and replicates:	2 independent experiments using duplicate cultures
Exposure (duration):	4 and 24 hours
Particle uptake analysis:	Yes, uptake was analysed via TEM. (The TEM study was performed within the context of ICCR Study Number: 4023312. However, the test item preparation and exposure were performed under comparable conditions, i.e., same test material preparation protocol as well as the same test system (V79 Chinese hamster lung fibroblasts) cultured in MEM (minimal essential medium) with 10% foetal bovine serum and the same exposure time (24 hours and the same top concentration tested.)
Dispersion analysis:	Yes, dispersion was analysed via DLS. The DLS study was performed within the context of ICCR Study Number: 4023312. However, the test item preparation and exposure were performed under comparable conditions, i.e., same test material preparation protocol as well as the same test system (V79 Chinese hamster lung fibroblasts) cultured in MEM (minimal essential medium) with 10% foetal bovine serum and the same exposure time (24 hours and the same top concentration tested.)

4

5 6 7

7 The test substance, RM11, was evaluated for its ability to induce clastogenic or aneugenic 8 effects in V79 Chinese hamster lung fibroblasts, in the absence and presence of a metabolic 9 activation system using the in vitro micronucleus assay (OECD 487, 2016). In order to get a well dispersed and stable suspension, the test material was prepared following the 10 recommendations of the Nanogenotox protocol (Jensen et al. 2011). The test material was 11 12 tested up to a concentration of 100 µg/mL based on the recommendations set out for the in 13 vitro genotoxicity testing of manufactured nanomaterials (OECD, 2021). The maximum concentration (100 µg/mL) was selected since higher concentrations of poorly soluble 14 nanomaterials are considered not physiologically relevant (OECD, 2021) and to avoid 15

SCCS/1661/23

artefactual effects resulting from precipitate (OECD TG 487). RM11 was tested both in 1 2 absence and presence of a metabolic activation system, since the coating is of organic nature and could potentially be metabolised by enzymes of the S9 fraction. The cell cultures were 3 4 treated with RM11 for 24 hours. A short-term treatment as outlined by the current OECD TG 5 487 (2016) is considered inadequate for nanomaterials as cellular uptake of the test item 6 needs to be demonstrated. The exposure duration of 24 hours was selected in order to expose 7 the cells for at least one cell cycle to ensure sufficient cellular uptake as recommended by 8 OECD Nanomaterials Working Party recommendation (OECD, 2014) and as published previously (Elespuru et al., 2018 and Doak et al., 2012). Due to the organic coating of RM11 9 10 and the inclusion of a metabolic activation system in the assay, the test material was additionally tested using a 4-hour exposure. The treatment with the cytokinesis blocker 11 12 cytochalasin B was not carried out in parallel to the test item as described in the current OECD 13 TG 487 (2016), but in succession as described in OECD TG 487 (2010) (Chapter 40, Table 1: 14 -S9 Extended exposure, Option B), since cytochalasin B has been shown to inhibit uptake of 15 nanoparticles by endocytosis (Elespuru et al., 2018). Solvent, negative, and positive control 16 cultures were run concurrently. The test material was tested up to precipitating concentrations as observed microscopically 17 and by the unaided eye. Cytotoxicity, as determined by the cytokinesis-block proliferation

18 19 index, was not evident at any concentration tested. Under all conditions tested, RM11 did not 20 show statistically significant increases in the micronucleus rate, when compared to the solvent 21 control. Moreover, the micronucleus frequencies observed were all well within the 95% 22 confidence interval of the historical control data range and the values did not show a positive 23 concentration-response relationship. The solvent control values were comparable to the 24 concurrent negative control values and well within the 95% confidence interval of the 25 historical control data. The positive controls induced distinct and statistically significant 26 increases in the micronucleus frequency, when compared to the solvent controls. Thus, the sensitivity of the test system and the validity of the assay was demonstrated. 27

In an accelerated stability study, it was demonstrated via DLS measurements that RM11
showed stable particle sizes without increased aggregation/agglomeration for at least 24
hours (please refer to Sokolowski, A., 2023 [ICCR Study Number: 4023312]). The cellular
uptake of RM11 nanoparticles by V79 vells was demonstrated in a TEM study (please refer to
Sokolowski, A., 2023 [ICCR Study Number: 4023312]) at all concentrations evaluated (i.e.,
25, 50, and 100 µg/mL) and the test item was observed exclusively in cytoplasmic vesicles
but not in the cell nucleus.

In conclusion, under the experimental conditions reported, the test item did not induce
micronuclei as determined by the *in vitro* micronucleus test in Chinese hamster V79 cells.
Therefore, RM11 is considered to be non-clastogenic and non-aneugenic in this *in vitro*micronucleus test, when tested in the absence and presence of S9 up to the top recommended
concentration for nanomaterials.

- 41 Ref.: Naumann, S., ICCR Study Number: 4023314, 2023. Report RM11: Micronucleus Test
 42 in Chinese Hamster V79 Cells in vitro
- 43
- 44
- 45 SCCS comment on the *in vitro* study #5: ICCR 4023314
- Based on the analysis of the study results, the SCCS is of the opinion that the results on RM11
 testing in the *in vitro* micronucleus test are negative.
- 49 The SCCS has noted that:
- Information on the stability of the dispersions and the cellular uptake of the test item
 is provided in ICCR Study Number 4023312, where identical RM and the same
 conditions of suspension preparation and V79 cells exposure for TEM analysis were
 used.
- As described in ICCR Study Number 4023312, the negative and solvent control as well
 as stability of the highest and lowest test item concentrations were measured by DLS
 every hour for 24 hours in order to analyse the stability of the dispersion and the

1 2 3 4 5 6 7 8 9	agglomerati RM11 at 25, - Based on th opinion that concentration concentration but this con tested by th	on/aggregation behaviour of the test item over the time. For TEM analysis, 50 and 100 µg/mL for 24 h cell exposure was used. e analysis of Annex 2 to ICCR Study Number 4023312, the SCCS is of the cellular uptake of RM11 was convincingly demonstrated however, at RM11 ons higher than recommended by OECD TG 487. According to the on precipitation provided by the Applicant, the highest acceptable on tested (based on OECD TG 487 recommendation) should be 6.1 µg/mL, centration was not tested for cellular uptake, <i>i.e.</i> the lowest concentration te Applicant for uptake was 25 µg/mL.					
10							
11 12	IN VITRO STUDY	46. Micronucleus test in human peripheral blood mononuclear cells in					
13 14	<i>vitro</i> on E171-E						
15	The SCCS note:						
16 17 18 19 20 21 22	The Applicant prov the micronucleus to testing of particula nor taken in the Wo The SCCS analysis below.	ided two GLP reports on testing of E171-E material in the Ames test and est. As the SCCS considers the Ames test as not relevant for genotoxicity te materials containg a nanofraction, the study report was not analysed oE approach. of study results on the micronucleus test <i>in vitro</i> on E171-E is presented					
22 23	Guideline:	OECD Guideline 487 (July 2016)					
24	Test system:	Human peripheral blood mononuclear cells					
25	Test substance:	Food-grade TiO ₂ (E171-E; anatase); Particle size (ECD) (number					
26		measurement, primary particle size):					
27		$x10 = 0.070 \ \mu m$					
28		$x50 = 0.110 \mu\text{m}$					
29		$x90 = 0.180 \ \mu m$					
30	Batch (Purity):	not provided					
3 I 2 つ		Waler DDML 1640 containing 15% heat inactivated fotal having corum					
১∠ २२	Concentrations	0.3.1.10 and 30 µg/ml for all three exposure groups (dark					
34		conditions)					
35	Treatment:	4 h exposure, without and with metabolic activation;					
36		24 h exposure, only without metabolic activation					
37	S9:	Aroclor 1254-induced rat liver S9					
38	Positive controls:	Mitomycin C, Cyclophosphamide, Vinblastine					
39	Negative control:	Vehicle					
40	GLP:	Yes					
41	Study period:	23 September - 30 November 2020					
42							
43 44	Methods Cells were cultured	Lin complete medium (DDML 1640 containing 15% best inactivated fetal					
44 15	Cells were cultured in complete medium (RPMI-1640 containing 15% heat inactivated fetal						
45 46	0.5 mL benarinized blood to a centrifuge tube containing 5 mL of complete medium with 2%						
47	phytohemagqlutinin.						
48	After the 4-hour tr	eatment (-/+ S9), the cells were centrifuged, the treatment medium was					
49	removed, the cells	were washed, re-fed with complete medium containing Cytochalasin B					
50	(cytoB) at 6.0 µg/ı	mL and returned to the incubator under standard conditions. For the 24-					
51	hour treatment in	the non-activated study, cyto B (6.0 µg/mL) was added at the beginning					
52	of the treatment.						
53 54	Cells were collecte acridine orange.	d after being exposed to cytoB for 24 hours. The cells were stained with					
55	A minimum of 200	O binucleated cells from each concentration (if possible, 1000 binucleated					

- 1 1,000 cells (500 cells per culture) were evaluated to determine the CBPI at each dose level
- 2 and the control.
- 3 Samples were collected and sent for electron microscopy analysis for cellular uptake analysis.
- 4 The results of cellular uptake analysis were not provided for inclusion in the report.
- 5 6 Results

7 In the preliminary toxicity assay, the doses tested ranged from 0.01 to 100 μ g/mL; the 8 maximum concentration was tested due to the low solubility of the test substance and expected turbidity. Cytotoxicity [55 \pm 5% reduction in cytokinesis-blocked proliferation index 9 (CBPI) relative to the vehicle control] was not observed at any dose in any of the three 10 treatment groups. At the conclusion of the treatment period, visible precipitate could be 11 12 observed with the unaided eye at doses \geq 3 µg/mL in all three exposure groups. During 13 evaluation of cytotoxicity, visible precipitate was observed on the slides at doses \geq 30 µg/mL 14 in all three exposure groups. Based upon these results, the doses chosen for the micronucleus 15 assay ranged from 0.3 to 30 µg/mL for all three exposure groups.

16 In the micronucleus assay, cytotoxicity (55 \pm 5% CBPI relative to the vehicle control) was not observed at any dose in any of the three treatment groups. At the conclusion of the 17 treatment period, visible precipitate could be observed with the unaided eye at doses ≥ 2 18 19 µg/mL in all three exposure groups. During evaluation of cytotoxicity, visible precipitate was 20 observed on the slides at doses \geq 3 µg/mL in the non-activated 4-hour exposure group; at doses $\geq 2 \mu g/mL$ in the S9-activated 4-hour exposure group; and at doses $\geq 10 \mu g/mL$ in the 21 22 non-activated 24-hour exposure group. The doses selected for evaluation of micronuclei were 23 0.3, 1, 10, and 30 μ g/mL for all three exposure groups.

- Neither statistically significant nor dose-dependent increases in micronuclei induction were observed at any dose in treatment groups with or without S9 (p > 0.05; Fisher's Exact and Cochran-Armitage tests). The results were within the 95% control limit of the historical negative control data.
 - Ref.: In Vitro Mammalian Cell Micronucleus Assay in Human Peripheral Blood Lymphocytes (HPBL). BioReliance Study Number AG28TA.348.BTL. 19 October 2021
- 32 SCCS comment on the *in vitro* study #6: Micronucleus test

Based on the analysis of the study results, the SCCS is of the opinion that the results on
E171-E material testing in the *in vitro* micronucleus test are inconclusive.

36 The SCCS has noted that:

- The test material E171-E should be classified as E171-similar, not E171-equivalent, as
 the details on physicochemical properties and nature of impurities are unknown to the
 SCCS and these may differ from E171 specification,
- The study results indicate no significant increase in MN frequency after exposure to
 E171-E. However, internalisation of TiO₂ particles was not confirmed,
- For the 24-hour treatment in the non-activated study, cyto B was added at the start
 of the treatment (which might decrease internalisation of the particles),
- 44 Details were not provided on suspension preparation or on its stability.
- 45

29 30

8

31 32

33

3.4.1.2 Mutagenicity / genotoxicity in vivo

34 Additional studies submitted by the Applicant

5
6 IN VIVO STUDY #1. Creutzenberg, O. (2022) Toxicological characterisation of
7 eleven Titanium Dioxide powders.

9 The SCCS note:

10 In response to the SCCS request for information about which legislation authorised the use 11 of the *in vivo* study by Creutzenberg, 2022, (this information was required considering the 12 ban on animal testing of cosmetic products and ingredients), the Applicant informed the SCCS 13 that:

- 14 The Creutzenberg, 2022, study was a range-finding study that was performed as preliminary 15 work to meet the requirements of the REACH Substance Evaluation of titanium dioxide -16 details of the Substance Evaluation decision can be found at: 17 https://echa.europa.eu/documents/10162/b1dd5108-5268-c7fd-2d70-c2d29ef9251e.
- Based on the justification of the testing request, ECHA refers to a large number of uses that are within scope of REACH. These include cosmetic and non-cosmetic uses. This study was therefore not conducted for the purpose of the cosmetic product regulation requirements only but for any use of titanium dioxide in consumer products (*i.e.* multipurpose). Thus, from a legal perspective, it was considered appropriate for CE to rely on this study for the purpose of the dossier submission to the SCCS.
- 25 This screening study was conducted in rats using intratracheal instillation, with the objectives:
- to investigate lung toxicity of 11 commercial titanium dioxide samples with a rapidly
 executed bronchoalveolar lavage fluid (BALF) analysis; this first ranking step was necessary
 prior to starting further testing with a more profound experimental design.
- to perform BALF analysis 3 and 28 days after intratracheal instillation of the 11 titanium
 dioxide samples at a single dose.
 - to assess the genotoxic potential in BALF cells 3 days after intratracheal instillation using the *in vivo* alkaline comet assay.

34 Titanium dioxide samples used in the *in vivo* instillation experiments in rats:

- 1. Uncoated mixed phase nano titanium dioxide [G1-1]: non-cosmetic grade
- 36 2. Uncoated nano anatase titanium dioxide (5 nm) [G2-5]: non-cosmetic grade
- 37 3. Uncoated pigmentary rutile titanium dioxide [G3-1]: (potential) cosmetics grade
 38 4. Pigmentary rutile titanium dioxide coated with alumina and TMP [G4-19]:
- 39 (potential) cosmetics grade

5. Pigmentary rutile titanium dioxide coated with alumina, zirconia and TMP [G5-4]: noncosmetic grade

- 42 6. Nano rutile titanium dioxide coated with alumina and hydrophobic organic [G6-
- 43 3]: (potential) cosmetics grade
- 44 7. Pigmentary rutile titanium dioxide coated with high SSA silica and alumina (40 m²/g) [G7-
- 45 5]: non-cosmetics grade
- 8. Nano rutile titanium dioxide coated with silica (40 m²/g) [G8-2]: (potential)
 cosmetics grade
- 48 9. Pigmentary rutile titanium dioxide coated with aluminium phosphate [G9-5]: non-49 cosmetics grade
- 50 10. Nano anatase titanium dioxide (5nm) with tungsten trioxide as co-catalyst [G10-4]: non-51 cosmetic grade
- 52 11. Pigmentary uncoated anatase titanium dioxide [E171-E]: (potential) cosmetics53 grade
- 54 55 The well-established inert dust titanium dioxide ("Bayertitan T") and the strongly 56 inflammogenic quartz DQ12 ("Dörentrup DQ12") were used as particle-like negative and

- 1 positive reference items, respectively, and the known clastogen ethyl methanesulfonate 2 (EMS) served as methodological positive control for the alkaline comet assay with BAL cells.
- 3 Animals treated with 0.9% saline were used as vehicle control group.
- 4

5 The study design and procedures are described in brief as follows (scheme in the Table 6 below):

7 The test and particle-like reference materials were suspended in saline by gentle stirring
8 (exposure to light was minimised as far as feasible). The total dose (1 mg/rat) was instilled
9 in two aliquots, each suspended in a volume of 0.3 mL, and administered on two consecutive
10 days to achieve a homogeneous distribution of the test/reference materials in the lungs.

- All samples, except G6-3, were prepared with saline as vehicle (1.67 mg test item/mL). In
- 12 contrast, G6-3 was prepared with 0.05 % Tween 80® in saline, due to its hydrophobic nature
- 13 (see also Driscoll et al., 2000). After gentle shaking all samples were sonicated for 5 minutes
- to guarantee homogeneous suspensions. Additionally, G6-3 was stirred with a magnetic
- 15 stirrer for 30 minutes. For the other samples vortexing was used to perpetuate the
- homogeneity until administration to the animals. Sonication device consisted of a Bandelin Sonorax RK 510H with HE performance of 160/220 W (160 W average), and HE frequency of
- Sonorex RK 510H with HF performance of 160/320 W (160 W average), and HF frequency of
 35 kHz. Samples were sonicated for 5 min. Under these conditions, any detachment of coating
- 19 material was considered as negligible.
- 20 Concurrent controls were treated with the vehicle saline only or 0.05 % Tween 80® in vehicle. 21 The rats were anaesthetised by CO_2/O_2 67/33 (v/v) for some seconds to perform the 22 intratracheal instillation. This is the shortest and most gentle anaesthesia for this kind of 23 dosing, as compared to intraperitoneally or inhalatory administered narcotic agents. The 24 intratracheal instillation of the particle suspensions was followed by a post-treatment 25 observation period for up to 28 days.
- 26 Bronchoalveolar lavage was performed in all rats at days 3 or 28 after the last instillation.
- The lung lavage fluid was collected and characterised using total and differential cell counts and biochemical endpoints (lactate dehydrogenase (LDH) activity, β-glucuronidase (β-Glu)
- activity, and total protein (TP) level) in the BALF as well as determination of DNA strand break
- 30 induction in BAL cells on day 3.
- 31

Intratracheal instillation study - Overview of treatment groups

				ti satirisint gi s	c.pc
Group	Treatment	Initial dose (mg)	Number of animals day 3	Number of animals day 28	Number of animals in total
1	Vehicle control A (0.9 % Saline)	-	8 (+3)	8	16 (+3)
2	G1-1	1	6	6	12
3	G2-5	1	6	6	12
4	G3-1	1	6	6	12
5	G4-19	1	6	6	12
6	G5-4	1	6	6	12
7	G6-3	1	6	6	12
8	G7-5	1	6	6	12
9	G8-2	1	6	6	12
10	G9-5	1	6	6	12
11	G10-4	1	6	6	12
12	E171-E	1	6	6	12
13	Bayertitan T Negative control	1	6	6	12
14	Quartz DQ12 Positive control	1	6	6	12
15	Vehicle control B (0.9 % Saline + 0.05% Tween)	-	1	-	1
			Total nur	mber of animals	176

Administration of total dose in two halves, each test/reference item suspended in a vol. of 0.3 ml saline and administered, on two consecutive days (day -1 and day 0)

3 4

5 In vivo mammalian alkaline comet assay with BAL cells

For three out of the 6-8 animals per treatment group (treatment groups 1-14), as well as for
3 additional animals treated with vehicle control A and one with vehicle control B (treatment
group 15), three coded comet assay slides were prepared under red light to avoid unspecific
DNA damage. The *in vivo* alkaline comet assay was subsequently performed under red light
according to the respective SOPs of Fraunhofer ITEM and by considering the OECD Guideline
for the Testing of Chemicals No. 489 (*In Vivo* Mammalian Alkaline Comet Assay).

As a methodological positive control, an aliquot of 150,000 cells of a concurrent negative
 control lavagate was transferred to 1.5 ml reaction cups, spun down and the supernatant was
 discarded. The cell pellet was subsequently resuspended in 1 ml of DMEM cell culture medium,
 containing 1 µl/ml of the known clastogen EMS, and cells were incubated for 1 h in a heat
 block at 37 °C. At least two positive control samples were generated per sacrifice day.

17 Three aliquots of BAL cells per animal were centrifuged for 5 min at 900 rpm (Heraeus Biofuge® 15, Thermo Scientific, Germany), re-suspended in pre-heated 0.75% low melting agarose (peqlab, Erlangen, Germany), applied to agarose pre-coated slides, using an agarose sandwich technique, and lysed for 2 h at 4°C to liberate the DNA (lysis buffer: 2.5 M NaCl, 100 mM Na2EDTA, 200 mM NaOH, 1 % Triton X-100, 10 % DMSO, pH 10). Subsequent DNAunwinding (20 min) and electrophoresis (20 min, 32 V, 320 mA) were both done in an

electrophoresis chamber (PERFECT BLUE™ 41-2340, peqlab, Darmstadt, Germany; capacity:

40 slides) on ice, in 4 °C cold electrophoresis buffer (300 mM NaOH, 1 mM EDTA, pH > 13).

25 In every electrophoresis run both methodological positive control slides and slides from

SCCS/1661/23

- vehicle control animals were included. After electrophoresis, slides were neutralized using a
 0.4 M Tris HCl (pH 7.4) buffer and then stained with ethidium bromide (0.002 %).
- 3 DNA strand break induction was finally analysed for two slides per animal or methodological

4 positive control, using a Zeiss Axioskop (fluorescence microscope) and the Comet assay III 5 Software from Perceptive Instruments (Steeple Bumpstead, Haverhill, UK). As the main and recommended (OECD 489) endpoint, the tail intensity (TI) of 100 nuclei per slide and two 6 7 slides per animal/sample (200 nuclei in total) were analysed. So-called "hedgehogs" and overlapping nuclei/comets were excluded from analysis, but "hedgehogs" were documented. 8 The tail intensity (TI) is a direct measure of the amount of broken DNA. This measure can be 9 10 standardised among various studies and laboratories and is linear over a wide range. The 11 comet assay analyses were all performed in a blinded manner, without knowledge of the 12 concrete identity of the test items.

13

For the comet assay, as recommended, the arithmetic means of the two medians of the 100 nuclei analysed per slide were calculated per animal, followed by calculation of the group means (generally 3 animals per particle treated group) ± SD from the arithmetic means of the single animals.

1819 Results:

In the titanium dioxide-treated groups, no statistically significant increases in lung weight were detected. Only the positive control group, treated with quartz DQ12, showed statistically

significant increases in lung weights in comparison with the vehicle treated control group.

Macroscopic examination showed treatment-related findings in the quartz DQ12 (positive control) treated animals, where moderately enlarged lung associated lymph nodes were observed.

Bronchoalveolar lavage fluid analysis showed mid to high levels of polymorphonuclear neutrophil (PMN) influx with statistical significance (in comparison with the vehicle control group) up to 56% PMN with quartz DQ12 (positive control) and to a lesser extent in G1-1 (45%). Other samples showed much lower PMN levels:

30 31

32 33

The ranking of the PMN parameters is mirrored in the biochemical parameters of the BALF, in which only samples DQ12 and G1-1 showed consistent elevated levels in lactate dehydrogenase (LDH) activity, ß-glucuronidase activity and total protein (TP) level, G6-3 occasionally elevated LDH activity and TP level, and G9-5 only increased TP level on Day 28.

38 39

Lactate dehydrogenase in BALF on days 3 and 28 post-treatment

The cytological and biochemical parameters show differences between the different titanium
 dioxide samples with regard to their biological reactivity. The sample G1-1 shows consistently
 the highest reactivity.

In vivo alkaline comet assay: The DNA damaging potential of the eleven titanium dioxide
samples was investigated in BAL cells, using the *in vivo* alkaline comet assay. As the main
and recommended (OECD 489, 2016) endpoint, the tail intensity (TI) of 100 nuclei per slide

SCCS/1661/23

and two slides per animal/sample (200 nuclei in total) were analysed. So-**called "hedgehogs"** and overlapping nuclei/comets were excluded from analysis, but "hedgehogs" were documented. Hedgehogs were only observed for E171-E-treated animals and in the methodological positive controls (4 – 5 per sample; negative control cells treated *in vitro* with EMS). For all other treatments no hedgehogs were present.

When evaluating the TI values [%] on a single cell level (200 events per sample/animal and 6 7 1 to 7 animals per treatment, mostly 3 animals) for the different test materials (see Figure 8 below), it can clearly be seen that the methodological positive control EMS is associated with 9 markedly higher TI values, compared with the other test materials, whereas the vehicle controls demonstrated almost no heavily damaged cells, thus, indicating appropriate 10 performance of the test. For nearly all particulate test items, small populations of cells with 11 12 slightly higher DNA damage were noted. These highly damaged cells are most likely a result of the mechanical interference of the test items, as cells were in most cases highly loaded 13 14 with titanium dioxide particles.

15 16

17

18

In vivo alkaline comet assay with BAL cells (day 3 post-exposure). Data distribution on the single cell level for the different materials.

19 20

28

29 30

31

21 Conclusions on the DNA damage (by the **Report's Authors)**:

Bronchoalveolar lavage fluid (BALF) analysis indicated no biologically relevant increases in arithmetic group mean tail intensity (TI), compared to the respective vehicle controls, when using the median tail intensity as summarizing slide measure and the arithmetic means of the medians of two slides per animal, according to OECD 489. Thus, neither one of the TiO₂ samples nor Quartz DQ12 seemed to exhibit a relevant DNA damaging potential.

Ref.: Creutzenberg, O. (2022) Toxicological characterisation of eleven Titanium Dioxide powders. Fraunhofer ITEM Study no. 02 N 19 538 (non-GLP) - Module I-1. Unpublished study report

- SCCS comments on the *in vivo* study #1
 The SCCS, after analysis of the results for all TiO₂ test materials, considers them as inconclusive for the following reasons:
- 6 The study design has major deviations from the recommendations by the OECD TG 489:

1. There were 3 animals used per treatment group, while according to OECD 489: "group
sizes at study initiation (and during establishment of proficiency) should be established with
the aim of providing a minimum of 5 analysable animals of one sex, or of each sex if both are
used, per group". Due to the limited number of animals used, the statistical significance of
the results, especially with E171 sample, is difficult to assess.

12

2. The animals were sampled 3 days after the last (second) exposure, while according to
OECD 489: "Animals should be given daily treatments over a duration of 2 or more days (*i.e.*two or more treatments at approximately 24 hour intervals), and samples should be collected
once at 2-6 h (or at the Tmax) after the last treatment". It cannot be excluded that sampling
after 3 days might be too long to detect DNA damaging effect in some cases of test materials
(due to, *e.g.* clearance or induction of DNA repair mechanisms).

19

3. Comet assay was performed on BALF cells and not on lung tissues which must be analysed
 according to the OECD TG 489 with and without specific modification to detect oxidative
 damage.

- The Applicant has not provided any convincing proof of cell internalisation for any of the
 TiO₂ materials tested.

Only 5 out of 11 TiO₂ materials tested are potential cosmetic grades. For the information on
 correspondence of the tested grades of TiO₂ G-samples to the TiO₂ raw materials used in
 cosmetic products, please see the chapter on "The SCCS analysis of the study reports
 submitted by the Applicant. *IN VITRO* STUDY #1. ToxTracker".

- The following statement by the Applicant: "Over the variety of all grades tested, the sample 29 G1-1 (also known as Aeroxide P25 or NM-105) showed the highest inflammogenic potential, 30 31 with all other grades showing lower biological reactivity. Based on the grade with the highest 32 inflammogenic potential still showing a negative in vitro genetic toxicity, it is justified to assume that all other titanium dioxide grades are intrinsically covered as they will exhibit a 33 lesser biological reactivity and a negative in vitro genetic toxicity" is in contradiction to Table 34 35 2.1. and A1.1., where P25 is stated as being not used in cosmetics formulations, and several 36 publications have indicated its positive genotoxic effects. 37

- 38 *IN VIVO* STUDY #2
- 39

40 The Applicant drew attention of the SCCS to a very recent publication by Akagi et al. (Particle and Fibre Toxicology. 2023 Jun 20; 20(1): 23. doi: 10.1186/s12989-023-00533-x). The SCCS 41 42 analysis of the study is included in the "Annex X. SCCS and EFSA analysis of studies on TiO₂ 43 genotoxicity". In brief, in the study oral administration of TiO₂ anatase nanoparticles with a 44 crystallite size of 6 nm to rats up to 1000 mg/kg bw/day for 90 days showed no toxic effects such as general toxicity, titanium accumulation in the liver, kidneys, and spleen, or colonic 45 crypts abnormalities. Micronucleus test in isolated hepatocytes, as well as γ -H2AX staining in 46 bone marrow cells, nasal cavity, BALT, trachea, Peyer's patches, cervical and mediastinal 47 48 lymph nodes tissues, were negative.

The Applicant has not clarified if the TiO₂ nanoparticles used in the study by Akagi *et al.*(2023) are relevant to the cosmetic grades.

51 Considering that distribution of the TiO₂ NPs to internal organs after p.o. administration was 52 not convincingly demonstrated in this study, the SCCS considered the results as inconclusive.

Moreover, as only coated rutile phase TiO_2 material with up to 5% anatase is indicated for potential use in cosmetic products, the nanoparticles used in the study by Akagi *et al.* (2023) are not relevant for the range of TiO_2 materials used in cosmetic products.

- 56
- 57

- 1 2 3.4.1.3 The overall SCCS assessment of the genotoxicity of TiO₂ grades used in cosmetic 3 products 4 5 The SCCS evaluated the genotoxicity of TiO₂ grades used in cosmetic products based on data available from 2 sources: 6 7 1. Study reports on TiO₂ grades genotoxicity submitted by the Applicant 8 2. Published literature search 9 3.4.1.3.1. The SCCS evaluation of genotoxicity of selected TiO₂ raw materials based 10 on the original study reports provided by the Applicant 11 12 13 The SCCS evaluated the original study reports on genotoxicity of selected TiO₂ raw materials 14 provided by the Applicant, *i.e.* 8 *in vitro* and 2 *in vivo* study (the second study by Akagi et 15 al., 2023, indicated by the Applicant, is included in the analysis of the published literature data in "Annex X. SCCS and EFSA analysis of studies on TiO₂ genotoxicity" in the MS Excel 16 17 file). 18 Based on the analysis, the results of genotoxicity testing of RM09 and RM11 were considered 19 20 negative. However, for the other TiO₂ grades, the results were considered inconclusive based 21 on different limitations identified. Detailed SCCS comments to each of the studies are 22 presented in paragraphs 3.4.1.1 and 3.4.1.2. and a summary of the SCCS evaluation of the
- 23

studies in presented in Table 3.4.1.3.A.

Table 3.4.1.3.A. The SCCS evaluation of genotoxicity of selected TiO₂ raw materials based
on the original study reports provided by the Applicant. Titanium dioxide raw material grades
used in cosmetics are highlighted in bold (information according to the Applicant).

28

	TiO ₂ samples tested	(Potential) cosmetic grade	Creutzenberg (2022) <i>in vivo</i> comet in BAL cells	ToxTracker (Biomarker gene: Bscl2, Rtkn)	Mammalian cell gene mutation assay <i>in vitro</i>	Micronucleus test <i>in vitro</i>
1	Pigmentary uncoated anatase TiO ₂ [E171-E] Equivalent to RM67	Yes	Inconclusive	Inconclusive	NA	Inconclusive (BioReliance)
2	Nano rutile TiO ₂ coated with alumina and hydrophobic organic [G6-3] Equivalent to RM42	Yes	Inconclusive	Inconclusive	NA	NA
3	Nano rutile TiO ₂ coated with silica (40 m ² /g) [G8-2] Equivalent to RM09	Yes	Inconclusive	Inconclusive	Negative	Negative
4	RM11	Yes	NA	NA	Negative	Negative
5	Uncoated pigmentary rutile TiO ₂ [G3-1]	Not marketed for use in cosmetics but have similar PhysChem characteristi cs to some cosmetics grades	Inconclusive	Inconclusive	NA	NA
6	Pigmentary rutile TiO ₂ coated with alumina and TMP [G4-19]	As above	Inconclusive	Inconclusive	NA	NA
7	Uncoated mixed phase nano TiO ₂ [G1-1]	no	Inconclusive	Inconclusive	NA	NA

8	Pigmentary rutile TiO ₂ coated with high SSA silica and alumina (40 m ² /g) [G7-5]	no	Inconclusive	Inconclusive	NA	NA			
9	Pigmentary rutile TiO ₂ coated with aluminium phosphate [G9-5]	no	Inconclusive	Inconclusive	NA	NA			
10	Uncoated nano anatase TiO ₂ (5 nm) [G2-5]	no	Inconclusive	Inconclusive	NA	NA			
11	Pigmentary rutile TiO ₂ coated with alumina, zirconia and TMP [G5-4]	no	Inconclusive	Inconclusive	NA	NA			
12	Nano anatase (5 nm) with tungsten trioxide as co-catalyst [G10-4]	no	Inconclusive	Inconclusive	NA	NA			
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23	 3.4.1.3.2. Published literature search carried out by the SCCS The SCCS carried out a search of the published literature to obtain any further information that might be relevant for consideration in the current safety assessment. The parameters used to search the published literature were: the period to be covered as the update of the EFSA Opinion on TiO₂ (2021): 1 January 2021 to 16 April 2023 (the last EFSA search was done on December 2020); 2005-2023: additional search on other TiO₂ grades not analysed by the EFSA, English language. If a relevant text was provided in another language, it was translated into English. No specific restrictions to geographical area. The types of documents analysed were peer-reviewed articles, journal entries, book chapters, government funded publications, etc. Terms were searched in: title, abstract, key word and text field. Databases searched: Web of Science, Pub-Med. Criteria of evaluation of the genotoxicity results in the open literature: The literature analysis of the TiO₂ materials that had been excluded from the EFSA analysis because they were not relevant for the assessment of F171 								
25 26	by the SCCS during pr	eparation of	the current So	cientific Advice:					
	Pigme	ntary grades		Nanopartio	cle grades				
	E171, food-grade (a	natase/rutile)							

non-coated	
E171-similar pigment grades non-coated	Rutile coated (or rutile with up to 2% anatase) - the Applicant provided information that all nanoforms used in cosmetics were rutile, coated)
Pigment grades other than E171 non-coated coated	

- For assessment of the available information, the SCCS adopted the same approach as EFSA on the genotoxicity analysis. A comparative overview of the approaches used by EFSA,
- 30 Kirkland *et al.*, 2022 and the SCCS is provided in Annex W.
- 31 The Tables presented in the EFSA Appendices to the Opinion on TiO₂ (2021), were used as a
- 32 starting point, and basic information from these tables was merged into the one SCCS/EFSA
- database on TiO₂ materials relevant for cosmetic products (Annex X. SCCS and EFSA analysis
- 34 of studies on TiO₂ genotoxicity).
- Four of the current SCCS experts participating in this task had also participated in the preparation of the EFSA Opinion on TiO₂ (2021).

1 2	Number of records retrieved from the published literature search
2 3 4 5 6 7 8	Web of Science 2023-01-09 Keywords: titanium dioxide AND nanoparticle* AND mutagenic* genotoxic* >> number of records 285; sorted by the most relevant Keywords: titanium dioxide AND nanoparticle* AND mutagenic* genotoxic* >> number of records 129
9 10 11 12 13 14	Web of Science 2023-04-16 Keywords: titanium dioxide AND nanoparticle* AND mutagenic* genotoxic* >> number of records 288; Keywords: titanium dioxide AND nanoparticle* AND mutagenic* genotoxic* >> number of records 130.
15 16 17	For a detailed list of publications selected for analysis, please see "Annex V. List of publications on TiO_2 particles genotoxicity analysed by the SCCS".
18 19 20	Detailed analysis of genotoxicity of TiO_2 materials based on the review of the published literature
21 22 23	The detailed information with analysis and evaluation scores with sorting and filtering options is presented in "Annex X. SCCS and EFSA analysis of studies on TiO_2 genotoxicity", the MS Excel file.
25 26 27 28 29 30 31 32 33	Total number of records (combinations "TiO ₂ material-test system" for the SCCS evaluation and "TiO ₂ form" for the EFSA data) is 353. After excluding records not taken into consideration during the WoE for different reasons presented in the sheet "NOT taken into consideration" (35 records), the number of records taken into consideration during the WoE (sheet "TAKEN into consideration") was 318. The main reasons for excluding some records were: - no information provided on crystalline form tested, - insufficient methodology description, - TiO ₂ form tested was not relevant.
34 35 36 37 38 39 40 41 42	 After further excluding the records with low relevance (34 records in the sheet "RELEVANCE - LOW) the number of records curated for the final analysis was 284. The main reasons for scoring some records as of low relevance were: unacceptable level of cytotoxicity, no positive control used in the experiment, excessively high concentrations used, no or insufficient data on dispersion, no proof on internalisation, short time of exposure used, etc.
43 44 45 46	In view of the large number of TiO_2 grades used in cosmetic products, the SCCS segregated them into 4 categories for the purpose of the current assessment. These were:
47 48 49 50 51 52 53	1. E171-equivalent materials ⁵ The E171-equivalent material was defined by the SCCS based on the specifications given in the scientific opinion by EFSA FAF Panel (EFSA Panel on Food Additives and Flavourings): Scientific opinion on the proposed amendment of the EU specifications for titanium dioxide (E 171) with respect to the inclusion of additional parameters related to its particle size distribution. EFSA Journal 2019; 17(7): 5760, 23 pp. https://doi.org/10.2903/j.efsa.2019.5760):

⁵ To name the categories, the SCCS prefers to use the term "material" instead of "grade" used by the Applicant.

- It consists of anatase or rutile generally containing small amounts of the other phase (rutile 1 2 or anatase, 2% m/m) and it may also contain small quantities (< 0.5%) of constituent < particle growth and crystal phase control agents (alumina, sodium or potassium in 3 4 combination with phosphate).

5 - The average median Feret min diameter of the constituent particles obtained by three laboratories using SEM was reported, for the five brands of anatase, to range between 104 6 7 and 166 nm and the percentage of particles by number 100 nm ranges from 11.4 to 45.6%. 8 For the rutile sample the < median Feret min diameter was 151 nm and the percentage of 9 particles by number 100 nm was <5.4%.

10

16

18

11 2. E171-similar materials

12 The E171-similar material was defined as particles comparable to the E171-equivalent 13 material in terms of crystalline phase, size, lack of coating. However, firm conclusions on the 14 similarity with the E171-identical material could not be drawn, due to incomplete or missing 15 data on the physicochemical properties.

- 17 3. PIGMENTARY MATERIALS other than E171-equivalent or E171-similar materials
- 19 4. NANOMATERIALS

subcategory: Anatase

- 20 21 subcategory: Rutile
- 22 subcategory: Anatase/Rutile

24 The summary of the SCCS final evaluation is presented below (Tables 3.4.1.3.B-D) for the 25 following groups of TiO₂ materials:

26

23

1. TiO₂ E171-equivalent (anatase/rutile, <2%) AND E171-similar materials - analysis of the 27 28 published literature data - TABLE 3.4.1.3.B

2. TiO₂ PIGMENTARY Materials other than E171-equivalent or E171-similar materials -29 30 analysis of the published literature data - TABLE 3.4.1.3.C

- 31 3. TiO₂ NANOMATERIALS – analysis of the published literature data – TABLE 3.4.1.3.D
- 32
- 33 34

The SCCS conclusions on safety of TiO₂ E171-equivalent and E171-similar materials used in cosmetic products

3

4 E171-equivalent materials

5 Considering all the available relevant information summarised in Table 3.4.1.3.B below, the SCCS is of the opinion that genotoxic hazard of the pigmentary TiO₂ materials equivalent to 6 E171 cannot be excluded. This is based on analysis of the compiled SCCS/EFSA published 7 8 literature data review, indicating overall genotoxic hazard in vitro (1 positive micronucleus test, 5 positive Comet assays, 1 positive vH2AX assay), compared to 2 negative Comet assays 9 after oral exposure and 1 inconclusive Comet assay in BAL cells after in vivo exposure 10 (Creutzenberg et al., 2022). In the opinion of the SCCS, the Comet assay in vitro is an 11 12 indicator test for genotoxicity and can be used as a supporting evidence in WoE. Therefore, a 13 safe use of these pigmentary TiO₂ materials in cosmetic products cannot be confirmed with 14 the currently available weight of evidence. Considering some limitations of the positive in vitro micronucleus study (Proquin et al., 2017), a valid in vitro micronucleus or chromosomal 15 16 aberration test (assuring all nanotoxicology state-of-the-art principles are applied) with adequately selected E171-equivalent material(s) would be needed to overrule the current 17 18 conclusion.

19

20 E171-similar materials

The SCCS is of the opinion that genotoxic hazard of pigmentary TiO₂ E171-similar materials 21 cannot be excluded. This is based on the analysis of one in vitro GLP study (micronucleus test 22 on the material notified as E171-E with inconclusive result) provided by the Applicant and the 23 24 compiled SCCS/EFSA published literature data review, indicating 1 positive Comet assay after 25 oral exposure, as well as 1 equivocal micronucleus test after intraperitoneal exposure, and 1 26 negative chromosomal aberration assay after intraperitoneal exposure. Hence, safe use of these pigmentary TiO₂ materials in cosmetic products cannot be confirmed. Additional valid 27 28 in vitro micronucleus or chromosomal aberration test (assuring all nanotoxicology state-ofthe-art principles are applied) with adequately selected E171-similar material(s) would be 29 30 needed to overrule the current conclusion.

- 31 32
- TABLE 3.4.1.3.B. TiO₂ E171-equivalent AND E171-similar materials analysis of the published literature data merged in the SCCS/EFSA database
- 35

TiO ₂ material	Description	Number of records identified among the total n = 284	Number of records and outome (positive; negative; inconclusive or equivocal)	
tested			Analysis by EFSA (until December 2020)*	Analysis by SCCS (2020-2023)**
	Total	11		
	In vitro	9		
	Micronucleus in vitro	1	1 Positive	
	Comet in vitro	6	2 Positive 1 Negative	3 Positive
E171-equivalent	Other genotoxicity endpoints <i>in vitro</i> – H2AX	1		1 Positive
	Other genotoxicity endpoints <i>in</i> <i>vitro</i> – ToxTracker	1	1 Negative	
	In vivo:	2		
	Comet <i>in vivo</i>	2	2 Negative	
	Total	3		
E171-similar	In vitro	0		One GLP study report on micronucleus test submitted by the

			Applicant, on E171-E with inconclusive result
In vivo	3		
Micronucleus <i>in vivo</i>	1	1 Equivocal	
Chromosomal aberrations in vivo	1	1 Negative	
Comet <i>in vivo</i>	1	1 Positive	

* Only final result (i.e. negative, positive, equivocal) from an EFSA Appendix was included;

** TiO₂ material-test system combination included

The SCCS conclusions on safety of TiO₂ PIGMENTARY MATERIALS **other than "E171**equivalent or E171-similar materials" used in cosmetic products

Considering all the available relevant information, summarised in Table 3.4.1.3.C below, the SCCS is of the opinion that genotoxic hazard of TiO₂ PIGMENTARY MATERIALS, used in cosmetic products both uncoated and coated, that fall into the category of "other than E171equivalent or E171-similar material" cannot be excluded. This is based on analysis of the compiled SCCS/EFSA published literature data review up to April 2023, indicating that:

- pigmentary materials anatase, uncoated, can induce genotoxic effects *in vitro* (mainly represented by the positive Comet assay results), and *in vivo* (1 positive Comet assay after oral exposure). Although 5 studies in the published literature reported negative results in *in vitro* micronucleus test using similar pigmentary anatase materials, indicating safety of these materials, positive results from *in vitro* and *in vivo* Comet assays make it difficult to conclusively exclude genotoxicity hazard of these materials.
- pigmentary materials rutile, uncoated, can induce DNA damaging effects (5 positive 18 Comet assay results) and cell transformation. Although 4 studies in the published 19 20 literature reported negative results in *in vitro* micronucleus test and 1 in *in vitro* 21 chromosomal aberration test using similar pigmentary rutile materials, indicating 22 safety of these grades, the relevance of the test materials to the cosmetic grades 23 cannot be conclusively determined. The positive results from *in vitro* Comet assays 24 make it difficult to conclusively exclude genotoxicity hazard of the pigmentary rutile 25 materials.
- pigmentary materials anatase/rutile, uncoated, show DNA damaging effect (1 positive
 Comet assay result), but not induction of micronuclei. Based on the results it is not
 possible to conclusively exclude genotoxicity hazard of the pigmentary anatase/rutile
 materials.
- Based on the collective information safe use of pigmentary materials in oral cosmetic
 products cannot be confirmed with the currently available weight of the evidence.
 Therefore, the Applicant should provide further evidence from studies according to the
 Scheme of testing strategy for genotoxicity/mutagenicity of cosmetic ingredients
 presented in the SCCS Notes of Guidance (SCCS/1647/22) and Guidance on the Safety
 Assessment of Nanomaterials in Cosmetics (SCCS/1655/23).
- 36

1 2

3 4

5

6

Another Scientific Opinion on the safety of TiO₂ in toys has been published recently (June
2023) by the Scientific Committee on Health, Environmental and Emerging Risks (SCHEER)
(https://health.ec.europa.eu/publications/scheer-scientific-opinion-safety-titanium-dioxide-

toys-0_en). Although the SCHEER Opinion relates to the safety of TiO₂ in toys, it concluded 40 that such a use can only be considered safe "when the absence of an ultrafine fraction 41 (nanoscale/nanosized particles (1-100 nm) indicated as ultrafine particles in line with 42 conventions in inhalation toxicology) in the TiO₂ pigments can be demonstrated by an 43 appropriate methodology." The SCHEER Opinion is therefore not in contradiction to the 44 conclusions drawn in this Opinion, because the physicochemical data evaluated by the SCCS 45 46 have shown that most of the pigmentary TiO₂ grades used in cosmetic products contain a 47 varying proportion of the constituent particles in the nano range.

~	-	
•	ጓ	

(CAS/EC	Scientific Advice on Titanium numbers 13463-67-7/236-675-5, 1317-70-	dioxide (TiO ₂) 0/215-280- 1, 1	900 Prelimina 317-80-2/215-282-2)	ry document
Table 3.4.1.3.C. material" – analys	TiO ₂ PIGMENTARY MATERIALS othe sis of the published literature data	er than "E171 merged in th	1-equivalent or E1 e SCCS/EFSA data	71-similar abase
TiO ₂ material	Description	Number of records identified among the total n = 284	Number of records and outome (positive; negative; inconclusive or equivocal)	
tested			Analysis by EFSA (until December 2020)*	Analysis by SCCS (2020-2023)**
Pigmentary material other than "E171- equivalent or E171-similar"	Total	42		
Anatase	Surface chemistry/Coating	0		
	Surface chemistry/No coating	27		
	In vitro assays	26		
	Mammalian cell gene mutations in vitro	1	1 Negative	
	Micronucleus in vitro	5	4 Negative	1 Negative
	Comet in vitro	17	10 Positive 2 Negative	4 Positive 1 Negative
	Other genotoxicity endpoints in vitro – H2AX	2	1 Positive 1 Negative	
	Cell transformation assay	1	1 Negative	
	III VIVO assays	1	1 Dealthur	
Dutila	Comet <i>in vivo</i>		I Positive	
Ruthe	Surface chemistry/Coating	0		
	Surface chemistry/No coating	13		
	In vitro assays	12		
	Micronucleus in vitro	4	4 Negative	
	Chromosomal aberrations in vitro	1		1 Negative
	Comet <i>in vitr</i> o	6	5 Positive 1 Negative	
	Cell transformation assay	1	1 Positive	
	In vivo assavs	1		
	Other genotoxicity endpoints in vivo - DNA binding	1	1 Negative	
Anatase/Rutile	Surface chemistry/Coating	0		
	Surface chemistry/No coating	2		
	In vitro assays	2		
	Micronucleus <i>in vitro</i>	1	1 Negative	
	Comet <i>in vitro</i>	1	1 Positive	
	In vivo assays	0		
		-	1	L

* Only final result (i.e. negative, positive, inconclusive or equivocal) from an EFSA Appendix was included;

** TiO2 material-test system combination included

The SCCS conclusions on safety of TiO₂ NANOMATERIAL GRADES used in cosmetic products

The Applicant provided required genotoxicity testing results using mammalian cell gene 11 12 mutation and micronucleus tests on RM09 (rutile, coated with amorphous silica, hydrophilic) and RM11 (rutile, coated with alumina and dimethicone, hydrophobic), with negative results. 13 14 The SCCS conducted analysis of the available published literature data on TiO₂ nanomaterials 15 composed of rutile coated (only such nanomaterials are used in cosmetic products). Based on the analysis of only 4 in vitro studies found on alumina coated TiO₂ grades tested in 16 micronucleus assay and Comet assay with negative results, there is reasonable evidence that 17
(CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280-1, 1317-80-2/215-282-2)

alumina coated TiO₂ nanomaterial grades (rutile) are not genotoxic (all combinations have
 been investigated in one study by Jalili *et al.*, 2018). 3-aminopropyltriethoxysilane coated
 rutile was tested negative in one Comet assay after intratracheal administration.

4 In conclusion, only limited information is available for the rutile nanomaterials with 2 types

5 of coating, whereas TiO₂ nanomaterial grades intended for use in cosmetic products are

6 coated with a number of chemicals, and in some cases as multiple coatings (please see Table

7 3.4.1.3.D). For the rest rutile coated nanomaterial grades used in cosmetic products (except

RM09 and RM11), the genotoxicity hazard is not known. Hence safe use of such rutile coated
 nanomaterial grades in cosmetic products cannot be confirmed with the currently available

10 weight of the evidence.

11

1 Negative

1 2 3

8 9

10

Table 3.4.1.3.D. TiO₂ NANOMATERIALS – analysis of the published literature data merged in the SCCS/EFSA database

				Number of records and outome (positive; negative; inconclusive or equivocal)			
TiO ₂ material tested TiO ₂ Nanomaterials RUTI LE		Description	Number of records identified among the total n = 284	Analysis by EFSA (until December 2020)**	Analysis by SCCS (2020-2023)***		
	TiO ₂ Nanomaterials	Total	228				
	RUTILE	Surface chemistry/No coating:	29*				
		Surface chemistry/Coating:	5				
		Alumina coating	4				
		In vitro assays	4				
		Micronucleus in vitro	2		2 Negative		
		Comet in vitro	2		2 Negative		
		In vitro assays	1				
		Positively charged coating (3- aminopropyltriethoxysila ne)	1				
		In vivo assays	1				

Rutile non-coated nanomaterials (N=29) are not used in cosmetic products, hence were not considered in this assessment. The remaining ones relate to anatase or anatase/rutile materials.

1

** Only final result (*i.e.* negative, positive, inconclusive or equivocal) from an EFSA Appendix was included.

*** TiO2 material-test system combination included

3.4.2. Potential uptake of TiO₂ nanoparticles by oral mucosa cells

Comet in vivo

11 12 Although cosmetic products are not intended to be orally ingested, some incidental exposure 13 takes place when oral product categories like toothpaste or mouthwash are used. Therefore, 14 for cosmetic products containing nanomaterials intended to be used orally, it is important to 15 consider that it will be the oral mucosa that will be exposed to nanoparticles in the first place before any ingestion can take place. 16

17 In this regard, it is important to keep in mind that, unlike dermal cells that are protected from 18 entry of particulate materials by stratum corneum, the mucosal epithelium is only covered 19 under a layer of mucous and therefore more prone to exposure of nanoparticles.

In this regard, a number of studies have indicated that oral mucosal cells are particularly 20 21 prone to uptake of nanoparticles as they are able to penetrate the mucous layer and may be 22 internalised by the epithelial cells. These studies range from *in vitro* studies in cell lines (Best et al., 2015) and 3D buccal mucosa models (Konstantinova et al. 2017) to ex-vivo in porcine 23 buccal tissue sections (Teubl et al., 2014, 2015; Vignard et al., 2023). The particles tested in 24 25 these studies range from fluorescently-labelled carboxyl polystyrene nanoparticles to titanium dioxide nanoparticles, as well as food grade TiO₂ particles (E171) (Vignard *et al.*, 2023). The 26 27 available evidence from these studies has suggested that the penetration of nanoparticles to 28 the oral mucosal cells can be a relatively rapid process (within a few minutes - according to 29 Teubl et al., 2015). The internalised particles have been found to reach up to 1/3 of the 30 epithelium (up to stratum superficiale) - with some evidence that they can also reach the connective tissue (Teubl et al., 2014, 2015) and submandibular lymph nodes from pigs 31 32 exposed to food-grade TiO₂ particles (E171) (Vignard et al., 2023).

33 The available evidence so far has however not clearly indicated a dependency of particle 34 penetration on either size or hydrophobicity/hydrophilicity of the nanoparticles, although

1 smaller nanoparticles seem to be more internalised compared to larger particles/ 2 agglomerates. There are also indications from the studies that the intracellular distribution of hydrophilic and hydrophobic nanoparticles within the mucosal cells is different, as the 3 4 hydrophilic ones are more freely distributed in the cytoplasm, whilst the hydrophobic ones 5 tend to end up in vesicles. There is also some indication that nanoparticles (TiO_2) internalised by TR146 human buccal mucosal cells induce the generation of reactive oxygen species in 6 7 vitro (Teubl et al., 2014, 2015). Apart from oxidative stress induction, TiO₂ NM-102 and E171 8 were shown to induce genotoxic effect (yH2AX staining) in TR146 cells (Vignard *et al.*, 2023). 9 However, it should be emphasised that YH2AX staining test is considered a genotoxicity 10 indicative test. It is known that the oral mucosal epithelium depending on the region of oral cavity has a 11 12 continuous turn-over around 14 days for buccal mucosa to 24 days for hard palate (Squier and Kremer, 2001). However, considering that some oral products, such as toothpastes and 13 mouthwashes, will be used every day, and potentially more than once a day, it needs further 14 investigations to exclude the concern over the uptake of TiO₂ nanoparticles in the buccal 15 mucosa from long-term repeated exposures to orally used cosmetic products. 16

4. CONCLUSION

1 2

3

4 5 6

7

The SCCS concludes the following:

1. In light of the EFSA Opinion on genotoxicity concerns for E171, does the SCCS consider Titanium dioxide safe in oral cosmetic products?

From the provided information, the SCCS has noted that the titanium dioxide (TiO₂)
materials evaluated in this Scientific Advice belong to a wide range of grades (44
pigmentary and 40 nano grades) used in cosmetic products. The pigmentary grades differ
from the food additive E171 in terms of crystalline forms, particle sizes, coatings, etc.,
with the exception of 13 uncoated pigmentary grades that can be considered as equivalent
to E171.

Having considered all the information (including that evaluated by EFSA, 2021), the SCCS considers that the available evidence is not sufficient to exclude the genotoxicity potential of almost all of the types of TiO₂ grades used in oral cosmetic products. The only exception are two nano grades (RM09 and RM11) for which the provided genotoxicity data indicate no genotoxicity concern. More information is, however, needed on the potential uptake and cellular effects of the nano grades in the oral mucosa to consider them safe for use in oral-care products.

More experimental data are needed from studies carried out under valid protocols and appropriate testing guidelines to exclude the genotoxicity potential of the selected representatives of the other grades of TiO₂ (both pigmentary and nano) used in oral cosmetic products.

27 It is worth highlighting that the SCCS approach to risk assessment of TiO₂ ingredients in 28 orally-used cosmetic products is slightly different from that of EFSA. This is because 29 cosmetic products are not meant to be ingested orally, and any ingestion via the oral route can only be unintended and incidental. Keeping this in mind, the amounts of orally-30 31 ingested cosmetic ingredients can only be expected to be far lower than the amounts 32 ingested when a TiO₂ material is used as a food additive, which is consumed via intake of the food products. For the SCCS, the potential absorption/retention, translocation and 33 34 adverse effects of nanoparticles in the buccal mucosa are therefore important 35 considerations for safety evaluation.

2. In light of the EFSA Opinion, does the SCCS consider that previous Opinions issued by the SCCS on inhalation and dermal exposure to Titanium dioxide need to be revised?

The conclusions drawn in previous SCCS Opinions on dermally applied cosmetic products (SCCS/1516/13, SCCS/1580/16) remain unchanged for the TiO₂ grades and the coatings evaluated in those Opinions. New data on dermal absorption will be required for other types of TiO₂ grades and coatings that are not covered in the Cosmetics Regulation 1223/2009, and not covered by entry 27a in Annex VI.

- According to the Cosmetics Regulation 1223/2009, the nanoform of TiO₂ is already restricted under entry 27a of Annex VI as not to be used in applications that may lead to exposure of the end-user's lungs by inhalation. The conclusions drawn in the previous Opinions (and SCCS/1583/17, SCCS/1617/20) on the safety of TiO₂ used in specific cosmetic products that may lead to exposure by inhalation also remain unchanged.
- 51

36 37

38 39

 In the event that the estimated exposure to Titanium dioxide from cosmetic products is found to be of concern, SCCS is asked to recommend safe concentration limits for each category of products and types of use.

Since the genotoxicity hazard of almost all of the grades of titanium dioxide could not be excluded (with the exception of RM09 and RM11), the SCCS cannot recommend any safe limits for the materials when used in cosmetic products that could lead to oral or inhalation exposure, other than those already indicated in the previous SCCS Opinions (SCCS/1516/13, SCCS/1580/16 and SCCS/1617/20).

9 10 11

12

13

1

2

3

4 5

6

7

8

4. In light of the potential removal of the E 171 purity specification from the food additives Regulation, the SCCS is requested to review and indicate the respective specifications for Titanium dioxide when used in cosmetics.

14 In view of the concerns on the potential genotoxicity of the TiO₂ grades considered in this 15 Scientific Advice, the SCCS is of the opinion that the Applicants should draw up a proposal 16 for specifications of the different TiO₂ grades used in those cosmetic products that could 17 lead to oral and inhalation exposure. The SCCS will be able to assist the Commission in 18 reviewing the proposal.

19 5. Does the SCCS have any further scientific concerns regarding the use of
 20 Titanium dioxide in cosmetic products?
 21

Studies have indicated that oral mucosal cells are prone to the uptake of nanoparticles (including TiO₂ nanoparticles), as they may penetrate the mucous layer and may be internalised by the epithelial cells. Considering that some oral products containing TiO₂ nanoparticles, such as toothpastes and mouthwashes, will be used every day and potentially more than once a day, further investigations are needed to exclude the risk to the consumer from long-term repeated exposures of the oral mucosa to TiO₂ nanoparticles.

The SCCS also recommends that safety assessment of the pigmentary TiO_2 grades used in cosmetics should take account of the fact that some of them contain a sizeable proportion of the particles in the nano size scale – some over 50% (in terms of particle number, median constituent particle size).

34

29

35

36 5. MINORITY OPINION

37 38

/

1

2 ANNEX: Safety concerns for titanium dioxide grades used in cosmetic products

3

From the provided information, the SCCS has noted that the titanium dioxide (TiO₂) materials evaluated in this Scientific Advice belong to a wide range of grades (44 pigmentary and 40 nano grades) used in cosmetic products. The pigmentary grades differ from the food additive E171 in terms of crystalline forms, particle sizes, coatings, etc., with the exception of 13 uncoated pigmentary grades that can be considered as equivalent to E171.

9

In view of the currently available evidence being insufficient to exclude genotoxicity of the different grades of TiO₂ materials used in cosmetics, the SCCS has identified the following scientific aspects that constitute the basis for a concern over the safety of the use of these materials in cosmetic products that could lead to consumer exposure via the oral or inhalation route:

15

16 PHYSICOCHEMICAL ASPECTS

18 The physicochemical characteristics of the TiO₂ grades used in cosmetic products are very 19 wide ranging. A number of discrepancies and data gaps (including stability) have been 20 identified that need addressing, without which it is not possible to relate many of the grades 21 to the materials tested in toxicological studies.

22

17

To avoid a case-by-case assessment of all the materials considered in this Scientific Advice, narrow groups of the materials with similar characteristics need to be formed and justified on the basis of physicochemical characterisation data on each of the materials. In this regard, it is important that rigorous specifications are drawn by the Applicant for each group/grade used in cosmetic products that may lead to oral and/or inhalation exposure. Toxicological test data for one or more representative material(s) from each group/grade can then be justified for use in read-across to other member of the group.

31 GENOTOXICITY/MUTAGENICITY

32

The SCCS considers that the currentlyavailable weight of the evidence is not sufficient to exclude mutagenicity/ genotoxicity potential of almost all of the TiO₂ grades to be used in cosmetic products that have been assessed in this Scientific Advice. Without excluding the mutagenicity/genotoxicity potential, the SCCS cannot recommend a safe level of use for the TiO₂ materials in oral cosmetic products.

Further evidence from valid *in vitro* testing protocols and guidelines on
 genotoxicity/mutagenicity would therefore be needed for at least one representative of each
 type of the TiO₂ grades used in cosmetic products.

41

42 Exposure aspects

- 43
- 44 Potential dermal absorption

Some of the materials assessed in this SA have different characteristics including coating compared to those materials that have been assessed in the previous SCCS Opinions (SCCS/1516/13, SCCS/1580/16). The potential dermal absorption of those types of coatings not evaluated before is not known, and therefore excluding the consumer risk on the basis of the lack of exposure is not possible without further experimental data on representative coated materials.

51

52 Uptake in the oral mucosa

Studies have indicated that oral mucosal cells are prone to uptake of nanoparticles (including
 TiO₂ nanoparticles) as they are able to penetrate the mucous layer and may be internalised

- by the epithelial cells. Considering that some oral products containing TiO_2 nanoparticle
- 56 grades, such as toothpastes and mouthwashes, will be used every day, and potentially more

than once a day, further evidence is needed to exclude the concern over the uptake/retention,
 potential translocation and adverse effects of TiO₂ nanoparticles in the oral mucosa from long term repeated exposures to orally used cosmetic products.

6. REFERENCES

- i) <u>REFERENCES used by Cosmetics Europe</u>
- 7 8 9

10

11 12

5

- Andreoli C, Leter G, De Berardis B, Degan P, De Angelis I, Pacchierotti F, Crebelli R, Barone F, Zijno A. (2018). Critical issues in genotoxicity assessment of TiO₂ nanoparticles by human peripheral blood mononuclear cells. J. Appl. Toxicol. 38, 1471-1482. doi: 10.1002/jat.3650
- Armand L, Tarantini A, Beal D, Biola-Clier M, Bobyk L, Sorieul S, Pernet-Gallay K, Marie-Desvergne C, Lynch I, Herlin-Boime N, Carriere M. (2016). Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents. Nanotoxicology 10, 913-923. doi: 10.3109/17435390.2016.1141338
- Bouwmeester H, Lynch I, Marvin H J, Dawson K A, Berges M, Braguer D, Byrne H J, Casey
 A, Chambers G, Clift M J, Elia G, Fernandes T F, Fjellsbø L B, Hatto P, Juillerat L, Klein C,
 Kreyling W G, Nickel C, Riediker M, Stone V. (2011). Minimal analytical characterization of
 engineered nanomaterials needed for hazard assessment in biological matrices.
 Nanotoxicology 5, 1-11. doi: 10.3109/17435391003775266
- Brandao F, Ferndández-Bertólez N, Rosário F, Bessa M J, Fraga S, Pásaro E, Teixeira J P, Laffon B, Valdiglesias V, Costa C. (2020). Genotoxicity of TiO₂ nanoparticles in four different human cell lines (A549, HEPG2, A172 and SH-SY5Y). Nanomaterials 10, 412. doi: 10.3390/nano10030412
- Brusick D, Aardema M, Kier L, Kirkland D, Williams, G. (2016). Genotoxicity Expert Panel review: weight of evidence evaluation of the genotoxicity of glyphosate, glyphosate-based formulations, and aminomethylphosphonic acid. Crit. Rev. Toxicol. 46(sup1), 56-74. doi: 10.1080/10408444.2016.1214680.
- 6. Di Bucchianico S, Cappellini F, Le Bihanic F, Zhang Y, Dreij K, Karlsson H L. (2017).
 Genotoxicity of TiO₂ nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry. Mutagenesis 32, 127-137. doi: 10.1093/mutage/gew030
- 7. Doak S H, Manshian B, Jenkins G J, Singh N. (2012). *In vitro* genotoxicity testing strategy
 for nanomaterials and the adaptation of current OECD guidelines. Mutat. Res. 745, 104111. doi: 10.1016/j.mrgentox.2011.09.013
- B. Donner E M. (2006). H-27416: *In vitro* mammalian chromosome aberration test in Chinese hamster ovary cells. Haskell Laboratory, No. DuPont-20171.
- 9. Du X, Gao S, Hong L, Zheng X, Zhou Q, Wu J. (2019). Genotoxicity evaluation of titanium dioxide nanoparticles using the mouse lymphoma assay and the Ames test. Mutat. Res. 838, 22-27. doi: 10.1016/j.mrgentox.2018.11.015
- 4110.ECHA 2015.Guidance on Information Requirements and Chemical Safety Assessment.42Chapter R.7a: Endpoint Specific Guidance. Version 4.1 October 2015.European Chemical43Agency.Available
- 44 <u>http://echa.europa.eu/documents/10162/13632/information_requirements_r7a_en.pdf</u>
- 45 11. EFSA (2021). Safety assessment of titanium dioxide (E171) as a food additive. EFSA
 46 Journal 19(5): 6585. doi: <u>10.2903/j.efsa.2021.6585</u>
- 47 12. Elespuru R, Pfuhler S, Aardema M J, Chen T, Doak S H, Doherty A, Farabaugh C S,
 48 Kenny J, Manjanatha M, Mahadevan B, Moore M M, Ouédraogo G, Stankowski L F Jr, Tanir
 49 J Y. (2018). Genotoxicity assessment of nanomaterials: Recommendations on best
 50 practices, assays, and methods. Toxicol. Sci. 164, 391-416. doi: <u>10.1093/toxsci/kfy100</u>
- 51 13. Glover K P. (2011). H-29865: *In vitro* mammalian chromosome aberration test in 52 Chinese hamster ovary cells. DuPont, USA.
- 53 14. Gubala V, Johnston L J, Liu Z, Krug H, Moore C J, Ober C K, Schwenk M, Vert M. (2018).
- 54 Engineered nanomaterials and human health: Part 1. Preparation, functionalization and

1 2	characterization (IUPAC Technical Report). Pure Appl. Chem. 90, 1283-1324. doi: //10.1515/pac-2017-0101
3 4 5 6	15. Gudkov S V, Baimler I V, Uvarov O V, Smirnova V V, Volkov M Y, Semenova A A, Lisitsyn A B. (2020). Influence of the concentration of Fe and Cu nanoparticles on the dynamics of the size distribution of nanoparticles. Front. Phys. 8, 622551. doi: 10.3389/fphy.2020.622551
7 8 9	16. Jensen A K, Kembouche Y, Christiansen E, Jacobsen N, Wallin H, Guiot C, Spalla O, Witschger O. (2011). Final protocol for producing suitable manufactured nanomaterial exposure media NANOGENOTOX deliverable report 3 at
10	https://www.anses.fr/en/system/files/nanogenotox_deliverable_5.pdf
11	17. Kazimirova A, El Yamani N, Rubio L, García-Rodríguez A, Barancokova M, Marcos R,
12	Dusinska M. (2020). Effects of Titanium Dioxide Nanoparticles on the Hprt Gene Mutations
13	IN V/9 Hamster Cells. Nanomaterials 10, 465. doi: <u>10.3390/nano10030465</u>
14 15	lacobson-Kram D. Deore M. Pitchaivan S. K. Unice K. Fichenbaum G. (2021) A.
16	comprehensive weight of evidence assessment of published acetaminophen genotoxicity
17	data: Implications for its carcinogenic hazard potential. Regul. Toxicol. Pharmacol. 122,
18	104892. doi: 10.1016/j.yrtph.2021.104892.
19	19. Krug H F. (2022). Collection of controlled nanosafety data - the CoCoN-Database, a tool
20	to assess nanomaterial hazard. Nanomaterials 12, 441. doi: 10.3390/nano12030441.
21	20. Landsledel R, Ma-Hock L, Van Ravenzwaay B, Schulz M, Wiench K, Champ S, Schule S, Weblieben W, Oesch F. (2010). Gene toxicity studies on titanium dioxide and zinc exide
22	nanomaterials used for UV-protection in cosmetic formulations. Nanotoxicology 4, 364-
24	381 . doi: 10.3109/17435390.2010.506694
25	21. Lortz, W et al. (2003). News from the M in CMP - viscosity of CMP slurries, a constant?
26	Mat. Res. Soc. Symp. Proc. 767 doi: 10.1557/PROC-767-F1.7
27	22. Luyts K, Napierska D, Nemery B, Hoet P H. (2013). How physico-chemical characteristics
28 29	Process Impacts 15, 23-38, doi: 10.1039/C2EM30237C
30	23. Mourdikoudis S. Pallares R M. Thanh N T K. (2018). Characterization techniques for
31	nanoparticles: comparison and complementarity upon studying nanoparticle properties.
32	Nanoscale 13, 12871-12934. doi: 10.1039/C8NR02278J
33	24. National Cancer Institute (NCI) 1979: Bioassay of titanium dioxide for possible
34 25	carcinogenicity (study report), lesting laboratory: National Cancer Institute, National Linstitute of Health, Report po: (NILH) 70, 1247
36	25. Oberdörster G. Maynard A. Donaldson K. Castranova V. Fitzpatrick J. Ausman K. Carter
37	J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H. (2005). ILSI
38	Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working
39	Group. Principles for characterizing the potential human health effects from exposure to
40	nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 6, 8. doi:
41 12	10.1180/1743-8977-2-8 26 OECD (2015a) Guidance Document on Revisions to OECD Genetic Toxicology Test
43	Guidelines. https://www.google.com/url?client=internal-element-
44	cse&cx=012432601748511391518:xzeadub0b0a&q=https://www.oecd.org/chemicalsafe
45	ty/testing/Genetic
46	%2520Toxicology%2520Guidance%2520Document%2520Aug%252031%25202015.pdf&
4/	
48 19	0KEWIGSOTLTPX3ANUTRPEDHCGOBUCQFN0ECAMQAQ&USg=AOVVAW3IW7OVAYTWLHNDVTO AbaoF
50	27. OECD (2015b). Evaluation of <i>in vitro</i> methods for human hazard assessment applied in
51	the OECD Testing Programme for the Safety of Manufactured Nanomaterials. Series on the
52	Safety of manufactured Nanomaterials No. 85.
53	https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO
54 55	(2018)4&00Clan guage=en 28 OECD (2016) Titanium dioxide: summary of the dession
56	https://www.oecd.org/officialdocuments
57	/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)25&doclanguage=en

- OECD (2021). DRAFT Guidance Notes on the Adaptation of the *in vitro* tests to evaluate
 genotoxic and morphological neoplastic transformation potential on Balb/3T3 cells by
 pristine and remediated titania and zirconia nanoparticles. Mutagenesis 31, 511-529.
- 30. Taurozzi J S, Hackley V A, Wiesner M R. (2012). Preparation of nanoparticle dispersions
 from powdered material using ultrasonic disruption. Natl. Inst. Stand. Technol. Spec. Publ.
 1200-2, version 1.1, 14 pages. <u>doi: 10.6028/NIST.SP.1200-2</u>
- Totaro S, Cotogno G, Rasmussen K, Pianella F, Roncaglia M, Olsson H, Riego Sintes J M,
 Crutzen H P. (2016). The JRC Nanomaterials Repository: A unique facility providing
 representative test materials for nanoEHS research. Regul. Toxicol. Pharmacol. 81, 334340. doi: 10.1016/j.yrtph.2016.08.008
- 32. Vales G, Rubio L, Marcos R. (2014). Long-term exposures to low doses of titanium
 dioxide nanoparticles induce cell transformation, but not genotoxic damage in BEAS-2B
 cells. Nanotoxicology 9, 568-578. doi: 10.3109/17435390.2014.957252
- 33. Warheit D B, Sayes C M, Reed K L, Swain K A. (2008). Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol. Ther. 120, 35-42. doi: 10.1016/j.pharmthera.2008.07.001.
- 34. Zijno A, Cavallo D, Di Felice G, Ponti J, Barletta B, Butteroni C, Corinti S, De Berardis B,
 Palamides J, Ursini CL, Fresegna AM, Ciervo A, Maiello R, Barone F. (2020). Use of a
 common European approach for nanomaterials' testing to support regulation: a case study
 on titanium and silicon dioxide representative nanomaterials. J. Appl. Tox. 40, 1511-1525.
 doi: 10.1002/jat.4002
- 22 23
- ii) REFERENCES used by the Applicant in the general conclusions on
 mutagenicity/genotoxicity study results of TiO₂ grades used in cosmetic
 products:
- 27
 28 1. Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment
 29 (COT), 2022. Interim position paper on titanium dioxide. January.
 30 https://cot.food.gov.uk/2021-statementsandpositionpapers (accessed in April, 2023)
- Cosmetics Europe (CE), 2022. Report on the human safety evaluation of titanium dioxide (TiO2) in cosmetics (Submission with focus on genetic toxicity). Submitted by Cosmetic Europe's Consortium on Titanium Dioxide to the European Commission (DG Grow) on 20 May 2022.
- 35 3. EFSA, 2021. Safety assessment of titanium dioxide (E171) as a food additive. EFSA Journal
 36 19:e06585.
- Food Standards Australia New Zealand (FSANZ), 2022. Titanium dioxide as a food additive.
 (accessed in Oct, 2022)
- 5. Health Canada, 2022. State of the science of titanium dioxide (TiO2) as a food additive.
 Food Directorate, Health Canada, Ottawa, Canada. Available at: https://www.canada.ca/en/healthcanada/services/food-nutrition/reports-
- 42 publications/titanium-dioxide-food-additive-sciencereport.html (accessed in Oct, 2022).
- 43 6. Kirkland D, Aardema MJ, Battersby RV, Beevers C, Burnett K, Burzlaff A, Czich A, Donner
 44 M, Fowler P, Johnston HJ. 2022. A weight of evidence review of the genotoxicity of titanium
 45 dioxide (TiO₂). Regulatory Toxicology and Pharmacology 136: 105263.
- 7. Organisation for Economic Cooperation and Development (OECD), 2015. Guidance
 document on revisions to OECD genetic toxicology test guidelines. Organisation for
 Economic Cooperation and Development,
 https://www.oecd.org/env/ehs/testing/Draft%20Guidance%20Document%20on%20OEC
 D%20Genetic%20Toxicology%20Test%20Guidelines.pdf.
- 51 8. SCCS. 2019. SCCS guidance on the safety assessment of nanomaterials in cosmetics. 52 SCCS/1611/19.
- 53 9. Titanium Dioxide Manufacturer Association (TDMA), 2022. A weight of evidence review of the genotoxicity of titanium dioxide (TiO₂) report of the Expert Panel on the Genotoxicity of TiO₂. 29-April-2022. Submitted by the TDMA to the European Commission (DG Grow) on 13 May 2022.

- 2 For complete references list used by CEFIC Expert Panel please see the publication: Kirkland 3 D, Aardema MJ, Battersby RV, Beevers C, Burnett K, Burzlaff A, Czich A, Donner M, Fowler P, 4 Johnston HJ. 2022. A weight of evidence review of the genotoxicity of titanium dioxide (TiO₂). 5 Regulatory Toxicology and Pharmacology 136: 105263. 6 7 REFERENCES used for analysis of genotoxicity by the SCCS: iii) 8 Please see ANNEX V. List of publications on TiO₂ particles genotoxicity analysed by the SCCS 9 10 REFERENCES used by the SCCS in the section on oral mucosa uptake: iv) 11 12 1. Best M., Phillips G., Fowler C., Rowland J., Elsom J. Characterisation and cytotoxic screening of metal oxide nanoparticles putative of interest to oral healthcare formulations 13 in non-keratinised human oral mucosa cells in vitro. Toxicology in Vitro 30 (2015) 402-14 15 411. doi: 10.1016/j.tiv.2015.09.022 16 2. Konstantinova V, Ibrahim M, Lie SA, Birkeland ES, Neppelberg E, Marthinussen MC, Costea 17 DE, Cimpan MR. Nano- TiO₂ penetration of oral mucosa: in vitro analysis using 3D organotypic human buccal mucosa models. J Oral Pathol Med (2017) 46: 214-222. doi: 18 19 10.1111/jop.12469 20 3. Squier CA, Kremer MJ. Biology of Oral Mucosa and Esophagus. J Natl Cancer Inst Monogr 21 2001; 29:7-15. doi: 10.1093/oxfordjournals.jncimonographs.a003443 4. Teubl BJ, Leitinger G, Schneider M, Lehr CM, Frohlich E, Zimmer A, and Roblegg E. The 22 23 buccal mucosa as a route for TiO₂ nanoparticle uptake. Nanotoxicology, 2014, 9(2), 253-261. doi: 10.3109/17435390.2014.921343 24 25 5. Teubl BJ, Schimpel C, Leitinger G, Bauer B, Fröhlich E, Zimmer A, & Roblegg E. Interactions 26 between nano- TiO₂ and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity. Journal of Hazardous Materials, 2015, 286, 298-305. 27 28 doi: 10.1016/j.jhazmat.2014.12.064 6. Vignard J, Pettes-Duler A, Gaultier E, Cartier C, Weingarten L, Biesemeier A, Taubitz T, 29 30 Pinton P, Bebeacua C, Devoille L, Dupuy J, Boutet-Robinet E, Feltin N, Oswald IP, Pierre 31 FH, Lamas B, Mirey G & Houdeau E. Food-grade titanium dioxide translocates across the 32 buccal mucosa in pigs and induces genotoxicity in an in vitro model of human oral epithelium. Nanotoxicology 2023. doi: 10.1080/17435390.2023.2210664 33 34 35 7. GLOSSARY OF TERMS 36 37 See SCCS/1647/22, 12th Revision of the SCCS Notes of Guidance for the Testing of Cosmetic 38 39 Ingredients and their Safety Evaluation - Appendix 15 - from page 158 40 8. LIST OF ABBREVIATIONS 41
- 42

- 43 See SCCS/1647/22, 12th Revision of the SCCS Notes of Guidance for the Testing of Cosmetic
- 44 Ingredients and their Safety Evaluation Appendix 15 from page 158
- 45

SCCS/1661/23 Preliminary document

Annex A: Formula composition of the pigmentary and nano titanium dioxide grades

1 2 3

4

5

6

Table 3.1.4.A3: Pigmentary Grades – Formula Composition as a function of the categories noted a, b, c, d (from Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf - Table 1.2 Physico-chemical data for Pigmentary Titanium Dioxide used in Cosmetics and (*) completed from Ref.: CE-TiO₂-23-003.0 - Att 2_March 2023 update to Physchem data tables CE Jan 2023 submission to SCCS – Pigment – final.xls)

7 8

Product		Formula/	Produc		Formula/	Product		Formula/ Composition
Code		Composition	t Code		Composition	Code		
RM01	а	Titanium Dioxide	RM37	b2	Titanium dioxide 95.7%, Alumina 0.2%, Aluminium Hydroxide 3.7%, Zinc Oxide 0.4%	RM05	c2	Titanium Dioxide 97.5%, Al2O3 1.3 %, Glycerin 0.6 %
RM02	а	Titanium Dioxide	RM27	с1	Titanium dioxide 98.0%, Methicone: 2.0%	RM06	c2	Titanium Dioxide 98.2%, Al2O3 1.3%
RM03	а	Titanium Dioxide	RM29	c1	Titanium dioxide 98.5%, Hydrogen Dimethicone 1.5%	RM07	c2	Titanium Dioxide 97.5%, Al2O3 1.1% Triethoxycaprylylsilane 0.8%
RM04	а	Titanium Dioxide	RM70a	c1	Titanium Dioxide >95%, Triethoxycaprylylsilane <5%	RM08	c2	Titanium Dioxide 97.9%, Al2O3 1.3%, Glycerin 0.6%
RM26	а	Titanium Dioxide 100%	RM70b	с1	Titanium Dioxide >95%, Triethoxycaprylylsilane <5%	RM19	c2	Titanium Dioxide*, Alumina 1.2%*, Glycerin 0.3%*
RM28	а	Titanium Dioxide 100%	RM70d	c1	Titanium Dioxide >95%, Cera Alba 0-5% Rosa Centifolia Flower Wax 0-5% Rosa Damascena Flower Cera 0-5%	RM32	c2	Titanium dioxide 88.6%, Alumina 0.3%, Aluminium Hydroxide 2.0%, Algin 9.1%
RM67	а	Titanium Dioxide	RM70e	с1	Titanium Dioxide >95%, Sodium Glycerophosphate <5%	RM33	c2	Titanium dioxide 93.7%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Isostearic Acid 3.8%
RM67b	а	Titanium Dioxide	RM70f	c1	Titanium Dioxide >95%, Hydrogenated Lecithin <5%	RM34	c2	Titanium dioxide 92.7%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Lauroyl Lysine 4.8%
RM68	а	Titanium Dioxide	RM72a	c1	Titanium Dioxide >95%, Triethoxycaprylylsilane <5%	RM35	c2	Titanium dioxide 95.5%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Hydrogen Dimethicone 2.0%
RM69	а	Titanium Dioxide	RM72b	c1	Titanium Dioxide >95%, Triethoxycaprylylsilane <5%	RM36	c2	Titanium dioxide 93.7%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Dimethicone 3.8%
RM69b	а	Titanium Dioxide	RM72d	с1	Titanium Dioxide >85% Persea Gratissima (Avocado) Oil 0-5% Hydrogenated Vegetable Oil 0-5%, Tocopherol 0-5%	RM72i	c2	Titanium Dioxide >94%, Aluminium Hydroxide 0-5%
RM70c	а	Titanium Dioxide >95%, Silica 0-5% ⁽⁶⁾	RM72e	с1	Titanium Dioxide >95%, PEG-2-Soyamine 0-5%, Bis-PEG-15 Dimethicone / IPDI Copolymer 0-5% Isopropyl Titanium Tritisostearate 0-5%	RM72j- bis	c2	Titanium Dioxide >87%, Aluminium Hydroxide <5% Trimethoxycaprylylsilane <6%
RM72c	а	Titanium Dioxide >95%, Silica 0-5% ⁽⁶⁾	RM72f	с1	Titanium Dioxide >95%, Phytic Acid 0-5% Sodium Hydroxide 0- 5%	RM38	c3	Titanium dioxide 94.7%, Alumina 0.2%, Aluminium Hydroxide 3.7%, Zinc Oxide 0.4%, Isostearic Acid 1.0%
RM30	b1	Titanium dioxide 97.4%, Alumina 0.3%, Aluminium Hydroxide 2.3%	RM72g	с1	Titanium Dioxide >85%, Sodium Cocoyl Glutamate 0-5% Cystine 0-5%, Lauric Acid 0-5%, Arginine 0-5%	RM39	c3	Titanium dioxide 94.7%, Alumina 0.2%, Aluminium Hydroxide 3.7%, Zinc Oxide 0.4%, Dimethicone 1.0%
RM31	b2	Titanium dioxide 92.5%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Hydrated Silica 5.0%	RM72k	с1	Titanium Dioxide >85% Cocos Nucifera (Coconut) Oil: Max 11% Aloe Barbadensis Leaf Extract: Max 1%			

(6): Silica is present as a processing aid not as a coating

9

Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf Table 1.2 Physico-chemical data for Pigmentary Titanium Dioxide used in Cosmetics

CE-TiO2-23-003.0 - Att 2_March 2023 update to Physchem data tables CE Jan 2023 submission to SCCS – Pigment –final.xls

3 Footnote (6) only applies to the grades that are denoted with a superscript 6 – specifically 4 RM70c and RM72c.

5 From Ref.: CE-TiO2-23-003.0 - CE Response to clarifications requested by SCCS 10 03 23 – 6 final.pdf

7 8

9 Table 3.1.4.A4: Pigmentary Grades - Formula Composition (from Ref.: January
10 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf - Table 1.2 Physico-chemical data
11 for Pigmentary Titanium Dioxide used in Cosmetics)

Product Code	Ca te go ry	Formula/ Composition	TiO ₂ (%)	Loss on dryin g (%) (1)	Loss on igniti on (%) (2)	Al ₂ O ₃ and/or SiO ₂ (%) (3)	Al ₂ O ₃ (%)	SiO ₂ (%)
RIVIOT	a	Titanium Dioxide	99.4	0.09	0.06	no	< 0.01	< 0.01
RIVIO2	a	Titanium Dioxide	>00	0.12	0.05		<0.01	< 0.01
RIVIU3	a	Intanium Dioxide	299	≥0.5	_> 1 0	≤0.5	0.05	≤0.05
RM04	а	Titanium Dioxide	≥ 99	≤0.5	≤ 1.0	≤0.5	0.12	0.12
RM26	а	Titanium Dioxide 100%	99.2	0.26	0.11	0	0	0
RM28	а	Titanium Dioxide 100%	99.3	0.11	0.07	0	0	0
RM67	а	Titanium Dioxide	>99	≤0.5	≤0.5	0	0	0
RM67b	а	Titanium Dioxide	>99	≤0.5	≤0.5	0	0	0
RM68	а	Titanium Dioxide	>99	≤0.5	≤0.5	0	0	0
RM69	а	Titanium Dioxide	>99	≤0.5	≤0.5	0	0	0
RM69b	а	Titanium Dioxide	>99	≤0.5	≤0.5	0	0	0
RM70c	а	Titanium Dioxide >95%, Silica 0-5%6	>95	≤0.5	≤0.5	<5	0	< 0.3
RM72c	а	Silica 0-5%6	>95	≤0.5	≤0.5	<2.3	<2	< 0.3
RM30	b1	l Itanium dioxide 97.4%, Alumina 0.3%, Aluminium Hydroxide 2.3%	99.2	0.1	0.2	1.8	1.8	0
RM31	b2	Titanium dioxide 92.5%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Hydrated Silica 5.0%	99.2	0.1	0.2	6.8	1.8	5
RM37	b2	Titanium dioxide 95.7%, Alumina 0.2%, Aluminium Hydroxide 3.7%, Zinc Oxide 0.4%	99.2	0.01	0.2	2.7	2.7	0
RM27	с1	Titanium dioxide 98.0%, Methicone: 2.0%	99.2	0.26	0.11	0	0	0
RM29	с1	Titanium dioxide 98.5%, Hydrogen Dimethicone 1.5%	99.3	0.11	0.07	0	0	0
RM70a	с1	Titanium Dioxide >95%, Triethoxycaprylylsilane <5%	>95	≤0.5	≤0.5	<2	<2	<2
RM70b	c1	Titanium Dioxide >95%, Triethoxycaprylylsilane <5%	>95	≤0.5	≤0.5	<2	<2	<2
RM70d	c1	Titanium Dioxide >95%, Cera Alba 0-5% Rosa Centifolia Flower Wax 0-5% Rosa Damascena Flower Cera 0-5%	>95	≤0.5	≤0.5	<2	<2	< 2
RM70e	с1	Titanium Dioxide >95%, Sodium Glycerophosphate <5%	>95	≤0.5	≤0.5	<2	<2	<2
RM70f	с1	Titanium Dioxide >95%, Hydrogenated Lecithin <5%	>95	≤0.5	≤0.5	<2	<2	<2
RM72a	c1	Titanium Dioxide >95%, Triethoxycaprylylsilane <5%	>94	≤0.5	≤0.5	<2.3	<2	< 0.3
RM72b	с1	Titanium Dioxide >95%, Triethoxycaprylylsilane <5%	>95	≤0.5	≤0.5	<2.3	<2	< 0.3

Scientific Advice on Titanium dioxide (TiO₂) (CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280- 1, 1317-80-2/215-282-2)

RM72d	с1	Titanium Dioxide >85% Persea Gratissima (Avocado) Oil 0-5% Hydrogenated Vegetable Oil 0-5%, Tocopherol 0-5%	>85	≤0.5	≤0.5	<2.3	<2	< 0.3
RM72e	c1	Titanium Dioxide >95%, PEG-2-Soyamine 0-5%, Bis-PEG-15 Dimethicone / IPDI Copolymer 0-5% Isopropyl Titanium Triisostearate 0-5%	>95	≤0.5	≤0.5	<2.3	<2	< 0.3
RM72f	с1	Titanium Dioxide >95%, Phytic Acid 0-5% Sodium Hydroxide 0- 5%	>95	≤0.5	≤0.5	<2.3	<2	<0.3
RM72g	c1	Titanium Dioxide >85%, Sodium Cocoyl Glutamate 0-5% Cystine 0-5%, Lauric Acid 0-5%, Arginine 0-5%	>85	≤0.5	≤0.5	<2.3	<2	<0.3
RM72k	с1	Titanium Dioxide >85% Cocos Nucifera (Coconut) Oil: Max 11% Aloe Barbadensis Leaf Extract: Max 1%	>85	≤0.5	≤0.5	<2	<2	<2
RM05	c2	Titanium Dioxide 97.5%, Al2O3 1.3 %, Glycerin 0.6 %	≥ 99	≤0.5	≤1,0	≤2.0	1.3	0.3
RM06	c2	Titanium Dioxide 98.2%, Al2O3 1.3%	≥ 99	≤0.5	≤1,0	≤2,0	1.2	0.4
RM07	c2	Titanium Dioxide 97.5%, Al2O3 1.1% Triethoxycaprylylsilane 0.8%	≥ 99	≤0.5	≤1,0	≤2.0	1.2	0.3
RM08	c2	Titanium Dioxide 97.9%, Al203 1.3%, Givcerin 0.6%	≥ 99	≤0.5	≤1,0	≤2.0	1.4	0.38
RM19	c2	Titanium Dioxide, Alumina, Glycerin	>96	<0.5	<1.0	~1.3	~1.3	0
RM32	c2	Titanium dioxide 88.6%, Alumina 0.3%, Aluminium Hydroxide 2.0%, Aloin 9.1%	99.2	0.1	0.2	1.6	1.6	0
RM33	c2	Titanium dioxide 93.7%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Isostearic Acid 3.8%	99.2	0.1	0.2	1.8	1.8	0
RM34	c2	Titanium dioxide 92.7%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Lauroyl Lysine 4.8%	99.2	0.1	0.2	1.8	1.8	0
RM35	c2	Titanium dioxide 95.5%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Hydrogen Dimethicone 2.0%	99.2	0.1	0.2	1.8	1.8	0
RM36	c2	Titanium dioxide 93.7%, Alumina 0.3%, Aluminium Hydroxide 2.2%, Dimethicone 3.8%	99.2	0.1	0.2	1.8	1.8	0
RM72i	c2	Titanium Dioxide >94%, Aluminium Hydroxide 0- 5%	>94	≤0.5	≤0.5	<6	< 5	<0.3
RM72j- bis	c2	Titanium Dioxide >87%, Aluminium Hydroxide <5% Trimethoxycaprylylsilan	>87	≤0.5	≤0.5	<6	< 5	<0.3
RM38	c3	 E < 67% Titanium dioxide 94.7%, Alumina 0.2%, Aluminium Hydroxide 3.7%, Zinc Oxide 0.4%, Lensteels Activit 2.00 	99.2	0.01	0.2	2.7	2.7	0
RM39	c3	Titanium dioxide 94.7%,	99.2	0.01	0.2	2.7	2.7	0

Alumina 0.2%, Aluminium Hydroxide 3.7%,			
Zinc Oxide 0.4%, Dimethicone 1.0%			

1 2 3

Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf Table 1.2 Physico-chemical data for Pigmentary Titanium Dioxide used in Cosmetics

4 (1) Loss on drying (%): Take 1 to 2 g of the sample, previously well mixed and accurately 5 weighed. Tare a glass stoppered, shallow weighing bottle that has been dried at 105°C for 30 6 min. Transfer the sample into the bottle, replace the cover, and weigh the bottle and the 7 sample. Distribute the sample as evenly as practicable to a depth of about 5 mm, and not 8 over 10 mm in the case of bulky materials. Place the bottle with its contents in the drying 9 chamber, removing the stopper and leaving it also in the chamber, and dry the sample at 10 105°C for 3 hours. Upon opening the chamber, close the bottle promptly and allow it to come to room temperature in a desiccator before weighing. 11

(2) Loss on ignition (%): Proceed as directed for Loss on Drying above. However, unless
 otherwise directed, ignite the sample at a temperature of 800°C and use a platinum, quartz
 or porcelain dish instead of the weighing bottle.

16

12

17 (3) Aluminium oxide and/or Silicon Dioxide (%) (JECFA method): Weigh about 0.5 g 18 of the sample to the nearest 0.1 mg, in a platinum or nickel crucible, add 5 g potassium 19 hydroxide and 2 g boric acid, mix and melt completely using a torch burner and allow to stand 20 at room temperature. Place the reaction product along with crucible into 150 ml hot deionized 21 water in a 250-ml PTFE beaker and dissolve residue by agitation. Wash the crucible with hot 22 deionized water and remove it. Add 50 ml hydrochloric acid and transfer the contents into a 23 250-ml polypropylene volumetric flask. Wash the beaker three times with hot deionized water, 24 transfer the washings to the volumetric flask and make up to volume (Solution A). Prepare 25 the test solution by 5 times dilution of Solution A with 2% hydrochloric acid. Analyse aluminium and silica in the test solution by ICP-AES technique. Set instrument parameters as 26 27 specified by the instrument manufacturer. Use analytical lines for AI (396.152 nm) and Si 28 (251.611 nm) and construct standard curve using standard solutions 0.2 – 5.0 μ g/ml each. 29 Read the concentration of AI and Si in sample solution (as $\mu q/ml$) and calculate the aluminium 30 oxide and silicon dioxide content of the sample using the formula:

31 $%AI_2O_3 = (1.889 \times C \times 250 \times 5 \times 100) / (W \times 10^6)$

 $32 \qquad \% SiO_2 = (2.139 \times C \times 250 \times 5 \times 100) / (W \times 10^6)$

- Where: C is concentration of AI or Si in the test solution (µg/ml),
 W is weight of sample, g
- 36 TiO₂ (%) (JECFA assay method): Prepare the test solution by 1000 times dilution of 37 Solution A (prepared in the test for Aluminium oxide and Silicon dioxide - see above) with 38 2% hydrochloric acid, taking care that dilution factor in each dilution step shall not be more 39 than 20. Analyse Titanium in the test solution by ICP-AES technique. Set instrument 40 parameters as specified by the instrument manufacturer. Use the analytical line for Ti 41 (334.941 nm) and construct standard curve using Ti standard solutions: 0.5 - 1.5 µg/ml. 42 Read the concentration in the sample solution (as μ g/ml) and calculate the titanium dioxide 43 content of the sample using the formula:
- 44 % TiO₂ (on the dried basis) = $(1.668 \times C \times 250 \times 1000 \times 100)$ / (W x 10⁶ x (100-%LOD-
- 45 %Al2O3-%SiO2)/100)
- 46 Where: C is concentration of Ti in the test solution, μ g/ml
- 47 W is weight of sample, g
- 48 %LOD is % loss on drying
- 49 %AI2O3 and %SiO2 are content (%) of Aluminium oxide and silicon dioxide
- Alternatively for UV filters a method according to DIN EN ISO 591-1 may be used, and for pigments the XRFA referred to DIN EN ISO 591-1 may be used
- 52

35

53 From Ref.: CE-TiO2-23-003.0 - Att 1_Generic Description of Analytical Methods – final.pdf

Table 3.1.4.A5: Pigmentary grades / Coatings / Surface Moieties (*Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf – Table from Page 6/28 – Columns "N2.4) Coatings / Surface moieties" and "N2.5) Doping material)"*

	5-,				
Produc t Code	Coatings / Surface moieties ¹	Produ ct	Coatings / Surface moieties ¹	Product Code	Coatings / Surface moieties ¹
RM01	None	RM32	Alumina:0.3%, Aluminium Hydroxide: 2%, Algin*: 9.1%	RM70c	None
RM02	None	RM33	Alumina: 0.3%, Aluminium Hydroxide: 2.2%, Isostearic Acid: 3.8%	RM70d	Rosa Centifolia Flower Wax, Rosa Damascena Flower Cera, Cera Alba
RM03	None	RM34	Alumina: 0.3%, Aluminium Hydroxide: 2.2%, Lauroyl Lysine: 4.8%	RM70e	Sodium Glycerophosphate
RM04	None	RM35	Alumina:0.3%, Aluminium Hydroxide: 2.2% Hydrogen Dimethicone: 2%	RM70f	Hydrogenated Lecithin
RM05	Alumina	RM36	Alumina:0.3%, Aluminium Hydroxide: 2.2% Dimethicone: 3.8%	RM72a	Triethoxycaprylylsilane
RM06	Alumina	RM37	Alumina:0.2%, Aluminium Hydroxide: 3.7%, Zinc Oxide: 0.4%	RM72b	Triethoxycaprylylsilane
RM07	Alumina	RM38	Alumina: 0.2%, Aluminium Hydroxide: 3.7%, Zinc Oxide: 0.4% Isostearic Acid: 1%	RM72c	None
RM08	Alumina	RM39	Alumina: 0.2%, Aluminium Hydroxide: 3.7%, Zinc Oxide: 0.4% Dimethicone: 1%	RM72d	Persea Gratissima (Avocado) Oil, Hydrogenated Vegetable Oil, Tocopherol
RM19	Glycerin (~0.3%)	RM67	None	RM72e	Bis-PEG-15 Dimethicone/ IPDI Copolymer, PEG-2-Soyamine, Isopropyl Titanium Triisostearate
RM26	None	RM67 b	None	RM72f	Phytic Acid & Sodium Hydroxide
RM27	Methicone: 2%	RM68	None	RM72g	Sodium Cocoyl Glutamate, Cystine, Lauric Acid, Arginine
RM28	None	RM69	None	RM72i	Aluminium Hydroxide
RM29	Hydrogen Dimethicone: 1.5%	RM69 b	None	RM72j- bis	Aluminium Hydroxide, Trimethoxycaprylylsilane
RM30	Alumina:0.3%, Aluminium Hydroxide: 2.3%	RM70 a	Triethoxycaprylylsilane	RM72k	Cocos Nucifera (Coconut) Oil, Aloe Barbadensis Leaf Extract
RM31	Alumina:0.3%, Aluminium Hydroxide: 2.2%, Hydrated Silica: 5%	RM70 b	Triethoxycaprylylsilane	/	/

Algin* = sodium alginate

Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf Table from Page 6/28 – Columns "N2.4) Coatings / Surface moieties" and "N2.5) Doping material And (*) From Ref.: CE-TiO2-23-003.0 - CE Response to clarifications requested by SCCS 10 03 23 – final.pdf

Table 3.1.4.A6: Sequence of the multi-layers for the pigmentary titanium dioxide grades (From Multi-layer coating sequence - Pigment.xls - 30 June 2023)

	Innermost Layer		>	Outermost Layer
Product Code	A	В	С	D
RM01	No surface treatment			
RM02	No surface treatment			
RM03	No surface treatment			
RM04	No surface treatment			
RM05	Al ₂ O ₃ 1.3%	Glycerin 0.6%		
RM06	Al ₂ O ₃ 1.3%			
RM07	Al ₂ O ₃ 1.1%	Triethoxycaprylylsilane 0.8%		
RM08	Al ₂ O ₃ 1.3%	Glycerin 0.6%		
RM19	Al ₂ O ₃ 1.2%	Glycerin 0.3%		
RM26	No surface treatment			
RM27	Methicone 2%			
RM28	No surface treatment			
RM29	Hydrogen Dimethicone 1.5%			
RM30	Alumina 0.3%	Aluminium hydroxide 2.3%		
RM31	Alumina 0.3%	Aluminium hydroxide 2.2%	Hydrated silica 5.0%	
RM32	Alumina 0.3%	Aluminium hydroxide 2.0%	Algin 9.1%	
RM33	Alumina 0.3%	Aluminium hydroxide 2.2%	Isostearic Acid 3.8%	
RM34	Alumina 0.3%	Aluminium hydroxide 2.2%	Lauroyl Lysine 4.8%	
RM35	Alumina 0.3%	Aluminium hydroxide 2.2%	Hydrogen Dimethicone 2.0%	
RM36	Alumina 0.3%	Aluminium hydroxide 2.2%	Dimethicone 3.8%	
RM37	Zinc oxide 0.4%	Alumina 0.2%	Aluminium hydroxide 3.7%	

SCCS/1661/23 Preliminary document

Scientific Advice on Titanium dioxide (TiO₂) (CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280- 1, 1317-80-2/215-282-2)

RM38	Zinc oxide 0.4%	Alumina 0.2% 3.7%	Aluminium hydroxide	Isostearic Acid 1.0%
RM39	Zinc oxide 0.4%	Alumina 0.2%	Aluminium hydroxide 3.7%	Dimethicone 1.0%
RM67	No surface treatment			
RM67b	No surface treatment			
RM68	No surface treatment			
RM69	No surface treatment			
RM69b	No surface treatment			
RM70a	Triethoxycaprylylsilane 5%			
RM70b	Triethoxycaprylylsilane 5%			
RM70c	No surface treatment (silica is separate processing aid)			
RM70d	Cera Alba 0 – 5%	Rosa Centifolia Flower Wax 0 - 5%	Rosa Damascena Flower Cera 0 – 5%	
RM70e	Sodium Glycerophosphate < 5%			
RM70f	Hydrogenated Lecithin			
RM72a	Triethoxycaprylylsilane < 5%			
RM72b	Triethoxycaprylylsilane < 5%			
RM72c	No surface treatment (silica is separate processing aid)			
RM72d	Persea Gratissima (Avocado) Oil 0 - 5%	Hydrogenated Vegetable Oil 0 - 5%	Tocopherol 0 – 5%	
RM72e	PEG-2-Soyamine 0 – 5%	Bis-PEG-15 Dimethicone/IPDI Copolymer 0 – 5%	Isopropyl Titanium Triisostearate 0 – 5%	
RM72f	Phytic Acid 0 – 5%			
RM72g	Sodium Cocoyl Glutamate 0 – 5%	Cystine 0 – 5%	Lauric Acid 0 – 5%	Arginine 0 – 5%
RM72i	Aluminium Hydroxide 0 - 5%			
RM72j- bis	Aluminium Hydroxide < 5%	Trimethoxycaprylylsilane < 6%		
RM72k	Cocos Nucifera (Coconut) Oil 11% max	Aloe Barbadensis Leaf Extract 1% max		

1 2 Ref. ; Multi-layer coating sequence - Pigment.xls - 30 June 2023

1 Table 3.1.4.B1: Nano grades - Formula/ Composition (from Ref.: January 2023_PhysChem

2 data on Cosmetics TiO₂ grades_final.pdf - Table 1.3 Physico-chemical data for Nano Titanium

3 Dioxide used in Cosmetics, completed from Ref.: CE-TiO2-23-003.0 - Att 3_ March 2023

4 update to Physchem data tables CE Jan 2023 submission to SCCS – Nano – final.xls)

Product	Formula /	Product Codo	Formula /	Product	Formula /
Code	Composition	Product code	Composition	Code	Composition
RM09 Hydrophilic	Titanium Dioxide*, Silica 10%*	RM52 Hydrophobic	Titanium dioxide 82.4%, Aluminium Hydroxide 10.0%, Hydrated Silica 2.9%, Hydrogen Dimethicone 4.7%	RM74a Hydrophobic	Titanium Dioxide ≥75%, Hydrogen Dimethicone <10%, Alumina <20%
RM10 Hydrophobic	Titanium Dioxide*, Silica 10%*, Hydrogen Dimethicone 11%*	RM53 Hydrophobic	Titanium dioxide 85.0%%, Stearic Acid 15.0%	RM74b Hydrophobic	Titanium Dioxide ≥ 70%, Alumina Max 15, Stearic Acid Max 15%
RM11 Hydrophobic	Titanium Dioxide*, Alumina 6%*, Dimethicone 3%*	RM55 Hydrophilic	Titanium dioxide 91.5%, Aluminium Hydroxide 3.0%, Hydrated Silica 5.5%	RM74c Hydrophobic	Titanium Dioxide Min 94%, Triethoxycaprylylsilane Max 6%
RM40 Hydrophobic	Titanium dioxide 66.7%, Aluminium Hydroxide 13.3%, Stearic Acid 20%	RM56 Hydrophobic	Titanium dioxide 89.0%, Aluminium Hydroxide 7.0%, Stearic Acid 4.0%	RM74d Hydrophilic	Titanium Dioxide, Silica <20%
RM41 Hydrophilic	Titanium dioxide 82%, Aluminium Hydroxide 13.5%, Hydrated Silica 4.5%	RM57 Hydrophobic	Titanium dioxide 89.8%, Aluminium Hydroxide 2.9%, Hydrated Silica 5.4%, Hydrogen Dimethicone 1.9%	RM74e Hydrophobic	Titanium Dioxide Min 80%, Silica Max 15%, Dimethicone Max 6%
RM42 Hydrophobic	Titanium dioxide 73.0%, Aluminium Hydroxide: 16.0%, Stearic Acid: 11%	RM58 Hydrophobic	Titanium dioxide 88.8%, Aluminium Hydroxide 3.0%, Hydrated Silica 5.3%, Dimethicone 2.9%	RM75 Amphiphilic	Titanium dioxide*, Alumina 11%*, Simethicone 2%*
RM43 Hydrophobic	Titanium dioxide 77.4%, Aluminium Hydroxide 12.7%, Hydrated Silica 4.2%, Hydrogen Dimethicone 5.7%	RM59 Hydrophilic	Titanium dioxide 87.0%, Aluminium Hydroxide 11.0%, Hydrated Silica 2%	RM76 Hydrophobic	Titanium dioxide*, Alumina 9%*, Stearic acid 11%*
RM44 Hydrophobic	Titanium dioxide 65.6%, Aluminium Hydroxide 10.8%, Hydrated Silica 3.6%, Dimethicone 15.4%, Hydrogen Dimethicone 4.6%	RM60 Hydrophobic	Titanium dioxide 91.2%, Aluminium Hydroxide 4.1%, Stearic Acid 4.7%	RM77 Aqueous Dispersion	Titanium dioxide*, Alumina 3%*, Sodium hexametaphosphate 2%*, 2-Phenoxyethanol 0.7%*, Sodium methylparaben 0.18%*
RM45 Hydrophilic	Titanium dioxide 76.0%, Aluminium Hydroxide 17.0%, Hydrated Silica 7%	RM61 Hydrophobic	Titanium dioxide 98.0%, Hydrogen Dimethicone 2.0%	RM78	Titanium dioxide*, Silica 18%*
RM46 Hydrophilic	Titanium dioxide 86.5%, Aluminium Hydroxide 10.5%, Hydrated Silica 3%	RM62 Hydrophobic	Titanium dioxide 91.2%, Aluminium Hydroxide 4.1%, Stearic Acid 4.7%	RM79	Titanium dioxide*, Silica 17%*, Hexadecyl dihydrogen phosphate 6%*
RM47 Hydrophilic	Titanium dioxide 70.0%, Hydrated Silica 30.0%	RM63 Hydrophobic	Titanium dioxide (76.5%), Alumina (10%), Stearic acid (13.5%)	RM80	Titanium dioxide*, Alumina 11%*, Manganese dioxide 1%*
RM48 Hydrophobic	Titanium dioxide 83.0%, Aluminium Hydroxide 9.0%, Stearic Acid 8.0%	RM64 Hydrophobic	Titanium dioxide (88.5%), Alumina (5%), Stearic acid (6.5%)	RM81	Titanium dioxide*, Silica 6%*, Alumina 6%*
RM49 Hydrophobic	Titanium dioxide 74.0%, Aluminium Hydroxide: 13.0%, Stearic Acid: 13%	RM65 Hydrophobic	Titanium dioxide (91.9%), Alumina (3.5%), Stearic acid (4.6%)	RM82	Titanium Dioxide 82-87%, Silica 10.5-14.5%, Dimethicone 2.0-4.5%
RM51 Hydrophobic	Titanium dioxide 83.6%, Aluminium Hydroxide 10.1%, Hydrated Silica 2.9%, Hydrogen Dimethicone 3.4%				

13 14 Ref.: i) January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf Table 1.3 Physico-chemical data for Nano Titanium Dioxide used in Cosmetics *ii) CE-TiO2-23-003.0 - Att 3_ March 2023 update to Physchem data tables CE Jan 2023 submission to SCCS - Nano - final.xls*)

- 1
- Table 3.1.4.B2: Nano grades Formula/ Composition (from Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf Table 1.3 Physico-chemical data for Nano Titanium 2 3 Dioxide used in Cosmetics)

Produ	Grouping	Formula /	TiO2	Loss	Produ	Grouping	Formula /	TiO	Loss
Code		Composition	(%)	on ignitio	Code		Composition	2	on ianit
				n (%))	ion
DMOO		Titanium diavida	> 00	<12	DNKO		Titanium diavida	00.7	(%)
RIVI09	Hyarophilic	Silica	≥ 99	≤13	RIVI60	Hyarophobi c	91.2%,	99.7	0.25
							Aluminium Hydroxide 4.1%,		
RM10	Hydrophobi	Titanium Dioxide.	>99	<13	RM61	Hydrophobi	Stearic Acid 4.7% Titanium dioxide	99.7	0.25
TRIVITO .	C	Silica, Hydrogen Dimethicone				C	98.0%, Hydrogen Dimethicone 2.0%	//./	0.20
RM11	Hydrophobi	Titanium Dioxide,	≥99	≤13	RM62	Hydrophobi	Titanium dioxide	99.7	0.25
	С	Dimethicone				С	Aluminium Hydroxide		
							4.1%, Stearic Acid 4.7%		
RM40	Hydrophobi c	Titanium dioxide 66.7%, Aluminium Hydroxide	99.1	4.25	RM63	Hydrophobi c	Titanium dioxide (76.5%),	≥99	<13
	Ū	13.3%, Stearic Acid 20%				Ũ	Alumina (10%), Stearic acid (13.5%)		
RM41	Hydrophilic	Titanium dioxide 82%, Aluminium Hydroxide	99.1	4.25	RM64	Hydrophobi	Titanium dioxide	≥99	<13
		13.5%, Hydrated Silica 4.5%					Alumina (5%), Stearic acid (6.5%)		
RM42	Hydrophobi c	Aluminium Hydroxide:	99.1	4.25	RM65	Hydrophobi c	(91.9%),	≥99	<13
		16.0%, Stearic Acid: 11%					Alumina (3.5%), Stearic acid (4.6%)		
RM43	Hydrophobi	Titanium dioxide 77.4%, Aluminium Hydroxide	99.1	4.25	RM74	Hydrophobi	Titanium Dioxide ≥75%,	≥99	≤2.5
	C	12.7%, Hydrated Silica 4.2%			a	C	Hydrogen Dimethicone		
		Hydrogen Dimethicone					Alumina <20%		
RM44	Hydrophobi	Titanium dioxide 65.6%,	99.1	4.25	RM74	Hydrophobi	Titanium Dioxide ≥	≥99	≤2.5
	С	Aluminium Hydroxide 10.8%,			b	С	Stearic Acid Max 15%		
		Hydrated Silica 3.6%, Dimethicone 15.4%,							
		Hydrogen Dimethicone 4.6%							
RM45	Hydrophilic	Titanium dioxide 76.0%, Aluminium Hydroxide	99.5	4.14	RM74	Hydrophobi	Titanium Dioxide Min 94%	≥99	≤2.5
		17.0%, Hydratod Silica 7%			C	L	Triethoxycaprylylsilane		
RM46	Hydrophilic	Titanium dioxide 86.5%,	99.5	4.14	RM74	Hydrophilic	Titanium Dioxide,	≥99	<2.5
		10.5%,			d		Silica		
RM47	Hydrophilic	Titanium dioxide 70.0%,	99.5	4.14	RM74	Hydrophobi	Titanium Dioxide Min	≥99	≤2.5
	•	Hydrated Silica 30.0%			е	C	80%, Silica Max 15%,		
RM48	Hydrophobi	Titanium dioxide 83.0%,	99.5	4.14	RM75	Amphiphilic	Titanium dioxide,	99.7	≤13
	С	Aluminium Hydroxide 9.0%,					Alumina, Simethicone		
RM49	Hydrophobi	Stearic Acid 8.0% Titanium dioxide 74.0%,	99.5	4.14	RM76	Hydrophobi	Titanium dioxide,	99.7	≤13
	C	Aluminium Hydroxide: 13.0%,				C	Alumina, Stearic acid		
RM51	Hydrophobi	Titanium dioxide 83.6%,	99.5	4.14	RM77	Aqueous	Titanium dioxide,	99.7	≤13
	С	Aluminium Hydroxide 10.1%,				Dispersion	Alumina, Sodium		
		Hydrated Silica 2.9%, Hydrogen Dimethicone					hexametaphosphate, 2-Phenoxyethanol,		
		3.4%					Sodium		
RM52	Hydrophobi	Titanium dioxide 82.4%,	99.5	4.14	RM78	Hydrophilic	Titanium dioxide,	99.8	≤13
	С	10.0%,					SIICA		
		Hydrated Silica 2.9%, Hydrogen Dimethicone							
RM53	Hydrophobi	4.7% Titanium dioxide	99.4	2.68	RM79	Hydrophobi	Titanium dioxide,	99.8	≤13
	C	85.0%%, Stearic Acid 15.0%				C	Silica, Hexadecyl dihydrogen	-	-
DMEE	Hydrophillo	Titanium dioxido 91.5%	00.0	A 71	DMOO	Uudroophille	phosphate Titanium dioxido	00.0	<10
KIVI55	пушорпше	Aluminium Hydroxide	99.9	4./1	KIVISU	Hydrophilic	Alumina,	99.8	≥13
		3.0%, Hydrated Silica 5.5%					wangahese dioxide		

Scientific Advice on Titanium dioxide (TiO₂) (CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280- 1, 1317-80-2/215-282-2)

DM56	Hydrophobi	Titanium dioxide 89.0%	00.0	1 71	DM81	Amphiphilic	Titanium dioxide	00 F	0.1
RIVIJO	riyuropriobr	Aluminium Hydroxide	77.7	4.71	KIVIO I	Amprine	Silica.	77.5	0.1
	L	7.0%,					Alumina		
									i
		Stearic Acid 4.0%							
RM57	Hydrophobi	Titanium dioxide 89.8%,	99.9	4.71	RM82	Hydrophobi	Titanium Dioxide 82-	≥99	≤13
	c .	Aluminium Hydroxide				c .	87%,		
		2.9%,					Silica 10.5-14.5%,		
		Hydrated Silica 5.4%,					Dimethicone 2.0-4.5%		
		Hydrogen Dimethicone							
		1.9%							
RM58	Hydrophobi	Titanium dioxide 88.8%,	99.9	4.71					
	С	Aluminium Hydroxide							
		3.0%,							
		Hydrated Silica 5.3%,							
		Dimethicone 2.9%							
RM59	Hydrophilic	Titanium dioxide 87.0%,	99.7	0.25					
		Aluminium Hydroxide							
		11.0%,							
		Hydrated Silica 2%							

1 2 Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf

- Table 3.1.4.B3: Nano grades / Coatings / Surface Moieties (Ref.: January 2023_PhysChem 1
- data on Cosmetics TiO₂ grades_final.pdf Table from Page 14/28 N2.4) Coatings / Surface 2
- 3

moieties)		-	_
Product	Coatings / Surface	Product	Coatings / Surface
Code	moieties ¹	Code	moieties ¹
RM09	Silica	RM60	Aluminium Hydroxide: 4.1%/ Stearic Acid: 4.7%
RM10	Silica, Hydrogen Dimethicone	RM61	Hydrogen Dimethicone: 2%
RM11	Alumina, Dimethicone	RM62	Aluminium Hydroxide 4.1%, Stearic Acid: 4.7%
RM41	Aluminium Hydroxide: 13.5%, Hydrated Silica: 4.5%	RM63	Alumina, Stearic acid
RM40	Aluminium Hydroxide: 13.3%/ Stearic Acid: 20%	RM64	Alumina, Stearic acid
RM42	Aluminium Hydroxide: 16%/ Stearic Acid: 11%	RM65	Alumina, Stearic acid
RM43	Aluminium Hydroxide: 12.7%, Hydrated Silica: 4.2%/ Hydrogen Dimethicone: 5.7%	RM74a	Hydrogen Dimethicone & Alumina
RM44	Aluminium Hydroxide: 10.8%, Hydrated Silica: 3.6%/ Dimethicone: 15.4%, Hydrogen Dimethicone: 4.6%	RM74b	Alumina, Stearic Acid
RM45	Aluminium Hydroxide: 17%, Hydrated Silica: 7%	RM74c	Triethoxycaprylylsilane
RM46	Aluminium Hydroxide: 10.5%, Hydrated Silica: 3%	RM74d	Silica
RM47	Hydrated Silica: 30%	RM74e	Silica & Dimethicone
RM48	Aluminium Hydroxide: 9%, Stearic Acid: 8%	RM75	Alumina, Simethicone
RM49	Aluminium Hydroxide: 13%/ Stearic Acid: 13%	RM76	Alumina, Stearic Acid
RM51	Aluminium Hydroxide: 10.1%, Hydrated Silica: 2.9%, Hydrogen Dimethicone: 3.4%	RM77	Alumina
RM52	Aluminium Hydroxide: 10%, Hydrated Silica: 2.9%, Hydrogen Dimethicone: 4.7%	RM78	Silica
RM53	Stearic Acid: 15%	RM79	Silica, Cetyl Phosphate
RM55	Aluminium Hydroxide: 3%, Hydrated Silica: 5.5%	RM80	Alumina, Manganese Dioxide
RM56	Aluminium Hydroxide: 7%/ Stearic Acid: 4%	RM81	Silica, Alumina
RM57	Aluminium Hydroxide 2.9%, Hydrated Silica 5.4%, Hydrogen Dimethicone 1.9%	RM82	Silica, Dimethicone
RM58	Aluminium Hydroxide: 3%, Hydrated Silica 5.3%/ Dimethicone: 2.9%		
RM59	Aluminium Hydroxide: 11%, Hydrated Silica: 2%		

1. Alumina (Al₂O₃) in surface coatings is actually a mixture of Alumina and Aluminium Hydroxide

Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf Table from Page 14/28 - Column N2.4) Coatings / Surface moieties

- Table 3.1.4.B4: Sequence of the multi-layers for the nano titanium dioxide grades. (From Ref.: Multi-layer coating sequence Nano.xls 30 June 2023) 1
- 2

	Innermost Layer		>	Outermost Layer
Product Code	А	В	С	D
RM09	Silica 10%			
RM10	Silica 10%	Hydrogen Dimethicone		
RM11	Alumina 6%	Dimethicone 3%		
RM40	Aluminium Hydroxide	Stearic Acid 20%		
RM41	Hydrated Silica 4.5%	Aluminium Hydroxide		
RM42	Aluminium Hydroxide	Stearic Acid 11%		
RM43	Hydrated Silica 4.2%	Aluminium Hydroxide	Hydrogen Dimethicone	
RM44	Hydrated Silica 3.6%	Aluminium Hydroxide 10.8%	Hydrogen Dimethicone 4.6%	Dimethicone 15.4%
RM45	Hydrated Silica 7%	Aluminium Hydroxide 17%		
RM46	Hydrated Silica 3%	Aluminium Hydroxide 10.5%		
RM47	Hydrated Silica 30%			
RM48	Aluminium Hydroxide 9.0%	Stearic Acid 8.0%		
RM49	Aluminium Hydroxide 13.0%	Stearic Acid 13%		
RM51	Hydrated Silica 2.9%	Aluminium Hydroxide 10.1%	Hydrogen Dimethicone 3.4%	
RM52	Hydrated Silica 2.9%	Aluminium Hydroxide10.0%	Hydrogen Dimethicone 4.7%	
RM53	Stearic Acid 15.0%			
RM55	Hydrated Silica 5.5%	Aluminium Hydroxide 3.0%		
RM56	Aluminium Hydroxide 7.0%	Stearic Acid 4.0%		
RM57	Hydrated Silica 5.4%	Aluminium Hydroxide 2.9%	Hydrogen Dimethicone 1.9%	
RM58	Hydrated Silica 5.3%	Aluminium Hydroxide 3.0%	Dimethicone 2.9%	
RM59	Hydrated Silica 2%	Aluminium Hydroxide		
RM60	Aluminium Hydroxide 4.1%	Stearic Acid 4.7%		
RM61	Hydrogen Dimethicone 2.0%			
RM62	Aluminium Hydroxide 4.1%	Stearic Acid 4.7%		
RM63	Alumina 10%	Stearic acid 13.5%		
RM64	Alumina 5%	Stearic acid 6.5%		
RM65	Alumina 3.5%	Stearic acid 4.6%		
RM74a	Alumina < 20%	Hydrogen Dimethicone <10%		
RM74b	Alumina 15%	Stearic Acid 15% max		
RM74c	Triethoxycaprylylsilane 6%			
RM74d	Silica (20%)	Discathic as a (0)		
RIVI74e	SIIICA 15% MAX	Dimethicone 6%		
RIVI70		Stearic Acid 10%		
RM78	Silica 17%			
RM79	Silica 16%	Hexadecyl dihydrogen		
RM80	Alumina 10%	phosphate 6%		

Scientific Advice on Titanium dioxide (TiO₂) (CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280- 1, 1317-80-2/215-282-2)

RM81	Silica 6%	Alumina 6%	
RM82	Silica 10.5-14.5%	Dimethicone 2.0 - 4.5%	

1 2

i) RM77: Titanium dioxide, Alumina 3%, Sodium hexametaphosphate* 2%, 2-

Phenoxyethanol* 0.7%, Sodium methylparaben* 0.18% - *Please note that the components
marked are dispersing agents, and should not be considered as a layer on the TiO₂ surface,
although to a certain extent they do interact with the surface.

Annex B: Impurity profile of the Raw Materials - Pigmentary and nano titanium dioxide grades

3

From Applicants

4 5

Given that TiO₂ is manufactured from naturally occurring ores, there can be variability within 6 7 these different ores accounting for a different impurity analytical profile (specifically heavy 8 metals) within the specification limits. In the case of heavy metals, the specification is a 9 maximum value. The principal raw material ores for manufacturing TiO₂ include ilmenite (iron titanium oxide, FeTiO₃), naturally occurring rutile (TiO₂) or titanium slag which all contain 10 11 naturally occurring heavy metals in variable amounts depending on the nature and geographic 12 source of these raw materials. This results in heavy metals being present as unavoidable trace 13 elements in the manufactured titanium dioxide product even though GMP are applied for 14 cosmetics ingredients. Depending on the raw material sourcing and the manufacturing 15 process, the heavy trace metals for cosmetics ingredients products are reduced by a significant factor for some elements like lead, arsenic and antimony compared to products 16 17 marketed for "technical" applications. These trace elements are embedded in the lattice of 18 the TiO_2 and are not bioavailable. Therefore, rather than give a potentially unrepresentative 19 single data point, the ranges of values presented give an accurate account of this

20

From Ref.: CE-TiO2-23-003.0 - CE Response to clarifications requested by SCCS 10 03 23 final.pdf

24 Acid-soluble substances (%)

Suspend 5 g of the sample in 100 ml 0.5 N hydrochloric acid and place on a steam bath for 30 min with occasional stirring. Filter through a Gooch crucible fitted with a glass fibre filter paper. Wash with three 10-ml portions of 0.5 N hydrochloric acid, evaporate the combined filtrate and washings to dryness, and ignite at a dull red heat to constant weight. The similar USP method may be used.

- 30
- 31 Water soluble substances (%)

Method is same as for acid-soluble substances (above) but using water in place of 0.5 N hydrochloric acid. The USP method is similar, but the suspension is not heated, and stands overnight at ambient conditions

35

36 HCI-soluble antimony, arsenic, cadmium and lead

37 Transfer 10.0 g of sample into a 250-ml beaker, add 50 ml of 0.5 N hydrochloric acid, cover 38 with a watch glass, and heat to boiling on a hot plate. Boil gently for 15 min, pour the slurry 39 into a 100- to 150-ml centrifuge bottle, and centrifuge for 10 to 15 min, or until undissolved material settles. Decant the supernatant through Whatman No. 4 filter paper, or equivalent, 40 41 (or direct from supernatant if clear) collecting the filtrate in a 100-ml volumetric flask and 42 retaining as much as possible of the undissolved material in the centrifuge bottle. Add 10 ml 43 of hot water to the original beaker, washing off the watch glass with the water, and pour the 44 contents into the centrifuge bottle. Form a slurry, using a glass stirring rod, and centrifuge. 45 Decant through the same filter paper and collect the washings in the volumetric flask 46 containing the initial extract. Repeat the entire washing process two more times. Finally, wash 47 the filter paper with 10 to 15 ml of hot water. Cool the contents of the flask to room 48 temperature, dilute to volume with water, and mix. Determine cadmium, and lead using an 49 AAElectrothermal atomization technique, antimony by ICP-AES technique and arsenic using 50 atomic absorption hydride technique.

51 52 Mercury

53 Determine using AAS (Cold vapour generation technique) after digestion with sulfuric and 54 nitric acids in a closed vessel microwave digestion system.

- 55
- 56 From Ref.: CE-TiO2-23-003.0 Att 1_Generic Description of Analytical Methods final.pdf

Pigmentary grades

3 The Applicants have provided the impurity profiles of the Raw materials for Pigmentary 4 titanium dioxide grades on the Water soluble substances (%), Acid-soluble substances (%), 5 Arsenic (HCI-soluble) (mg/kg), Lead, (HCI-soluble) (mg/kg), Antimony (HCI-soluble) (mg/kg), 6 Mercury (HCI-soluble) (mg/kg), Cadmium (HCI-soluble) (mg/kg). These informations are 7 reported in the following Table (Table 3.1.5 - A: Pigmentary grades - Impurity Profile of Raw 8 Materials).

9

10 Table 3.1.5 - A: Pigmentary grades - Impurity Profile of Raw Materials (from Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf - Table 5) 11

12

Product	Categ	Water	Acid-	Arsenic	Lead	Antimon	Mercury	Cadmium
Code	ory	soluble	soluble	(HCI-	(HCI-	y (HCI-	(HCI-	(HCI-
		substan	substance	soluble)	soluble)	soluble)	soluble)	soluble)
		Ces (%)	S (70)	(mg/kg	(mg/kg)	(mg/kg	(mg/kg	(пу/ку)
RM01	а	0.31	0.32	<01	0.3	<01	<01	< 0.1
RM02	a	0.26	0.32	< 0.1	0.8	< 0.1	< 0.1	< 0.1
RM03	a	<0.5	< 0.5	<1	<10	<2	<1	<1
RM04	a	<0.5	<0.5	<1	<10	<2	<1	<1
RM05	c2	< 0.5	< 0.5	< 1	< 10	< 2	< 1	< 1
RM06	c2	≤0.5	≤0.5	<u> </u>	≤ 10	 ≤ 2	<u> </u>	<u> </u>
RM07	c2	≤0.5	≤0.5	<u>≤ 1</u>	≤ 10	<u>≤</u> 2	<u>≤ 1</u>	<u>≤</u> 1
RM08	c2	≤0.5	≤0.5	<u>≤ 1</u>	≤ 10	<u>≤</u> 2	<u>≤ 1</u>	≤ 1
RM19	c2	< 0.3	<1.5	<1	<10	<2	<1	<1
RM26	a	0.21	0.32	≤1	≤5	≤0.1	< 0.1	< 0.1
RM27	c1	0.21	0.32	≤ 1	≤ 5	≤0.1	≤0.1	≤0.1
RM28	а	0.06	0.18	≤1	≤5	≤0.1	< 0.1	<0.1
RM29	c1	0.06	0.18	<u>≤</u> 1	≤ 5	≤0.1	≤0.1	≤0.1
RM30	b1	0.02	0.13	<u>≤ 1</u>	≤ 5	≤0.1	≤0.1	≤0.1
RM31	b2	0.02	0.13	<u>≤ 1</u>	≤ 5	≤0.1	≤0.1	≤0.1
RM32	c2	0.02	0.13	<u>≤ 1</u>	≤ 5	≤ 0.1	≤ 0.1	≤ 0.1
RM33	c2	0.02	0.13	<u>≤ 1</u>	≤ 5	≤ 0.1	≤ 0.1	≤ 0.1
RM34	c2	0.02	0.13	≤ 1	≤ 5	≤ 0.1	≤ 0.1	≤ 0.1
RM35	c2	0.02	0.13	≤ 1	≤ 5	≤ 0.1	≤ 0.1	≤ 0.1
RM36	c2	0.02	0.13	≤ 1	≤ 5	≤ 0.1	≤ 0.1	≤ 0.1
RM37	b2	0.04	0.3	≤ 1	≤ 5	≤0.1	≤0.1	≤0.1
RM38	c3	0.04	0.3	≤ 1	≤ 5	≤ 0.1	≤ 0.1	≤ 0.1
RM39	c3	0.04	0.3	≤ 1	≤ 5	≤ 0.1	≤ 0.1	≤ 0.1
RM67	а	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM67b	а	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM68	а	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM69	а	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM69b	а	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM70a	c1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM70b	c1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM70c	а	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM70d	с1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM70e	c1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM70f	с1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72a	с1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72b	с1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72c	а	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72d	с1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72e	c1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72f	c1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72g	c1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72i	c2	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72j-bis	c2	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
RM72k	c1	≤0.3	≤0.5	≤1	≤10	≤2	≤1	≤1
F	Ref Ian	uary 2023	3 PhysChen	n data on	Cosmetics Ti	02 grades	s final odf	- Table 5

2 3 4 5 6 7 8 9	Based Pigmentary - V - A - L - L - M - M	on the inform Titanium grad Nater soluble Acid soluble su Arsenic (HCl solu Antimony (HC Mercury ≤ 1 pp Cadmium ≤ 1	ation prov des are rep substances oluble) ≤ 10µ I soluble) : om ppm	ided by Appl oorted below s ≤ 0.5% < 1.5% Ippm opm ≤ 2ppm	licants, the r ':	maximum im	npurities leve	els for the
1 2 3 4 5 6 7 8	From Appli Nano Titan The A titanium dio Arsenic (HCI Mercury (HG reported in materials)	cants ium dioxide pplicants hav xide grades c -soluble) (mg Cl-soluble) (r the following	Grades ve provideo on the Wat I/kg), Lead ng/kg), Ca g Table (Ta	d the impur er soluble si , (HCI-solub admium (HC able 3.1.5 -	rity profiles ubstances (° le) (mg/kg), Cl-soluble) (B: Nano g	of the Rav %), Acid-sol Antimony (mg/kg). Th grades - Im	v materials uble substar HCI-soluble) ese informa purity profil	for Nano nces (%), (mg/kg), itions are e of Raw
20 21 22 23 24 25 26 27 28 29	The Ap - \ - 4 - 4 - 1 - 4 - 1 - 1 - 1 2023_PhysC	Deplicants have Water soluble Acid soluble su Arsenic (HCl solu Lead (HCl solu Antimony (HC Mercury < 1pp Ref.: 5 - B: Nano Chem data on	e reported substances oluble) < 1 uble) < 10p I soluble) < om January 2 grades - Cosmetics	the following s < 0.25% opm 2023_PhysCl Impurity pr TiO2 grade	g impurities nem data or rofile of Rav s_final.pdf -	levels. n Cosmetics v materials Table N2.3	TiO2 grades (from Ref.)	_final.pdf : January
							•	
	Product Code	Grouping	Water soluble substanc es (%)	Acid- soluble substance s (%)	Arsenic (HCl- soluble) (mg/kg)	Lead (HCI- soluble) (mg/kg)	Antimony (HCl- soluble) (mg/kg)	Mercury (mg/kg)
	Product Code RM75	Grouping Amphiphilic	Water soluble substanc es (%) ≤0.1	Acid- soluble substance s (%) ≤0.5	Arsenic (HCI- soluble) (mg/kg) ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10	Antimony (HCI- soluble) (mg/kg) ≤ 2	Mercury (mg∕kg) ≤ 1
	Product Code RM75 RM81	Grouping Amphiphilic Amphiphilic	Water soluble substanc es (%) ≤0.1 0.5**	Acid- soluble substance s (%) ≤0.5 0.2	Arsenic (HCI- soluble) (mg/kg) ≤ 1 <1	Lead (HCI- soluble) (mg/kg) ≤ 10 3	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5	Mercury (mg∕kg) <u>≤ 1</u> 0.1
	Product Code RM75 RM81 RM78	Grouping Amphiphilic Amphiphilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5	Arsenic (HCI- soluble) (mg/kg) ≤ 1 <1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 3 ≤ 10	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2	Mercury (mg/kg) ≤ 1 0.1 ≤ 1
	Product Code RM75 RM81 RM78 RM80	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 ≤0.5	Arsenic (HCI- soluble) (mg/kg) ≤ 1 <1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 3 ≤ 10 ≤ 10	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 2	Mercury (mg/kg) ≤ 1 0.1 ≤ 1 ≤ 1
	Product Code RM75 RM81 RM78 RM80 RM80 RM46	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 ≤0.5 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 10 ≤ 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 2 ≤ 2 ≤ 0.1	Mercury (mg/kg) ≤ 1 0.1 ≤ 1 ≤ 1 ≤ 0.1
	Product Code RM75 RM81 RM78 RM80 RM46 RM47	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 ≤0.5 0.06 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 10 ≤ 5 ≤ 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 2 ≤ 2 ≤ 0.1 ≤ 0.1	Mercury (mg/kg) ≤ 1 0.1 ≤ 1 ≤ 1 ≤ 0.1 ≤ 0.1
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM09	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 0.04 ≤0.25	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 ≤0.5 0.06 0.06 ≤0.5	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 ≤ 10	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 2 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 2	Mercury (mg/kg) ≤ 1 0.1 ≤ 1 ≤ 1 ≤ 0.1 ≤ 0.1 ≤ 1
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM47 RM09 RM41	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 0.04 ≤0.25 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 ≤0.5 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 ≤ 10 ≤ 5 ≤ 10 ≤ 5 ≤ 10 ≤ 5 ≤ 10 ≤ 5 ≤ 10 ≤ 5 ≤ 10	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 2 ≤ 0.1 ≤ 2 ≤ 0.1	Mercury (mg/kg) ≤ 1 0.1 ≤ 1 ≤ 1 ≤ 0.1 ≤ 0.1 ≤ 1 ≤ 0.1
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM45	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.04	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1 = 1 ≤ 1 ≤ 1 = = = = = = = = = =	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 ≤ 10 ≤ 5 ≤ 5 ≤ 10 ≤ 5 ≤ 5 ≤ 10 ≤ 5 ≤ 5 ≤5 ≤5 =5 =5 =5 =5 =5 =5 =5 =	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 0.1	Mercury (mg/kg) ≤ 1 0.1 ≤ 1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM45 RM45 RM45 RM45	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.04 0.04	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 ≤0.5 0.06 0.06 0.06 0.06 0.06 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1 = 1 ≤ 1 ≤ 1 $=========$	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 = 5 = 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1	Mercury (mg/kg) ≤ 1 0.1 ≤ 1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM99 RM41 RM45 RM45 RM55 RM74d	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.04 0.1 ≤0.25	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 ≤0.5 0.06 0.06 0.06 0.06 0.06 0.13 ≤0.5	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 10	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1	Mercury (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM45 RM47 RM99 RM41 RM45 RM45 RM55 RM74d RM59	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.04 0.1 ≤0.25 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 =5 =5 =5 =5 =5 =5 =5 =	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 2 ≤ 0.1	Mercury (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM41 RM45 RM45 RM45 RM55 RM74d RM59 RM740 RM40	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.04 0.1 ≤0.25 0.07 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 ≤0.5 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 =5 =5 =5 =5 =5 =5 =5 =	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 2 ≤ 0.1 ≤ 0.1	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM41 RM45 RM55 RM74d RM59 RM74d RM59 RM40 RM42 RM42	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 0.04 ≤0.25 0.07 0.04 0.1 ≤0.25 0.07 0.07 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 ≤0.5 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 =5 =5 =5 =5 =5 =5 =5 =	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 2 ≤ 0.1 ≤ 0.1 ≤ 0.1 ≤ 2 ≤ 0.1 ≤ 0.1	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\ \leq$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM41 RM45 RM55 RM74d RM59 RM74d RM59 RM40 RM42 RM42 RM43	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 0.04 ≤0.25 0.07 0.04 0.1 ≤0.25 0.07 0.07 0.07 0.07 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06 0.06 0.06 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 =5 =5 =5 =5 =5 =5 =5 =	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 $\leq $	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\ \leq$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM41 RM45 RM55 RM74d RM55 RM74d RM59 RM40 RM42 RM42 RM43 RM44 RM43	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.07 0.07 0.07 0.07 0.07 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06 0.06 0.06 0.06 0.06 0.06	Arsenic (HCl- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 ≤5 =5 =5 =5 =5 =5 =5 =5 =	Antimony (HCI- soluble) (mg/kg) ≤ 2 ≤ 2 ≤ 2 ≤ 0.1 ≤ 0.1	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM46 RM47 RM47 RM47 RM45 RM45 RM55 RM74d RM59 RM40 RM42 RM42 RM43 RM44 RM48 RM48 RM48	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.04 0.1 ≤0.25 0.07 0.07 0.07 0.07 0.07 0.07 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06 0.06 0.06 0.06 0.06 0.06	Arsenic (HCI- soluble) (mg/kg)	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 ≤5 =5 =5 =5 =5 =5 =5 =5 =	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 ≤ 0.1	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\ \leq$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM46 RM47 RM47 RM45 RM41 RM45 RM55 RM74d RM59 RM40 RM42 RM42 RM43 RM44 RM48 RM49 RM49 RM49 RM45	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.04 0.1 ≤0.25 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06 0.06 0.06 0.06 0.06 0.06	Arsenic (HCI- soluble) (mg/kg)	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 ≤5 ≤5 =5 =5 =5 =5 =5 =5 =5 =	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 $\leq $	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\ \leq$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM41 RM45 RM55 RM74d RM59 RM40 RM42 RM40 RM42 RM43 RM44 RM48 RM44 RM48 RM45 RM451 RM51 RM51 RM51 RM51	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 ≤0.1 ≤0.25 0.07 0.04 0.1 ≤0.25 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06 0.06 0.06 0.06 0.06 0.06	Arsenic (HCI- soluble) (mg/kg)	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 10 ≤ 5 ≤ 5 = 5 = 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 0.5 ≤ 2 ≤ 0.1 $\leq $	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\ \leq$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM46 RM47 RM47 RM47 RM47 RM45 RM45 RM55 RM74d RM59 RM40 RM42 RM42 RM43 RM44 RM48 RM44 RM48 RM49 RM49 RM52 RM52 DM52	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 ≤0.25 0.07 0.04 0.04 0.04 0.07 0.07 0.07 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06 0.06 0.06 0.06 0.06 0.06	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 = 5 = 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 ≤ 2 ≤ 2 ≤ 0.1 ≤ 0.1	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\ \leq$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM41 RM45 RM55 RM74d RM55 RM74d RM59 RM40 RM42 RM42 RM43 RM44 RM48 RM44 RM48 RM49 RM45 RM51 RM51 RM53 RM53 RM53 RM53 RM53 RM53	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 ≤0.25 0.07 0.04 0.04 0.04 0.07 0.07 0.07 0.07	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06 0.06 0.06 0.06 0.06 0.06	Arsenic (HCl- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 10 ≤ 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 ≤ 2 ≤ 2 ≤ 0.1 $\leq $	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM47 RM45 RM55 RM74d RM55 RM74d RM59 RM40 RM42 RM42 RM43 RM44 RM48 RM44 RM48 RM49 RM49 RM51 RM52 RM53 RM56 RM56 RM56 RM57	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.06 0.13 ≤0.5 0.11 0.06 0.06 0.06 0.06 0.06 0.06 0.06	Arsenic (HCl- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 < 5 < 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 ≤ 2 ≤ 0.5 ≤ 2 ≤ 0.1 $\leq $	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\ \leq$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM47 RM45 RM55 RM74d RM55 RM74d RM59 RM40 RM42 RM42 RM43 RM44 RM48 RM44 RM48 RM49 RM49 RM49 RM51 RM52 RM53 RM56 RM57 RM57 RM57 RM58	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 10 ≤ 5 ≤ 5 < 5 < 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 ≤ 2 ≤ 0.5 ≤ 2 ≤ 0.1 $\leq $	$\begin{array}{c} \text{Mercury} \\ (\text{mg/kg}) \\ \\ \leq 1 \\ \leq 1 \\ \leq 1 \\ \leq 0.1 \\ \leq$
	Product Code RM75 RM81 RM78 RM80 RM46 RM47 RM40 RM47 RM45 RM55 RM74d RM55 RM74d RM59 RM40 RM42 RM42 RM43 RM44 RM48 RM44 RM48 RM49 RM49 RM45 RM51 RM51 RM52 RM53 RM56 RM57 RM58 RM58 RM58 RM60	Grouping Amphiphilic Amphiphilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophilic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic Hydrophobic	Water soluble substanc es (%) ≤0.1 0.5** ≤0.1 ≤0.1 0.04 0.04 ≤0.25 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Acid- soluble substance s (%) ≤0.5 0.2 ≤0.5 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0	Arsenic (HCI- soluble) (mg/kg) ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1	Lead (HCI- soluble) (mg/kg) ≤ 10 ≤ 10 ≤ 5 ≤ 5 < 5 < 5	Antimony (HCI- soluble) (mg/kg) ≤ 2 ≤ 2 ≤ 0.5 ≤ 2 ≤ 0.1 $\leq $	$\begin{array}{c} \mbox{Mercury} (mg/kg) \\ \hline \leq 1 \\ 0.1 \\ \leq 1 \\ \leq 0.1 \\ \hline \leq 0.1 \\ \leq 0.1 \\ \hline \end{bmatrix}$

Scientific Advice on Titanium dioxide (TiO₂) (CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280-1, 1317-80-2/215-282-2)

RM62	Hydrophobic	0.07	0.11	≤ 1	≤ 5	≤ 0.1	≤ 0.1
RM76	Hydrophobic	≤0.1	≤ 0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM79	Hydrophobic	≤0.1	≤ 0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM10	Hydrophobic	≤0.25	≤0.5	≤1	≤10	≤2	≤1
RM11	Hydrophobic	≤0.25	≤0.5	≤1	≤10	≤2	≤1
RM63	Hydrophobic	≤0.25	≤0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM64	Hydrophobic	≤0.25	≤0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM65	Hydrophobic	≤0.25	≤0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM74a	Hydrophobic	≤0.25	≤0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM74b	Hydrophobic	≤0.25	≤0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM74c	Hydrophobic	≤0.25	≤0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM74e	Hydrophobic	≤0.25	≤0.5	≤ 1	≤ 10	≤ 2	≤ 1
RM82	Hydrophobic	≤0.25	≤0.5	≤1	≤10	≤2	≤1
RM77	Aqueous	≤0.1	≤0.5	≤ 1	≤ 10	≤ 2	≤ 1
	Dispersion						

1 2 3 Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf From Table N2.3,

4 SCCS comments

For the nano titanium dioxide grades, the Applicants have reported a maximum amount of 5

water-soluble substances < 0.25%. According to elements provided by Applicants in the 6

7 above-mentioned Table 3.1.5 - B, the water-soluble substances for RM81 is equal to 0.5%

- 8 (**).
- 9 10

1 Annex C: Partition Coefficient – Pigmentary and nano titanium dioxide grades

3 From Applicants

There is no standard method for measuring partition coefficient of particulate materials.

Where an organic is present the literature value of the partition coefficient is given.

From Ref.: CE-TiO2-23-003.0 - Att 1_Generic Description of Analytical Methods - final.pdf

Table 3.1.7.A: Partition coefficient (log KoW) of Pigmentary Titanium dioxide grades

7 8 9

2

4

5

6

Produc	Partition coefficient	Product	Partition coefficient	Produc	Partition coefficient
t Code	(log K _{ow})	Code	(log K _{ow})	t Code	(log K _{ow})
RM01	n/a -no organic	RM32	-2.61.9	RM70c	n/a -no organic
	component				component
RM02	n/a -no organic	RM33	Hydrophobic	RM70d	Hydrophobic
	component		5		5 1
RM03	n/a -no organic	RM34	Hydrophobic	RM70e	Hydrophobic
	component		5		5 - 1
RM04	n/a -no organic	RM35	Hydrophobic	RM70f	Hydrophobic
	component		5	_	
RM05	Hydrophilic	RM36	2.6 - 4.3	RM72a	1.1 at 20°C
RM06	Hydrophilic	RM37	n/a -no organic	RM72b	1.1 at 20°C
	5		component		
RM07	9 (calc) at 20°C	RM38	Hydrophobic	RM72c	n/a -no organic
	. ,		5		component
RM08	-1.75 (calc) at 25°C	RM39	2.6 - 4.3	RM72d	Hydrophobic
RM19	Hydrophilic	RM67	n/a -no organic	RM72e	Hydrophobic
	5 1		component		5 1
RM26	n/a -no organic	RM67b	n/a -no organic	RM72f	Hydrophilic
	component		component		5 1
RM27	Hydrophobic	RM68	n/a -no organic	RM72g	Hydrophobic
	5 1		component	J	5 1
RM29	Hydrophobic	RM69	n/a -no organic	RM72i	-0.47 at 26°C
	5		component		
RM28	n/a -no organic	RM69b	n/a -no organic	RM72j-	3.9 at 20°C
_	component		component	bis	
RM30	n/a -no organic	RM70a	1.1 at 20°C	RM72k	Hydrophobic
	component				
RM31	n/a -no organic	RM70b	1.1 at 20°C		
	component				

10

11

Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf Table from Page 7/28 – Column 6.4) Partition coefficient (log K_{ow})

12 13

Table 3.1.7.B : Partition coefficient (log KoW) of Nano Titanium Dioxide grades

Product Code	K _{ow} for surface modified NMs (organic)	Product Code	K _{ow} for surface modified NMs (organic)	Product Code	K _{ow} for surface modified NMs (organic)
RM09	Hydrophilic	RM52	Hydrophobic	RM74a	Hydrophobic
RM10	Hydrophobic	RM53	Hydrophobic	RM74b	Hydrophobic
RM11	Hydrophobic	RM55	Hydrophilic	RM74c	Hydrophobic
RM40	Hydrophobic	RM56	Hydrophobic	RM74d	Hydrophilic
RM41	Hydrophilic	RM57	Hydrophobic	RM74e	Hydrophobic
RM42	Hydrophobic	RM58	2.6 - 4.3	RM75	Amphiphilic
RM43	Hydrophobic	RM59	Hydrophilic	RM76	Hydrophobic
RM44	Hydrophobic	RM60	Hydrophobic	RM77	Hydrophilic
RM45	Hydrophilic	RM61	Hydrophobic	RM78	Hydrophilic
RM46	Hydrophilic	RM62	Hydrophobic	RM79	Hydrophobic
RM47	Hydrophilic	RM63	Hydrophobic	RM80	Hydrophilic
RM48	Hydrophobic	RM64	Hydrophobic	RM81	Amphiphilic
RM49	Hydrophobic	RM65	Hydrophobic	RM82	Hydrophobic
RM51	Hydrophobic				

14 15 Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final From Table Page 17/28 – Column N10.2) Kow for surface modified NMs (organic)

1 Annex D: Density of the Pigmentary and nano titanium dioxide grades

2 3

The density, pour density and tap density have been reported by Applicants.

- 4 5 Density (g/cm³)
- Helium pycnometry using a method similar to ASTM B923-22 (Standard Test Method for Metal
 Powder Skeletal Density by Helium or Nitrogen Pycnometry)
- 8
- 9 Pour Density (g/cm³)

10 Pour a known mass of powder into a graduated measuring cylinder and measure the volume.

Pour density is mass/volume. Nano UV-filters have low density and adhere to the vessel walls due to electrostatic forces. Therefore, to minimise variability, the following method may be used: Weigh measuring cylinder, pour material in, wait 5 minutes, read the poured volume and weigh back, calculate material mass and hence density.

- 15
- 16 Tap density (g/cm^3)

Proceed as for pour density but then tap the cylinder 100-1,000 times to settle powder,measure volume occupied and calculate tap density.

Method ISO 787/11; Proceed as for pour density. Then tap the cylinder 1,250 times with atamping volumeter to settle powder, measure the volume and repeat until volume does not change any more. Calculate the tap density.

22 23

From Ref.: CE-TiO2-23-003.0 - Att 1_Generic Description of Analytical Methods - final.pdf

24 25

Pigmentary Dioxide Grades

26 27

Product	Density	Porosity	Pour	Tap	Produc	Density	Porosity	Pour	Tap
Code	(g/cm²)	(Haushe	Densit	density	t Code	(g/cm²)	(Hausher	(q/cm ³)	density
		11410)	(α/cm^3)	(a/cm ³)			ratio)	(g/ cm)	(a/cm ³)
			(g/ cm)						
RM01	3.8	1.40	0.424	0.595	RM39	4.08	1.67	1.08	1.80
RM02	4.2	1.27	0.65	0.827	RM67	3.91	/	0.54	/
RM03	3.9	1.41	0.59	0.83	RM67b	4	/	0.44	/
RM04	3.85	1.30	0.53	0.69	RM68	4.02	/	0.53	/
RM05	3.81	1.11	0.75	0.83	RM69	4.47	/	0.67	/
RM06	3.84	1.38	0.6	0.83	RM69b	4.29	/	0.64	/
RM07	3.73	1.48	0.95	1.41	RM70a	3.83	/	0.60	/
RM08	4.1	1.38	0.61	0.84	RM70b	3.84	/	/	/
RM19	4.01	/	0.8	/	RM70c	3.99	/	/	/
RM26	3.79	1.63	0.56	0.91	RM70d	3.48	/	0.46	/
RM27	3.62	2.00	0.50	1.00	RM70e	3.96	/	0.43	/
RM28	4.34	1.61	0.69	1.11	RM70f	3.73	/	0.7	/
RM29	4.13	2.14	0.59	1.26	RM72a	4.14	/	0.93	/
RM30	4.28	1.32	0.76	1.00	RM72b	4.16	/	0.71	/
RM31	4.09	2.27	0.37	0.84	RM72c	4.33	/	0.32	/
RM32	3.67	2.26	0.50	1.13	RM72d	3.67	/	0.97	/
RM33	3.77	1.01	1.30	1.31	RM72e	3.85	/	0.95	/
RM34	3.73	1.24	1.08	1.34	RM72f	4.25	/	0.44	/
RM35	4.03	2.16	0.50	1.08	RM72g	3.93	/	/	/
RM36	3.80	1.88	0.58	1.09	RM72i	4.3	/	0.89	/
RM37	4.22	1.54	0.95	1.46	RM72j-	3.75	/	1.11	/
					bis				
RM38	4.05	1.69	0.89	1.50	RM72k	3.27	/	1.02	/

31

32 33

Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf Table from Page 10/28

Columns N15.1) Density (g/cm3),

SCCS/1661/23

N15.2 Porosity (Hausner ratio),

N15.3) Pour Density (g/cm3),

N15.3) Tap density (g/cm3)

Nano Titanium Dioxide Grades

Table 3.1.8.6.B: Density, pour density and tap density for the Nano grades

8

Product	Density	Porosity	Pour	Тар	Product	Densit	Porosity	Pour	Тар
Code	(g/cm³	(Hausne	Density	density	Code	У	(Hausner	Densit	density
)	r ratio)	(g/cm³)	(g/cm³)		(g/cm³	ratio)	У	(g/cm³)
)		(g/cm³)	
RM09	3.66	1.35	0.43	0.58	RM60	3.70	2.52	0.29	0.73
RM10	3.13	1.38	0.16	0.22	RM61	4.21	1.81	0.41	0.74
RM11	3.66	1.46	0.26	0.38	RM62	3.70	2.17	0.40	0.88
RM40	2.52	1.46	0.20	0.29	RM63	2.79	1.35	0.43	0.58
RM41	3.69	1.93	0.22	0.43	RM64	3.37	1.41	0.63	0.89
RM42	2.86	1.33	0.37	0.49	RM65	3.54	1.64	0.59	0.97
RM43	3.30	2.19	0.27	0.60	RM74a	2.80	/	0.4	/
RM44	2.51	2.46	0.26	0.63	RM74b	3.10	/	0.7	/
RM45	3.41	2.10	0.34	0.72	RM74c	3.8	/	0.5	/
RM46	3.70	2.55	0.25	0.63	RM74d	4.20	/	0.1	/
RM47	3.51	1.52	0.15	0.24	RM74e	3.50	/	0.2	/
RM48	3.19	1.95	0.24	0.48	RM75	3.43	1.46	0.13	0.19
RM49	2.96	1.93	0.21	0.41	RM76	2.87	1.35	0.17	0.23
RM51	3.04	2.32	0.42	0.97	RM77	3.20	n/a	0.52	n/a
RM52	3.44	2.41	0.25	0.60	RM78	3.37	1.20	0.10	0.12
RM53	2.84	1.62	0.41	0.67	RM80	3.11	1.46	0.13	0.19
RM55	4.01	1.56	0.41	0.63	RM81	3.44	2.05	0.22	0.45
RM56	3.09	1.65	0.36	0.59	RM79	4.20	1.35	0.17	0.23
RM57	3.73	3.22	0.31	0.99	RM82	4.26	1.30	0.23	0.3
RM58	3.77	2.63	0.34	0.89					
RM59	4.09	1.36	0.44	0.60					
	Ref.: January 2023 PhysChem data on Cosmetics TiO ₂ grades final.pdf								

Table from Page 16/28, Column N8.3) Density (g/cm³)

N15.3) Pour Density (g/cm³)

N15.3) Tap density (g/cm³)

Table from page 18 / 208, Columns N15.2) Porosity (Hausner ratio)

9 10

11

12

1 2	Annex E: pH value at isoelectric point - Pigmentary and nano titanium dioxide grades
3	From Applicants
4	The nKe date is not evoluble. The Applicants has proposed to replace this date item with
5	the pH value at isoelectric point
7	$Ref \cdot lanuary 2023$ PhysChem data on Cosmetics TiO ₂ grades final ndf
8	Ker.: January 2023_i Hysenem data on cosmeties no ₂ grades_iniai.pu
9	The pH at iep (isoelectric point) is the pH at which there is zero charge (zeta potential is zero).
10	This pH has also been described as the "apparent pKa" as it is the pH at which the numbers
11	of ionized (protonated) and deionized groups are equal in the system.
12	
13	Ref.: Pratikkumar Patel, Nurudeen Mohammed Ibrahim, Kun Cheng, The Importance of
14	Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA, Trends
15	in Pharmacological Sciences, Volume 42, Issue 6, 2021, Pages 448-460,
16	https://www.sciencedirect.com/science/article/abs/pii/S0165614721000493) and also in
17	Guidance Document on Testing Nanomaterials using OECD TG No. 312 "Leaching in Soil
18	Columns" Series on Testing and Assessment, No. 342.
19	
20	The detailed methods used by Applicants for the determination of iso-electric Point pH have
21	been reported (see Annex K " <i>Measurement methods – Appendix 5"</i>).
22	
23	The iso-electric point pH values are reported below in Table 3.1.8.8.A and Table 3.1.8.8.B for
24	the pigmentary and the nano grades, respectively.
25	From Ref.: Titanium Dioxide Grades used in Cosmetics, Data on Primary and Secondary
26	Particle Size and Surface Properties and Measurement Method Descriptions. Third data
27	package - Report 2 (31 March 2023)
28	

Table 3.1.8.8.A: Iso-electric pH values as a function of the pigmentary titanium dioxide grades (from PS and Surface Property - Pigment Final.xlx - Third package (31 March 2023)).

31

Grade	pH at iep	Grade	pH at iep	Grade	pH at iep
RM01	3,3	RM32	~1	RM70c	2,8
RM02	3,7	RM33	(*)	RM70d	(*)
RM03	2,5	RM34	(*)	RM70e	3
RM04	4,9	RM35	(*)	RM70f	(*)
RM05	7,2	RM36	(*)	RM72a	(*)
RM06	7,7	RM37	7	RM72b	(*)
RM07	(*)	RM38	(*)	RM72c	2,3
RM08	8,4	RM39	(*)	RM72d	(*)
RM19	7,6	RM67	3,6	RM72e	(*)
RM26	3,4	RM67b	3,4	RM72f	<1
RM27	(*)	RM68	3,1	RM72g	(*)
RM28	4,5	RM69	2,6	RM72i	(**)
RM29	(*)	RM69b	3,4	RM72j-bis	(*)
RM30	8,3	RM70a	(*)	RM72k	(*)
RM31	<1	RM70b	(*)		

32 (*): N/A (hydrophobic)

33 (**): Not measured

- 34
 - Ref.: PS and Surface Property Pigment Final.xlx Third package (31 March 2023)

- 1 Table 3.1.8.8.B: Iso-electric pH values as a function of the nano titanium Dioxide grades
- 2 (from PS and Surface Property Nano Final.xlx Third package (31 March 2023)).
- 3

Nano- grade	pH at iep	Nano-grade	pH at iep	Nano-grade	pH at iep
RM09	<1	RM52	(*)	RM74a	(*)
RM10	(*)	RM53	(*)	RM74b	(*)
RM11	(*)	RM55	4,8	RM74c	(*)
RM40	(*)	RM56	(*)	RM74d	4,1
RM41	8,6	RM57	(*)	RM74e	(*)
RM42	(*)	RM58	(*)	RM75	9,3
RM43	(*)	RM60	(*)	RM76	(**)
RM44	(*)	RM61	(*)	RM77	4,3
RM45	8	RM59	8,5	RM78	1,2
RM46	8,5	RM62	(*)	RM79	<1
RM47	2,3	RM63	(*)	RM80	9,2
RM48	(*)	RM64	(*)	RM81	4,8
RM49	(*)	RM65	(*)	RM82	(*)
RM51	(*)				

4 (*): N/A (hydrophobic)

- 5 (**): Not measurable 6 Ref.: PS and
 - Ref.: PS and Surface Property Pigment Final.xlx Third package (31 March 2023)

7

1 Annex F: pH values - Pigmentary and nano titanium dioxide grades

2

3 From Applicants

4 Typical method: TiO₂ dispersions were prepared by adding the 1 wt. % of TiO₂ powder to 5 deionised water. The dispersions were placed on magnetic stirrer (1500 rpm) for 15 minutes at ambient temperature to ensure that the powder is fully dispersed. The pH is measured 6 7 using a pH meter calibrated with standard buffers prior to use.

8 From Ref.: CE-TiO2-23-003.0 - Att 1_Generic Description of Analytical Methods - final.pdf 9

- 10 The pH values are reported in:
 - -For the pigmentary grades: Table 3.1.8.9.A
 - -For the nano grades: Table 3.1.8.9.B.

13

11 12

¹⁴ Table 3.1.8.9.A: pH values as a function of the pigmentary titanium dioxide grades (from Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades final.pdf) 15

Product	рН	Product	рН	Product	рН	
Code		Code		Code		
DM01	7.0	DMDD	0.0	DM70-	,	
RIVIO I	1.3	RIVI32	8.3	RIVI70C	6	
RM02	7.4	RM33	NA (Hydrophobic)	RM70d	NA (Hydrophobic)	
RM03	6.5-8.5	RM34	NA (Hydrophobic)	RM70e	5.2	
RM04	3.9-5.6	RM35	NA (Hydrophobic)	RM70f	5.5	
RM05	6.7-8.3	RM36	NA (Hydrophobic)	RM72a	5.2	
RM06	6.7-8.3	RM37	6.7	RM72b	6.3	
RM07	NA (Hydrophobic)	RM38	NA (Hydrophobic)	RM72c	7.2	
RM08	6.7-8.5	RM39	NA (Hydrophobic)	RM72d	5.1	
RM19	6-9	RM67	7.5	RM72e	4.5	
RM26	6.8	RM67b	6.9	RM72f	6.6	
RM27	NA (Hydrophobic)	RM68	6.6	RM72g	NA (Hydrophobic)	
RM28	7.9	RM69	6.2	RM72i	7.7	
RM29	NA (Hydrophobic)	RM69b	5.9	RM72j-	3.9	
				bis		
RM30	6.7	RM70a	4.2	RM72k	4.2	
RM31	7.3	RM70b	6			

16

19

Table 3.1.8.9.B: pH values as a function of the nano titanium dioxide grades

Product	рН	Product	рН	Product Code	рН
Code		Code			
RM09	6.9	RM52	NA (Hydrophobic)	RM74a	5.5
RM10	NA (Hydrophobic)	RM53	NA (Hydrophobic)	RM74b	4.1
RM11	NA (Hydrophobic)	RM55	7.5	RM74c	5.7
RM40	NA (Hydrophobic)	RM56	NA (Hydrophobic)	RM74d	4.9
RM41	7.0	RM57	NA (Hydrophobic)	RM74e	4.8
RM42	NA (Hydrophobic)	RM58	NA (Hydrophobic)	RM75	5.8 - 7.8
RM43	NA (Hydrophobic)	RM59	5.5	RM77	7.0 - 7.9
RM44	NA (Hydrophobic)	RM60	NA (Hydrophobic)	RM78	7.5 - 10.0
RM45	9.0	RM61	NA (Hydrophobic)	RM79	4.5 - 7.0
RM46	6.0	RM62	NA (Hydrophobic)	RM80	6.5 - 8.0
RM47	7.3	RM63	5-8	RM81	7.0 -10.0
RM48	NA (Hydrophobic)	RM64	5-8	RM76	NA (Hydrophobic)
RM49	NA (Hydrophobic)	RM65	5-8	RM82	NA (Hydrophobic)
RM51	NA (Hydrophobic)				

20 21 Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf Table from Page 19/28 - Column N17) pH

¹⁷

Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf Table from Page 10/28 - Column N17) pH

¹⁸

1 Annex G: UV/visible light absorption spectrum

Г

2

3 From Applicants

The TiO₂ is dispersed in a suitable medium (depending on whether it is hydrophobic or hydrophilic) and the UV absorbance measured at 308, 360 and 400nm in a UV-Visible spectrophotometer with correction for the absorbance of the suspending liquid.

Alternatively, reflectance from powder pellets can be measured and absorbance calculated.
The results may be expressed as % absorbance, % transmittance or in in L.mol⁻¹.cm⁻¹.

10

11 From Ref.: CE-TiO2-23-003.0 - Att 1_Generic Description of Analytical Methods – final.pdf

12

13 14

Table 3.1.8.11.A: UV absorption as a function of the pigmentary titanium dioxide grades

11

		Abcorntion		Absorption					
	0.00	Absorption	100		Absolption				
Product	308	360 nm	400 nm	Product	308	360 nm	400 nm		
RM01	5.7	16.5	89.9	RM39	8	8	4		
RM02	8.4	7.2	41.5	RM67	58.1*	55*	54*		
RM03	86	81	12	RM67b	59.7*	57.6*	57.9*		
RM04	88	79	8	RM68	71*	68.1*	68.1*		
RM05	89	79	8	RM69	62.7*	60.5*	60*		
RM06	88	81	10	RM69b	65.3*	62.7*	63.2*		
RM07	90	78	11	RM70a	48.7*	45.6*	44*		
RM08	87	88	52	RM70b	43.2*	39.6*	38.2*		
RM19	/	/	/	RM70c	48.3*	45.2*	44.1*		
RM26	19	15	8	RM70d	72.9*	69.7*	69.2*		
RM27	18	14	7	RM70e	50.1*	46.8*	45.6*		
RM28	15	15	9	RM70f	67.2*	64*	63.4*		
RM29	14	14	9	RM72a	62.8*	61.3*	61.8*		
RM30	18	18	10	RM72b	50.5*	48.6*	47.3*		
RM31	14	14	8	RM72c	50.7*	47.9*	45.8*		
RM32	12	12	7	RM72d	68.4*	66.7*	66*		
RM33	14	14	8	RM72e	71.6*	70*	69.8*		
RM34	18	18	10	RM72f	62.8*	61*	60.2*		
RM35	14	14	8	RM72g	73.6*	72.2*	71.9*		
RM36	14	14	8	RM72i	28.3*	25.8*	23.2*		
RM37	8	8	5	RM72j- bis	78.8*	75.7*	75.8*		
RM38	8	8	4	RM72k	69.7*	66.8*	66.2*		

15 (data marked * is %transmittance of 0.000495mol/L solution)

- 16
- 17 18
- 19
- 20
- 21
- 22
- 23
- 24

(*) from CE-TiO2-23-003.0 - Att 2_March 2023 update to Physchem data tables CE Jan

2023 submission to SCCS - Pigment -final.xlx, March update to First data package January

Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf

from Table on Page 8/28, Column 6.9) UV-Absorption)

2023.

Table 3.1.8.11.B: UV absorption as a function of the nano titanium dioxide grades

		UV							
		Absolptio n		Absol ptio					
Product	308nm	360nm	400nm	Product	308nm	360nm	400nm		
Code				Code					
RM09	92	85	43	RM60	47	39	14		
RM10	92	81	26	RM61	37	39	19		
RM11	91	83	37	RM62	30	31	14		
RM40	63	13	4	RM63	54	9.5	3.7		
RM41	64	11	3	RM64	56.9	27.9	12.7		
RM42	64	12	3	RM65	46	34.5	21.8		
RM43	64	11	3	RM74a	19.5*	15.9*	20.4*		
RM44	31	8	2	RM74b	46.2*	41.7*	40.8*		
RM45	55	10	3	RM74c 2.5*	2.5*	1.9*	5.3*		
RM46	44	14	4	RM74d	16*	12*	16.4*		
RM47	64	11	4	RM74e	44.8*	39.1*	38.2*		
RM48	78	17	4	RM75	45	13	5		
RM49	86	23	6	RM77	55	16	7		
RM51	41	13	4	RM78	26	12	5		
RM52	41	13	4	RM79	50	14	6		
RM53	65	21	6	RM80	41	12	5		
RM55	58	29	10	RM81	n.d.	35.2	21.75		
RM56	68	32	9	RM76	55	16	7		
RM57	67	28	8	RM82	9.07	17.02	62.99		
RM58	68	28	8						
RM59	47	32	12						

(data marked * is % transmittance of 0.000495mol/L solution)

Ref.: January 2023_PhysChem data on Cosmetics TiO ₂ grades_final.pdf
From Table on Page 19/28 – Column 6.9 UV – absorption
(*) from CE-TiO2-23-003.0 - Att 3_ March 2023 update to Physchem data tables CE Jan
2023 submission to SCCS – Nano – final.xlx - March update to First data package January
2023

12 Based on the information provided by Applicants, the SCCS noted that:

13 Pigmentary titanium dioxide grades

Among the 44 Pigmentary grades, the UV absorption values have not been reported for the following Pigmentary Titanium Grade: RM19. For the others 43 pigmentary titanium grades, the UV absorption is noted to range:

- 17 at 308 nm, from 5.7 (RM01) to 90 (RM07),
- 18 at 360 nm, from 7.2 (RM02) to 88 (RM08),
- 19 at 400 nm, from 4 (RM38) to 89.9 (RM01)
- 20 Nano titanium dioxide grades

The UV absoption at 308 nm has not been determined for RM81. The UV absorption is noted to range:

- 23 at 308 nm, from 9.07 (RM82) (RM01) to 92 (RM09, RM10),
- 24 at 360 nm, from 10 (RM45) to 85 (RM09),
- 25 at 400 nm, from 2 (RM44) to 62.99 (RM82)
- 26

5

- 27
- 28

1 Annex H: Photocatalytic Activity – Pigmentary and nano titanium dioxide grades

2

9

10 11

12

3 From Applicants

The detailed method used by Applicants for the determination of Photocatalytic Activity of Pigmentary Titanium Dioxide for the gas phase oxidation of nitric oxide has been reported (see Annex K "*Measurement methods - Appendix 6*"). The results are listed in the following Table 3.18.12.A.

From Ref.: Titanium Dioxide Grades used in Cosmetics, Data on Primary and Secondary Particle Size and Surface Properties and Measurement Method Descriptions. Third data package - Report 2 (31 March 2023)

13 Pigmentary titanium dioxide grades

Table 3.1.8.12.A: Photocatalytic activity as a function of the pigmentary titanium dioxidegrades

16

Produ ct	NO remove d (µmol)	Relativ e remova l (%)	NO2 generat ed (µmol)	NOx remove d (µmol)	NOx adsorb ed (µmol)	NOx desorb ed (µmol)	Produ ct	NO removed (µmol)	Relativ e remova l (%)	NO2 generat ed (µmol)	NOx remove d (µmol)	NOx adsorb ed (µmol)	NOx desorb ed (µmol)
RM01	2,91	8	1,89	1,02	0,01	0	RM39	0,05	0,1	0,03	0,03	0,01	0
RM02	2,22	6,1	0,95	1,27	0,01	0	RM67	3,62	9,8	3,05	0,57	0,01	0
RM03	1,26	3,4	1,09	0,18	0,01	0	RM67 b	2,57	6,9	2,17	0,41	0,01	0
RM04	2,75	7,4	2,2	0,55	0,01	0	RM68	1,79	4,8	1,55	0,25	0,01	0
RM05	2,77	7,4	1,35	1,42	0,01	0	RM69	4,22	11,3	3,58	0,65	0,01	0
RM06	1,27	3,4	1,01	0,26	0,01	0	RM69 b	1,25	3,4	1,22	0,04	0,01	0
RM07	0,73	1,2	0,22	0,51	0,01	0	RM70 a	12,73	34	6,15	6,59	0,01	0
RM08	1,15	3,1	0,46	0,7	0,01	0	RM70 b	16,99	45,1	7,1	9,89	0,01	0
RM19	1,03	2,9	0,13	0,9	0,01	0	RM70c	3,27	8,9	2,72	0,56	0,01	0
RM26	1,95	5,4	1,14	0,82	0	0	RM70 d	8,41	23	3,79	4,63	0,01	0
RM27	1,75	4,9	0,67	1,09	0,01	0	RM70 e	3,63	9,9	2,74	0,89	0,01	0
RM28	0,85	2,3	0,39	0,46	0,01	0	RM70 f	0,32	0,9	0,04	0,29	0,01	0
RM29	0	0	0	0,01	0,01	0	RM72 a	0,51	1,4	0,12	0,39	0,01	0
RM30	0,59	1,6	0,32	0,27	0,01	0	RM72 b	0,14	0,4	0,04	0,1	0,01	0
RM31	0,07	0,2	0,07	0,01	0,01	0	RM72c	0,94	2,5	0,71	0,24	0,01	0
RM32	0,02	0,1	0,02	0,01	0,01	0	RM72 d	0,28	0,8	0,05	0,24	0,01	0
RM33	0,05	0,2	0,04	0,02	0,01	0	RM72 e	0,66	1,8	0,15	0,51	0,01	0
RM34	0,01	0	0,01	0,01	0,01	0	RM72f	0,15	0,4	0,04	0,12	0,01	0
RM35	0,02	0,1	0,02	0,01	0,01	0	RM72 g	0,05	0,1	0,02	0,04	0,01	0
RM36	0,04	0,1	0,03	0,02	0	0	RM72i	0,18	0,5	0,02	0,17	0,01	0
RM37	0,12	0,3	0,01	0,12	0,01	0	RM72j -bis	0,14	0,4	0,04	0,1	0,01	0,01
RM38	0,04	0,1	0,04	0,01	0,01	0	RM72 k	0,18	0,5	0,02	0,17	0,01	0

17 18

From Ref.: PS and Surface Property - Pigment Final.xlx - Third Package (31 March 2023)

19

20 Nano Titanium dioxide grades

Photocatalytic Activity compared to the uncoated/undoped Material (%) (see Table
 3.1.8.12.B): Typical method: A 5% TiO₂ formulation irradiated in a Suntest CPS+ solar
 simulator for 30 minutes at 300 W/m². Sample measured before and after using a
1 colourimeter and compared to the colour change of the uncoated/undoped material exposed2 under the same condition.

3 4

From Ref.: CE-TiO2-23-003.0 - Att 1_Generic Description of Analytical Methods - final.pdf

5
6 Table 3.1.8.12.B: Photocatalytic activity as a function of the nano titanium grades,
7 compared to the uncoated / undoped materials (%)

		()	
Product Code	Photocatalytic Activity Compared to the uncoated/undoped Material (%)	Product Code	Photocatalytic Activity Compared to the uncoated/undoped Material (%)
RM09	≤10*	RM60	0.3
RM10	≤10	RM61	0.6
RM11	≤10	RM62	0.3
RM40	2.7	RM63	0.019
RM41	1.5	RM64	0.024
RM42	5.9	RM65	0.051
RM43	7	RM74a	≤ 10
RM44	3.3	RM74b	≤ 10
RM45	1.2	RM74c	≤ 10
RM46	1.8	RM74d	≤ 10
RM47	0.3	RM74e	≤ 10
RM48	8.1	RM75	≤ 10
RM49	1.2	RM76	≤ 10
RM51	1.8	RM77	≤ 10
RM52	2.4	RM78	≤ 10
RM53	0.9	RM80	≤ 10
RM55	1.2	RM81	≤10
RM56	0.6	RM79	≤ 10
RM57	0.6	RM82	≤10
RM58	1.2		
RM59	0.9		

8

9

Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf From Table on Page 19/28 – Column 12) Photocatalytic Activity Compared to the uncoated/undoped Material (%)

10 11

(*) RM09 (26nm mean primary particle size Feret min by number, 10% silica) is 12 13 representative of hydrophilic cosmetic nano grades - coated with silica but no organic (this grade has been extensively characterised by TDMA and used in their studies as G8-2). 14 Although marketed typically as an intermediate any additional treatment is optional and it 15 can also be used directly in sunscreens in appropriate (hydrophilic) formulations. If used in 16 hydrophobic formulations, an appropriate formulation step to improve compatibility is 17 18 necessary. During such formulating steps RM09 itself remains unchanged though 19 dispersants may become adsorbed on the surface to improve the compatibility with a particular formulation phase. (Therefore, RM09 is not an intermediate in REACH terms) 20 21 from Ref.: Physchem data tables Jan 2023 submission - Nano (corrected) - 30 June 2023 22 23

1 Annex I: RedOx potential – pigmentary and nano titanium grades

2 The method used by Applicants to determine the RedOx potential has been reported (see 3 Annex **K** "*Measurement methods* – *Appendix 7*).

- From Ref.: Titanium Dioxide Grades used in Cosmetics, Data on Primary and Secondary
 Particle Size and Surface Properties and Measurement Method Descriptions. Third data
 package Report 2 (31 March 2023)
- 7 Pigmentary Titanium dioxide grades

10 Table 3.1.8.13.A: RedOx Potential of the Pigmentary grades (from Ref.: PS and Surface 11 Property - Pigment Final – Third Package (31 March 2023))

Produ ct	Redox Potential (mV)	Product	Redox Potential (mV)	Product	Redox Potential (mV)
RM01	377	RM32	/	RM70c	/
RM02	/	RM33	(*)	RM70d	/
RM03	/	RM34	/	RM70e	(*)
RM04	/	RM35	/	RM70f	/
RM05	/	RM36	/	RM72a	/
RM06	/	RM38	/	RM72b	/
RM07	/	RM39	/	RM72c	/
RM08	/	RM67	/	RM72d	/
RM19	/	RM67b	/	RM72e	/
RM26	/	RM68	/	RM72f	/
RM27	/	RM69	/	RM72g	/
RM28	325	RM69b	/	RM72i	/
RM29	/	RM37	/	RM72j-bis	/
RM30	406	RM70a	349	RM72k	/
RM31	323	RM70b	/		

12 (*): Not measurable - too hydrophobic

13 Ref.: PS and Surface Property - Pigment Final - Third Package (31 March 2023)
 14 Nano Titanium dioxide grades

The values of the RedOx potential for the nano titanium dioxide grades are reported below inTable 3.1.8.13.B.

Table 3.1.8.13.B: RedOx Potential of the Nano grades (from Ref.: PS and Surface Property
Nano Final – Third Package (31 March 2023)

Nano grade	Redox Potential (mV)	Nano- grade	Redox Potential (mV)	Nano- grade	Redox Potential (mV)
RM09	359	RM52	/	RM74a	/
RM10	/	RM53	/	RM74b	/
RM11	(*)	RM55	/	RM74c	/
RM40		RM56	/	RM74d	/
RM41	399	RM57	/	RM74e	/
RM42	/	RM58	/	RM75	/
RM43	/	RM59	/	RM76	/
RM44	/	RM60	/	RM77	/
RM45	/	RM61	/	RM78	/
RM46	/	RM62	/	RM79	(*)
RM47	/	RM63	/	RM80	/
RM48	/	RM64	/	RM81	/
RM49	/	RM65	/	RM82	/
RM51	/				

19

(*): Not measurable - too hydrophobic

⁸ The values of the RedOx potential for the pigmentary titanium grades are reported below in 9 Table 3.1.8.13.A.

1 Annex J: HR-TEM and TEM images

2 3

High Resolution Electron Microscopy on Titanium Dioxide Grades used in Cosmetics (from CE Cons TD_Phys-chem second data package_23 03 2023.pdf

20

26

27

28

29

30

31

32

34

From Applicants

8 This report shows the structure of the titanium dioxide raw materials visible with High 9 Resolution Transmission Electron Microscopy (TEM) (up to 300,000x magnification). Primary 10 particle morphology and inorganic surface coatings are visible as well as, in some cases, the 11 crystalline lattice planes of the titanium dioxide. There are no lattice planes visible in the 12 surface coating layers as the alumina/aluminium hydroxide and silica are amorphous.

13 Powder specimens were dispersed in ethanol using an ultrasonic bath. The High Resolution 14 TEM images were taken on a JEOL JEM 2200fs operated at 200kV.

The images in this report are purely qualitative as only a small number of primary particles 15 16 can be imaged at such high resolutions. Quantitative analysis of the primary particle and 17 agglomerate size distributions and aspect ratio requires analysis of 300-600 particles per 18 sample at lower magnification and this assessment will be reported separately. 19

Ref. : CE Cons TD_Phys-chem second data package_23 03 2023.pdf

21 Pigmentary titanium grades :

22 For Pigmentary titanium grades, some typical high resolution TEM images of pigmentary grades that illustrate particular features for the different categories are shown (see Annex -23 24 TEM images), and those for every pigmentary grade analysed can be found below. 25

- Category a / pigmentary (Surface of Untreated Titanium Dioxide): Anatase RM01, Rutile RM02
 - Category b1 / pigmentary (Surface of Titanium Dioxide Treated with Low Levels of Inorganics (<2% Alumina and/or Silica) only): RM 30 - Rutile treated with 0.3% Alumina and 2.3% Aluminium Hydroxide
- Category b2 / pigmentary (Rutile treated with 0.3% Alumina, 2.3% Aluminium Hydroxide and 5% Hydrated Silica): RM31 - Rutile treated with 0.3% Alumina, 2.3% Aluminium Hydroxide and 5% Hydrated Silica.
- 33 - Category c1 / pigmentary (Surface of Titanium Dioxide Treated Only with Organics) : RM70f - Anatase with <5% Hydrogenated Lecithin
- 35 - Category c2 / pigmentary (Surface of Titanium Dioxide Treated with Low Levels of Inorganics (<2% Alumina and/or Silica) and also with Organics) : RM 35 -Rutile 36 37 treated with 0.3% Alumina 0.3%, 2.2%vAluminium Hydroxide, 2% Hydrogen 38 Dimethicone 2.0% (RM35)
- Category c3 / pigmentary (Surface of Titanium Dioxide Treated with Inorganics (Including 39 >2% Alumina and/or Silica) and with Organics Added) : RM38 - Rutile treated 40 with 0.2% Alumina, 3.7%, Aluminium Hydroxide, 0.4%, Zinc Oxide and 1% 41 42 Isostearic Acid.
- 43 44
- 45
- HR-TEM images : 46
- Categorie a / pigmentary: Surface of Untreated Titanium Dioxide 47
- 48 It can be seen that the lattice planes extend right up to the surface of the primary particle 49 with no surface species visible.
- 50 51

Figure 1: Anatase (RM01)	Fgure 2. Rutle (RM02)
Figure 1: Anatase (RM01)	Figure 2: Rutile (RM02)
Categorie b1 / pigmentary : Surface of Titanium Dioxide Treated with Low Levels of I norganics (<2% Alumina and/or Silica) only : At such low levels of inorganic coating, it is very difficult to see any evidence of the coating at the surface as shown in Figure 4.	Figure 4: Rufile treated with 0.3% Alumina and 2.3% Aluminium Hydroxide (BM30)
Figure 4: Rutile treated with 0.3% Alumina and 2.3% Aluminium Hydroxide (RM30)	
Category b2 / pigmentary : Surface of Titanium Dioxide Treated Only with More than 2% Alumina and/or Silica : In the most heavily surface treated raw materials,	Pgerk 5, Mole Heated -05-525-Alandea _235-Alandea
a layer of a few nanometres is visible at the surface especially with silica. Figure 6: Rutile treated with 0.3% Alumina,	20 m
2.3% Aluminium Hydroxide and 5% Hydrated Silica (RM31)	
Category c1 / pigmentary : Surface of Titanium Dioxide Treated Only with Organics :	Figure 3. Anatase silm 45% Hydrogenated Lecitini (18.704)
The lattice planes extend right up to the surface of the primary particle with no surface species visible	<u>20 nm</u>
Figure 3: Anatase with <5% Hydrogenated Lecithin (RM70f)	

3

1

4 Nano titanium grades

- 5 From Applicants
- 6 Some typical high resolution TEM images for nano grades are shown below and those for every grade
- 7 analysed can be found below:

_
Q
O

Surface of Nano Titanium Dioxide Treated with Inorganics		
In the most heavily surface treated raw materials, a layer of a few nanometres is visible at the surface especially with silica.	20 00	
	Figure 9: Nano Titanium dioxide 91.2%, Aluminium Hydroxide 4.1%, Stearic Acid 4.7% (RM60)	Figure 10 : Nano Titanium Dioxide with Silica coating (RM74d)

Figure 11: RM62 Figure 12: RM59 Different Morphologies of Nano Titanium Dioxide The primary particle sizes and morphologies of the nano titanium dioxide raw materials vary more than the pigmentary grades as shown below (all made by the Sulfate Process). 100 nm Figure 13: RM78 50 r Different Figure 17: RM64 Figure 18: RM63 Production for Processes Nano Titanium Dioxide Figures 11-16 show that a variety of morphologies and sizes can be produced by a single (Sulfate process Process) and the 50 nm 50 nm same is true of the Chloride Precipitation Process (see Figures 17 and 18).

- Pigmentary titanium grades TEM I mages (from Ref. : CE Cons TD_Phys-chem second data package_Annex 1 and 2_Pigment_23 02 2023.pdf)
- 3

Category A

Category b1

2 3 4

Category c1

6

- - Category c2

category c3

Nano titanium grades – HR-TEM images (from CE Cons TD_Phys-chem second data package_Annex
 3 and 4_Nano_23 02 2023.pdf)

RM77, RM78, RM79

RM80, RM81, RM82

Annex K: Measurement methods - Appendix 1: Determination of primary particle size distribution and shape by TEM

3 From Report 2 (Corrected) 30 June 2023: Titanium Dioxide Grades used in Cosmetics

Data on Primary and Secondary Particle Size and Surface Properties and Measurement Method
 Descriptions Section Appendix 1 Determination of Primary Particle Size Distribution and Shape

6 by TEM

7 (Informations similar as the ones provided in Ref.: Titanium Dioxide Grades used in
8 Cosmetics, Data on Primary and Secondary Particle Size and Surface Properties and
9 Measurement Method Descriptions. Third data package - Report 2 (31 March 2023) - Ref. CE10 TiO2-23-005.0)

11

12 The method determines size data of primary particles, such as number, volume and shape 13 information. For this purpose, electron micrographs are evaluated with image analysis 14 software and a touch-sensitive screen by drawing the crystal edges. All samples whose 15 primary particle boundaries can be clearly identified in a microscopic image are suitable in 16 principle for evaluation. All information on the volume distribution is derived from a sphere of 17 the determined diameter. If the primary particle boundaries are difficult to recognize for the 18 operator or if there is a margin of discretion, this has an unfavourable effect on the 19 measurement uncertainty.

20

21 From the powder three spatula tips are taken from different locations of the sample vessel 22 and a rubout is performed. The RM77 sample (aqueous dispersion) was previously dewatered 23 in the vacuum drying cabinet. A drop of rubbing was transferred to a TEM grid. The TEM 24 images were taken at different locations on the grid. Depending on the crystal size, 25 magnifications of between 16,000x and 40,000x were selected. All TEM images were taken 26 on the Zeiss AB 912 at a high voltage of 100kV. The recordings are evaluated with the 27 software Image Pro Plus and a touch sensitive monitor. The individual primary particles are bypassed with the contact pin at the outer edges. If possible, only clearly recognizable primary 28 29 particle lines were used for the evaluation. The data thus obtained are evaluated via an Excel 30 template. A frame correction according to International Standard ISO 13322-1 Particle size 31 analysis - Image analysis methods S.9 was performed.

33 34 35

Red line = left y-axis, Blue line = right y-axis

- 36 The X-axis is shown logarithmically and divided into classes.
- The red line represents a normalized density distribution of the particles. The following appliesto the y-axes:

- 1 With the number distribution q0: Percentage of the number of particles in the corresponding
- 2 class, without units
- For volume distribution q3: Percentage of the particle volume in the corresponding class, unit:
 [µm]
- 5 The blue line is the cumulative distribution. Here the particles are summed up class by class.
- 6 The x90; x50; x10 values are to be understood as follows:
- 7 e.g. x90 [μ m]: 0.50 => 90% of all particles are smaller than 0.50 μ m
- 8 e.g. x50 [μ m]: 0.25 => 50% of all particles are smaller than 0.25 μ m
- 9 The mean value is the mean value, with a perfect Gaussian distribution this is identical to the
- 10 x50.
- 11

- Annex K: Measurement methods Appendix 2: Determination of primary particle 1
- 2 size distribution and shape by SEM - Applicant #2 method (used for nano titanium
- 3 dioxide)
- 4 From Report 2 (Corrected) 30 June 2023: Titanium Dioxide Grades used in Cosmetics
- 5 Data on Primary and Secondary Particle Size and Surface Properties and Measurement Method
- Descriptions Section Appendix 2 Determination of Primary Particle Size Distribution and Shape 6 7 by SEM – Applicant #2 method (used for Nano Titanium Dioxide)
- 8 (Informations similar as the ones provided inRef.: Titanium Dioxide Grades used in Cosmetics,
- Data on Primary and Secondary Particle Size and Surface Properties and Measurement Method 9
- 10 Descriptions. Third data package - Report 2 (31 March 2023) - Ref. CE-TiO2-23-005.0)
- 11
- 12 From the powder three spatula tips are taken from different locations of the sample vessel 13 and dispersed 5min in a test tube together with ethanol in the ultrasonic bath. The suspension
- 14 is immediately dropped on a Si-wafer, dried and were examined without any metal coating.
- 15 Depending on the crystal size, magnifications of between 25,000x and 10,000x were selected.
- All SEM images were taken on the FE-Hitachi SU 70 with the aid of an in-lens detector and at 16
- 17 a high voltage of 5kV.
- 18 It is possible to determine primary particle size distributions by image analysis of SEM images
- 19 of materials with dense and well-defined primary particle boundaries. For example, in Image
- 20 1 (TEM) and Image 2 (SEM) below the material has very clear boundaries which are easy to
- 21 distinguish in the images prepared using both techniques.

Image 1 TEM

Image 2 SEM

24 Nevertheless, due to the translucent effect of the TEM picture it is easier to define the primary 25 particle boundaries than in the comparable SEM pictures with the same magnification. 26 Additionally, the resolution of the SEM is not as high as for TEM, which makes the image 27 evaluation even more difficult. Therefore, the primary particle size based on SEM pictures 28 typically gives larger sizes than that based on TEM pictures whilst the aspect ratio determined

29 by SEM is typically smaller than that based on TEM image analysis as shown in the table

Sample no.	Value / obtained by	TEM	SEM	
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	x50 ECD [nm]	39	44	
RM57	Aspect Ratio	1.76	1.49	
	x50 Feret min [nm]	30	38	
	x50 ECD [nm]	41	48	
RM58	Aspect Ratio	1.55	1.37	
	x50 Feret min [nm]	33	42	
5. A.S	x50 ECD [nm]	56	66	
RM61	Aspect Ratio	1.47	1.28	
	x50 Feret min [nm]	48	59	
1000	x50 ECD [nm]	40	47	
RM74c	Aspect Ratio	1.53	1.47	
	x50 Feret min [nm]	34	40	

2 However, for some nanomaterials the resolution of the SEM is not adequate to enable the 3 primary particle boundaries to be distinguished sufficiently to allow the image analysis software to function adequately whilst satisfactory images for analysis can be obtained with 4 5 TEM (see Images 3 and 4).

6 The limitation lies with the resolution of SEM and the ability to distinguish the primary particle

7 boundaries and therefore is not improved even with better dispersion techniques such as

8 those described in N. B. Ghomrasni et al. ("Challenges in sample preparation for measuring 9 nanoparticles size by scanning electron microscopy from suspensions, powder form and

complex media", Powder Technology, Volume 359, 2020, Pages 226-237) 10

11 12

13 As is clearly seen from Image 4, it is not possible to quantitatively analyse the SEM images of many of the nanomaterials and also, as shown in the comparative table, that for those 14 15 nanomaterials where analysis is possible, the SEM primary particle size is always larger than the TEM size and the aspect ratio is always lower for SEM than TEM. Therefore, the primary 16 particle size analysis of nanomaterials has only been done by TEM for all the nanomaterials. 17

- 1 Annex K: Measurement methods Appendix 3: Determination of primary particle
- size distribution and shape by SEM Applicant #1 method (used for pigmentary
 titanium dioxide)
- 4 From Report 2 (Corrected) 30 June 2023: Titanium Dioxide Grades used in Cosmetics
- Data on Primary and Secondary Particle Size and Surface Properties and Measurement Method
 Descriptions Section Appendix 3 Determination of Primary Particle Size Distribution and Shape
- 7 by SEM Applicant #1 method (used for Pigmentary Titanium Dioxide)
- 8 (Informations similar as the ones provided in Ref.: Titanium Dioxide Grades used in
- 9 Cosmetics, Data on Primary and Secondary Particle Size and Surface Properties and
- 10 Measurement Method Descriptions. Third data package Report 2 (31 March 2023) Ref. CE-11 TiO2-23-005.0)
- 11 12
- 13 Microscope Hitachi Regulus 8230
- 14 Operating conditions Working Distance: 8 mm
- 15 High Voltage: 2.5 kV
- 16 Deceleration: 1.5 kV
- 17 Landing Voltage: 1.0 kV
- 18 Detector: PDBSE (Backscatter electron detector)
- 19 Sample Preparation: Cross-Section
- 20 Image Evaluation: Automated (user independent)
- 21
- 22 The method was first described in a peer reviewed publication in 2013¹, the relevant
- 23 information is summarized in the following sections.
- 24 Sample Preparation:
- 25 The first step is to riffle² the as delivered sample to isolate a representative fraction of 2g,
- which is then dry-mixed³ with a hot-mounting resin⁴. The mixture is hot-mounted at 180°C and 125bar for 12 minutes⁵. The cross-section is prepared by a five-step grinding and
- polishing process⁶, which is completed with a polishing step using colloidal silica⁷ and thorough
 cleaning of the sample surface.
- 30
- 31 Measurement:
- 32 Measurement is performed under standardized conditions: A series of 8 images is acquired,
- the image size is 2560 x 1920 pixels; the pixel size was chosen according to the size of the constituent particles with most samples measured with a pixel size of 3.3nm; but 10nm is
- used for RM39 with a d50 of 360nm, for example.
- 3637 I mage evaluation:
- **Image evaluation is done with the image analysis software "analySIS" fr**om Olympus⁸ using exclusively the implemented functions. The different steps of the procedure are fixed in an input sequence (macro) that is applied in the same way to each of the acquired images. The carefully tested assumptions underlying the evaluation procedure are as follows:
- 42 1. The constituent particles are convex particles with a non-complex shape.
- 43 2. The observed grey-values are a good approximation of a Gaussian distribution.
- 44

51

- 45 The steps of the automated image evaluation are as follows:
- 46 Automated Brightness and contrast adjustment
- 47 Preparation of a masking image:
- 48 Noise filtering
 - Automated thresholding
 - Binarization
 - Removal of isolated pixels
 - Separation of touching/bound particles (separation of aggregates and agglomerates)
- 53 Applying the mask to the original image
- 54 Detecting the particles (including size, shape and gray scale features)
- 55 Filtering of detected particles (removal of false detections)
- Shape filtering (convexity > 0.90 and formfactor⁹ > 0.86)

Grey-value filtering (making mean and standard-deviation symmetric)

The described procedure leads to a reproducible, user-independent evaluation of several
thousand particles and thus to a well-founded statistical description of the examined pigment.

5

- 6 1 https://doi.org/10.3762/bjnano.5.192
- 7 2 Micro Rotary Riffler, Quantachrome
- 8 3 MM400, Retsch
- 9 4 Polyfast, Struers
- 10 5 CitoPress5, Struers
- 11 6 Tegramin, Struers
- 12 7 Standard Colloidal Silica Suspension, Struers
- 13 8 Meanwhile Analysis is replaced by Stream and Olympus is now called Evident.
- 14 9 Sphericity according to the definition of Hakon Wadell
- 15

Annex K: Measurement methods - Appendix 4: Determination of secondary particle size distribution by Disc Centrifuge

3

4 From Report 2 (Corrected) 30 June 2023) – Titanium Dioxide Grades used in Cosmetics 5 Data on Primary and Secondary Particle Size and Surface Properties and Measurement Method Descriptions - Section Appendix 4 Determination of Secondary Particle Size Distribution by 6 7 Disc Centrifuge and from Ref. Primary and Secondary PS and Surface Properties - Report 8 (corrected).docx - 30 June 2023 9 (Information similar as that provided in Ref.: Titanium Dioxide Grades used in Cosmetics, 10 Data on Primary and Secondary Particle Size and Surface Properties and Measurement Method 11 Descriptions. Third data package - Report 2 (31 March 2023) - Ref. CE-TiO2-23-005.0) 12 13 Nano Titanium Dioxide 14 All samples are dispersed and measured in the same way whether hydrophilic or hydrophobic. 15 16 0.4 g of the powder sample is pre-wetted with ethanol and 2 drops of Disperbyk 190 and the 17 paste is sonicated in an ultrasonic bath for a few seconds. 18 19 After the pre-wetting of the sample, 50 ml of 24% propanediol in 1 g/L Calgon N solution is 20 added and the suspension is dispersed for 10 minutes with a Sonics ultrasonic horn at an 21 amplitude of 57%. 22 23 For the measurement of the particle size, 0.1ml of the dispersion is injected into the disc 24 centrifuge (CPS DC) operating at a speed of 20,000 rpm and a UV light source at 470nm. 25 26 The calculation of the results is done by the device software. 27

- 28 Pigmentary Titanium Dioxide
- 29 Dispersing agent:

Hydrophilic materials - HMP Solution: 0.6g Sodium Hexametaphosphate made up to
 1,000g with ultra-pure water.

Hydrophobic materials - Imbentin Solution: 0.5g Imbentin-SG/45/AG + 0.05g
 Potassium Tripolyphosphate (KTTP) made up to 1,000g with ultra-pure water.

- 34 Preparation of dispersion:
 - 2g of pigment + 80g dispersing agent.
 - 1min dispersing by Ultra Turrax at 9,500 rpm
 - 1:25 dilution in dispersing agent
- 38 Measurement:
- 39 For the measurement of the particle size, 0.1ml of the dispersion is injected into the disc
- 40 centrifuge (CPS DC) operating at a speed of 3,000rpm and a UV light source at 405nm.
- 41 The calculation of the results is done by the device software.
- 42

35

36

Annex K: Measurement methods - Appendix 5: Determination of Zeta potential and 1 2 iso-electric point pH

3 (From Ref.: Titanium Dioxide Grades used in Cosmetics, Data on Primary and Secondary 4 Particle Size and Surface Properties and Measurement Method Descriptions. Third data 5 package - Report 2 (31 March 2023) - Ref. CE-TiO2-23-005.0 and from Ref.: and from Ref. Primary and Secondary PS and Surface Properties - Report (corrected).docx - 30 June 2023). 6 7

8 Measurement limitations

9 During the determination of the Zeta Potential, it is necessary to maintain a constant ionic strength for comparability of the measured values. For this reason, the measurement was 10 11 performed in a 1 mM potassium chloride (KCI) solution. This concentration was chosen to 12 stabilize the ionic strength satisfactorily but at the same time not to interfere with the actual 13 measurement. However, such a concentration only effectively stabilizes the ionic strength in 14 the pH range from 4 to 10, so it is essential to consider the measured Zeta Potentials at the 15 extremes of pH as not entirely reliable. Other processes, such as increased solubility of TiO₂ 16 or coating materials may play a role in the potential inaccuracy of measurements at pH values 17 greater than 10 and less than 4.

18

19 Experimental

20 A solution of 1 mM KCl in deionized water was filtered through a 0.2 µm pore size filter 21 membrane. Then, 20 mg of TiO₂ sample was dispersed in 200 ml of KCl solution using an ultrasonic bath (DT255H, Bandelin) for 5 min to form a 0.01% (w/v) dispersion. The 22 23 dispersion was then stirred on a magnetic stirrer while adjusting the pH with NaOH or HCI, 24 always at a concentration of 0.1 M or 0.01 M in deionized water. pH was measured using a 25 pH meter (HI 5521, HANNA Instruments) calibrated with pH standards before use. The pH of 26 the sample was adjusted to 6 and then gradually increased to pH 11 using NaOH. 0.8 ml 27 sample was taken for Zeta Potential measurement at each desired pH value. In the next step, a fresh dispersion of the test sample was prepared, and the pH was adjusted to 5 and then 28 29 gradually decreased to pH 1 using HCI. The measurement was carried out in the same way 30 as the previous sample. Zeta potentials were recorded using a Zetasizer Nano ZS (Malvern). 31 A new disposable folded capillary cell was used for each sample.

32

33 The Zeta Potential of the sample at each pH was recorded in three instrumental runs and 34 plotted as a graph where the error bars represent the standard deviation between the three 35 measurements. Experimental data points were fitted using the polynomial function Poly4 in 36 Origin 2018 software. The isoelectric point (IEP) was calculated from the fitted curve as the 37 pH value at which Zeta Potential = 0.

1 Annex K: Measurement methods - Appendix 6: Determination of photocatalytic 2 activity of pigmentary titanium dioxide for the gas phase oxidation of nitric oxide

3 (From Ref.: Titanium Dioxide Grades used in Cosmetics, Data on Primary and Secondary
4 Particle Size and Surface Properties and Measurement Method Descriptions. Third data
5 package - Report 2 (31 March 2023) - Ref. CE-TiO2-23-005.0 and from Ref. Primary and
6 Secondary PS and Surface Properties - Report (corrected).docx - 30 June 2023)

7

8 The photocatalytic activity of Pigmentary Titanium Dioxide for the gas phase oxidation of nitric 9 oxide (NO) under illumination with UV light has been determined according to ISO 22197-1.

- 10
- 11 Measurement procedure

Each sample powder was placed in a sample holder (5 x 10 cm² dimensions) and pressed
slightly with a plunger. Afterwards the sample was mounted into the photocatalytic reactor.
The height of each sample was adjusted to 5 mm distance from the glass reactor cover.

15

A gas mixture of Synthetic Air/NO (C(NO)=1ppm); ca. 50% relative humidity) was fed in the 16 17 system, at first by-passing the reactor until a stable signal was achieved. At the beginning of 18 each experiment the gas mixture was directed through the reactor over the sample without 19 UV light illumination, resulting in a dark adsorption NO uptake. After NO signal reached 20 constant level again, UV light (365 nm) was switched on and the sample was illuminated for 21 300 minutes. Upon switching off the light source the signal returned to its origin without illumination. After stopping NO and feeding only Synthetic Air over the sample, a desorption 22 23 branch of the signal was observed for several minutes at the end of the experiment.NO oxidation rate was determined according to the ISO 22191-1 standard. Table 1 lists the 24 25 relevant parameters during the tests.

26 27

Table 1: Parameters during the NO oxidation tests.

Parameter	Value
Temperature gas phase	21 °C
Gas flow rate	3 L/min
Gas composition	1 ppm NO in N ₂
Gas humidity	50 % relative humidity
Reaction vessel	According to ISO 22191-1, material: PEEK, gas volume over the sample: 25 ml (0.5 ml)
Sample size	5 x 10 cm ²
Light intensity	10 W/m ² (peak wavelength 365 nm)
Hydrodynamic residence time	0.5 s
Gas Analyzer	Horiba APNA-370

28 29

The results of NO oxidation are summarized as the total absolute amount of NO removed from the gas phase in the 5 h test interval given in µmol and also the relative removal, in relation to the maximum attainable in the test.

33

Additionally, according to ISO 22197-1, also the generated NO2 as well as absorbed, desorbed, and removed NOx are calculated and are reported.

Annex K: Measurement methods - Appendix 7: Determination of Redox Potential 1

2 (From Ref.: Titanium Dioxide Grades used in Cosmetics, Data on Primary and Secondary 3 Particle Size and Surface Properties and Measurement Method Descriptions. Third data package - Report 2 (31 March 2023) and from Ref. Primary and Secondary PS and Surface 4 5 Properties - Report (corrected).docx - 30 June 2023).

- 6 7
- 8 Sample Preparation

9 0.1g made up to 1L with demineralised water in a round bottomed flask of which 250 ml transferred to a 400 ml tall glass flask. Glass electrode inserted and sample mixed for 10 10 11 minutes reading taken when stable for 1 min.

12

19

30

- 13 Standardising Electrode
- 14 200 ml plastic container filled with fresh redox standard test solution and electrode immersed 15 until stable reading observed.
- The reading should be within 30 mV of the value expected for the standard test solution. 16
- 17 Measurement repeated with fresh solution.
- 18 The second reading should not differ from the first by more than 10 mV.
- 20 Procedure

21 After the electrode/meter assembly has been standardized as described above, 22 electrode was rinsed three times using a demineralised wash bottle.

- 23 • Sample was poured into in a clean glass beaker and electrode immersed into solution 24 supported by a lab stand.
- 25 • Adequate agitation throughout the measurement period achieved using a magnetic 26 stirrer. 27
 - Millivolt potential of the solution recorded after allowing to mix for 10 minutes.

• Second portion of the sample measured as stated in above procedure and test deemed 28 29 complete when two successive portions differ by no more than 10 mV.

31 Summary of test conditions

Sample concentration (gpl)	0.1
Temperature	20 °C
Volume ml	250 ml
ORP instrument	WTW pH1970i
Electrode type	Glass electrode SenTix ORP
Electrode SN	8230907045
Electrode fill solution	KCI

Annex K: Measurement methods – Appendix 8: Dispersibility with Bovine Serum
 Albumin (BSA) dispersant

3

From **Ref.** "Report 1 (corrected)" 30 June 2023 – Titanium Dioxide Grades used in Cosmetics Data on Dispersibility and Measurement Method Descriptions -Section Appendix 2 Dispersibility with Bovine Serum Albumin (BSA) dispersant as used for in vitro genotoxicological studies (following the Nanogenotox method) and Ref.: Dispersibility data on Cosmetics TiO2 grades - Report (corrected).docx – 30 June 2023

The titanium dioxide sample is formulated in 0.05% w/v BSA-water solution. The solvent was chosen according to the Nanogentox protocol. The dispersion protocol is based in the recommendations of the Nanogenotox protocol. A sterile 0.05% w/v BSA in Milli water solution is used to prepare the TiO₂ dispersion. For preparing a 1 mg/mL stock dispersion, 6 mg of the

14 nanomaterial is prewetted with approx. 0.03 mL pure ethanol (purity \geq 99%) and dispersed

15 in 5.97 mL BSA- MilliQwater (0.05% w/v).

16 In order to obtain a homogeneous dispersion, this mixture is ultrasonicated with a probe

17 sonicator (Sonics Vibra Cell VC505) for approx. 13 minutes at 500 W and approx. 10%

18 amplitude. The plastic vial is cooled in an ice water bath during sonification.

19

20 Dispersion protocol

Final sample volume	6 mL
Final sample concentration	1 mgmL stock dispersion
Solvent	0.05 wt% BSA-water
Prewetting	In 0.5 vol% ethanol (purity \geq 99%)
Dispersing agent	BSA
Sonication power	500 W at 10% amplitude
	6500 J/mL sample volume (500 W x 780 s x
	0.1 (amplitude) / 6 mL)
Sonication time	13 min
Sonication type	Probe sonication
Max stability time	30 min

21

25

26 27

28

22 Maximum stability time is defined to be 30 min.

Particle sizing by centrifugal sedimentation is conducted on a CPS-instruments DC 24000
 UHR, with the following settings:

- Medium: Density gradient of 0 to 8% sucrose in water topped with 1 ml dodecane

- Rotation speed: 15,000 rpm
 - Calibration with 196 or 184 nm PMMA standard, 225 µl in 50 ml water
- Measurement range: 0.03 μm to 2 μm
- 29 Particle density: 4.1 g/ml
- 30- Particle Refractive index @ 405 nm (detector wavelength) n = 2.682031(https://refractiveindex.info/?shelf=main&book=TiO2&page=Bodurov)
- 32 Particle absorption @ 405 nm k = 0
- 33 Fluid density: 1.01 g/ml
- 34 Fluid Refractive index: 1.34
- 35 Fluid viscosity: 0.95 cP
- 36
- 37 References

Nanogenotox: Final protocol for producing suitable manufactured nanomaterial exposuremedia. The generic NANOGENOTOX dispersion protocol July 2011.

40 41

Two other former distinct reports have been provided by Applicants for describing the dispersibility method with Bovine Serum Albumin (BSA)

1 A/ Dispersibility with Bovine Serum Albumin (BSA) dispersant as used for in vitro

- 2 genotoxicological studies (following the Nanogenotox method) (From Ref.:
- 3 Dispersibility Nanogenotox Report, Fourth data package 21 April 2023)
- 4
- 5 General Description
- 6 The titanium dioxide sample is formulated as a 2.56 mg/ml prewetted (ethanol) dispersion in
- 7 BSA-solution (0.05% wt), dispersed using 16 minutes sonication with 10% amplitude
- 8 (ultrasonic sonotrode) in small glass vials and cooled in an ice water bath during sonification.
- 9 Particle measurement is performed with a CPS Disc Centrifuge (DC24000).
- 10 BSA= Bovine Serum Albumin
- 11

12 Preparation details

Vials:	20 ml scintillation vials
Total volume of dispersion	6 ml
Total sample weight (6ml)	15.3 mg
Total prewetting ethanol	0.03 ml (3 portions of 0.01 ml)
Total BSA-solution volume	5.97 ml (2 portions : 0.97 ml after prewetting and additional 5 ml)
Ice bath:	Isolated Box filled with 80-90% ice and 10-20% water (inside the box as vial platform = a 250 ml glas filled with ice and upside down)
Ultrasonic horn/sonotrode	Sonifier S-450 (analog) with a standard 13 mm disruptor horn, (UF), manufacturer: Branson Ultrasonics (now Emerson)
Energy ultrasonic horn:	according to Nanogenotox protocol = 3,136 MJ/m ³ (16 minutes with 10% amplitude)
Dispersing amplitude:	10%
Dispersing time:	16 minutes
Optical Data used:	BI=2.75 AI=0.05
Gradient in DC:	Sugar based density gradient
DC (disc centrifuge):	CPS Instruments DC24000 (settings as shown below)

13

- 14 15 CDS DC24000 S
- 15 CPS DC24000 Settings
- Medium: Density gradient of 0 to 8% sucrose in water topped with 1 ml dodecane
- 17 Rotation speed: 20,000 rpm
- 18 Calibration with 710nm standard
- 19 Measurement range: 0.03 μm to 3 μm
- Particle density: 4.1 g/ml
- Particle Refractive index @ 405 nm (detector wavelength) n = 2.75
- 22 (https://refractiveindex.info/?shelf=main&book=TiO2&page=Bodurov)
- Particle absorption @ 470 nm k = 0.05
- Fluid density: 1.075 g/ml
- Fluid Refractive index: 1.3706
- Fluid viscosity: 2.0cps
- Shape Factor: 1.5

28

29 DiscCentrifuge (DC) Technique

The disc centrifuge measures particle size distributions using the differential sedimentation method. Particles settle in a sugar-based density gradient under a gravitational field according **to Stokes' Law. Depending on their size, particles take different times to pass through the** gradient in the disc. In the outer range of the rotor a light source and a detector is positioned. The attenuation of light by particles is measured and according to Stokes' Law and Mie-Theory a particle size distribution (mass and number) may be calculated.

36

All measurement preparations are done accurately (but non-sterile) by the NANOGENOTOX
dispersion protocol, Standard Operation Procedure (SOP) and background documentation,
July, 2011, WP 4: Physicochemical Characterisation of Manufactured Nanomaterials (MNs)
and Exposure Media (EMs), Deliverable 3: Final protocol for producing suitable MN exposure
media, Keld Alstrup Jensen, *et al.* (The National Research Centre for Working
Environment/CEA/INRS), V.2 (Final), Creation 31.08.2010, Completion 09.07.2011

- 43 44
- 45

1 B/ Dispersibility with Bovine Serum Albumin (BSA) dispersant as used for in vitro 2 genotoxicological studies (Following the Nanogenotox method) (from Ref. From Report 1 - Titanium Dioxide Grades used in Cosmetics - Data on Dispersibility and 3 4 Measurement Method Descriptions - Third package - 31 March 2023) 5 6 The titanium dioxide sample is formulated in 0.05% w/v BSA-water solution. The solvent was 7 chosen according to the Nanogenotox protocol. The dispersion protocol is based in the recommendations of the Nanogenotox protocol. A sterile 0.05% w/v BSA in Milli water solution 8 is used to prepare the TiO2 dispersion. For preparing a 1 mg/mL stock dispersion, 6 mg of 9 the nanomaterial is prewetted with approx. 0.03 mL pure ethanol (purity \geq 99%) and 10 dispersed in 5.97 mL BSA- MilliQwater (0.05% w/v). 11 12 13 In order to obtain a homogeneous dispersion, this mixture is ultrasonicated with a probe 14 sonicator (Sonics Vibra Cell VC505) for approx. 13 minutes at 500 W and approx. 10% 15 amplitude. The plastic vial is cooled in an ice water bath during sonification. 16 17 18 Maximum stability time is defined to be 30 min. 19 Particle sizing by centrifugal sedimentation is conducted on a CPS-instruments DC 24000 20 UHR, with the following settings:

- Medium: Density gradient of 0 to 8% sucrose in water topped with 1 ml dodecane 21
- 22 • Rotation speed: 15,000 rpm
- Calibration with 196 or 184 nm PMMA standard, 225 µl in 50 ml water 23
- 24 • Measurement range: 0.03 µm to 2 µm
- 25 • Particle density: 4.1 g/ml
- 26 • Particle Refractive index @ 405 nm (detector wavelength) n = 2.6820
- 27 (https://refractiveindex.info/?shelf=main&book=TiO2&page=Bodurov)
- 28 Particle absorption @ 405 nm k = 0
- Fluid density: 1.01 g/ml 29
- Fluid Refractive index: 1.34 30
- 31 • Fluid viscosity: 0.95 cP
- 32 References
- Nanogenotox: Final protocol for producing suitable manufactured nanomaterial exposure 33
- 34 media. The generic NANOGENOTOX dispersion protocol July 2011. 35
- 36

- Annex K: Measurement methods Appendix 9: Dispersibility in water (following the 1 2 SCCS/1516/13 protocol) (so called by Applicant "modified SCCS method") 3 From Ref. "Report 1 (corrected)" 30 June 2023 - Titanium Dioxide Grades used in 4 5 Cosmetics Data on Dispersibility and Measurement Method Descriptions - Section Appendix 1 Dispersibility in water (following the SCCS/1516/13 protocol) ("modified SCCS method") 6 7 (Informations similar as the ones provided in Ref. Report 1 - Titanium Dioxide Grades used 8 in Cosmetics - Data on Dispersibility and Measurement Method Descriptions - Third package 9 - 31 March 2023) 10 11 The dispersibility of a material is based on its inherent properties, so that it is not always 12 possible to disperse all materials in the same solution or under the same conditions. 13 14 Applicant #2 uses a dispersibility protocol which is typically very useful to disperse a broad 15 range of nano titanium dioxide in water. It follows the method used for data submitted to SCCS/1516/13 Revision of the Opinion on Titanium Dioxide, nano form and is also consistent 16 17 with the EFSA guideline for the preparation of nanomaterials. 18 19 The SCCS method had to be changed to obtain validated results: 20 21 The concentration of 8mg/ml is relatively high in order to obtain sufficient intensity when 22 measuring by the optical disc centrifuge (DC) method. 23 24 The prewetting and the dispersing aids have been changed to obtain optimal results. In this 25 method the dispersants consist of Polyphosphate and PDO (1,3 Propanediol) and the material 26 is prewetted with Ethanol and Disperbyk 190 to obtain optimal results with hydrophobic and 27 hydrophilic grades. 28 29 The dispersion energy input is 600 J/ml and the quality of the dispersion is measured by DC. 30 31 The adjustment of the DC is optimised to show the quality of the dispersion for nano and 32 pigmentary material. 33 34 The stability of the dispersion is not the main goal of the experiment, but the material is 35 stable for two to three hours and can be redispersed by mixing with a magnetic stirrer. It is 36 always advisable to check for settling, even after some minutes, depending on the material's 37 particle size. Fine particles stay in the suspension while coarse particles settle more quickly. 38 39 The final pH value is dependent on the material dispersed and neither pH nor ionic strength 40 have been measured. 41 42 Dynamic Light Scattering (DLS) is not feasible for the measurement of the dispersibility of 43 pigmentary material and to obtain comparability, all dispersions (of nano- and of pigmentary 44 material) have been measured by disc centrifuge. 45 46 47
- 48

Annex L: Particle shape, Aspect Ratio - Pigmentary and nano titanium dioxide 1

2 grades

3 Table 3.1.9.1.A1: Pigmentary Titanium Dioxide physico-chemical data (from ref. PS and

Surface Property - Pigment Final.xlsx) – Primary particle sizes determined by SEM expressed by number and by mass, Particle size of agglomerates / aggregates measured by CPS DC 4

5

6 expressed by mass and by number, % nano determined by SEM expressed by number and 7 by mass, shape and aspect ratio determined by SEM

					_	_				Partic	cle Size	Particle	e Size f
		Prima	ary Parti	cle Size	Prii Si	mary Pa ize by m	rticle ass			Agglo	omerat	Agglor	nerat
		k	(Feret _{mi}		(Equi	valent C	Circular			/Aaa	es iregate		edate
			(1.01.01111	17		Diamete	er)			s by (CPS DC	s by CF	PS DC
										by I	mass	by nur	mber
		Mean	Median	% Nano	Mean	Median	% Nano		Shape				
Product	Categ	size	size	(SEIVI)% by	size	size	(SEM)%	Descriptio	Aspe	size	size	size	n size
Code	ory	(SEM)	(SEM)	number	(SEM)	(SEM)	< 100	n	ct Datial	[nm]	[nm]	[nm]	[nm]
		[nm]	[nm]	< 100 nm	Lumi	[nm]	nm		Ratio				
RM01	а	126	120	27,2%	159	153	6,0%	Spheroida	1,29	424	364	271	255
RM02	а	14/	142	8,7%	1/9	1/4	1,4%	Spheroida	1,31	424	380	250	300
RM03	а	212	200	3,1%	303	289	0,0%	Spheroida	1,26	542	517	607	403
RM04	а	138	130	19,2%	180	1/2	3,3%	Spheroida	1,30	577	528	318	374
RM05	c2	125	121	24,8%	155	149	6,2%	Spheroida	1,25	470	410	262	275
RM06	C2	182	1/6	8,5%	249	240	0,1%	Spheroida	1,25	690	625	404	412
RM07	c2	128	123	23,8%	159	154	5,1%	Spheroida	1,25	435	347	120	201
RIVIU8	c2	131	126	21,9%	162	15/	3,9%	Spheroida	1,28	408	352	235	252
RIVELY	c2	133	126	22,9%	1/3	166	4,3%	Spheroida	1,25	458	410	294	2//
RIVI26	a	106	103	45,9%	121	110	22,9%	Spheroida	1,25	812	567	112	166
RIVI27	CI	108	104	42,2%	122	107	20,5%	Spheroida	1,27	1062	910	308	3/9
RIVI28	a 	149	144	17 50/	195	107	1,4%	Spheroida	1,30	589 777	509	320	311
RIVIZ9	ст b1	147	141	17,370	190	170	1,270	Spheroida	1,31	101	421	330	200
RIVI3U	b1 b2	143	137	1/,3%	100	1/8	1,8%	Spheroida	1,31	484	431	270	309
DM22	02	125	143	22 0%	192	170	1,270	Spheroida	1,30	261	200	299	204
DM33	C2	146	140	16.5%	100	19/	1,070	Spheroida	1,25	1205	070	170	204
RM34	c2	140	140	10,3%	191	186	1,270	Spheroida	1,31	1295	408	203	320
RM35	c2	145	140	16.2%	188	181	1,0%	Spheroida	1 30	710	653	341	463
RM36	c2	143	140	15.6%	191	184	1,070	Spheroida	1 31	1058	948	379	450
RM37	h2	375	345	0.0%	533	503	0.0%	Spheroida	1 33	891	838	341	464
RM38	C3	388	357	0.0%	551	521	0.0%	Spheroida	1.33	912	864	574	449
RM39	c3	379	360	0.0%	541	516	0.0%	Spheroida	1.32	919	887	874	550
RM67	а	120	115	30,5%	147	142	9.1%	Spheroida	1.25	511	356	169	208
RM67b	а	125	119	26,8%	155	150	6,4%	Spheroida	1,26	485	402	240	261
RM68	а	197	189	5,9%	275	264	0,0%	Spheroida	1,29	563	540	652	411
RM69	а	131	125	24,7%	170	163	4,0%	Spheroida	1,28	453	374	278	256
RM69b	а	135	131	18,3%	167	162	2,8%	Spheroida	1,30	492	407	229	285
RM70a	с1	120	114	32,0%	150	144	9,1%	Spheroida	1,26	476	330	120	186
RM70b	с1	125	118	27 <u>,</u> 6%	161	154	7,3%	Spheroida	1,25	457	324	113	176
RM70c	а	118	113	31,9%	142	138	10,4%	Spheroida	1,25	486	389	213	237
RM70d	с1	129	123	24,9%	164	158	5,1%	Spheroida	1,26	796	735	185	293
RM70e	c1	122	116	29,3%	153	147	8,7%	Spheroida	1,25	471	375	194	228
RM70f	c1	135	127	22,9%	180	172	4,0%	Spheroida	1,25	568	467	206	264
RM72a	c1	144	140	15,7%	183	177	1,2%	Spheroida	1,29	540	369	211	227
RM72b	с1	135	129	21,5%	175	168	2,9%	Spheroida	1,28	442	324	102	178
RM72c	а	135	129	21,8%	174	168	3,1%	Spheroida	1,28	442	376	296	269
RM72d	с1	135	131	19,2%	169	164	2,5%	Spheroida	1,30	473	364	209	245
RM72e	с1	135	129	22,6%	174	167	3,0%	Spheroida	1,28	472	348	152	205
RM72f	c1	134	127	22,9%	173	166	3,4%	Spheroida	1,28	453	334	101	186
RM72g	c1	147	144	15,5%	188	182	0,9%	Spheroida	1,29	456	334	179	219
RM72i	c2	135	129	21,9%	175	168	3.2%	Spheroida	1,30	623	437	226	254

RM72j- bis	c2	163	155	13,0%	224	214	0,4%	Spheroida I	1,26	637	535	297	323
RM72k	c1	135	129	21,9%	175	168	3,2%	Spheroida	1,30	623	437	226	254

2 3 Table 3.1.9.1.A2: Pigmentary Titanium Dioxide physico-chemical data (from Ref. PS TEM

tables - Pigment.xls) - Primary particle sizes determined by TEM expressed by number and

by mass, % nano determined by TEM expressed by number and by mass, shape and aspect

4 5 ratio determined by TEM

Г

		Priı Siz	mary Pa e by nur (Feret _{mi}	rticle mber n)	Primary (Equival	Particle Si ent Circula	ze by mass r Diameter)		
Product code	Categ ory	Mean size (TEM) [nm]	Median size (TEM) [nm]	% Nano (TEM) % by number < 100 nm	Mean size (TEM) [nm]	Median size (TEM) [nm]	% Nano (TEM) % by mass < 100 nm	Description	Aspec t Ratio by TEM
RM01	а	121	115	35,1%	180	180	3,8%	Spheroidal	1,20
RM02	а	167	163	12,0%	260	263	0,4%	Spheroidal	1,38
RM03	а	194	183	7,4%	311	310	0,2%	Spheroidal	1,22
RM04	а	130	126	27,5%	200	195	2,1%	Spheroidal	1,23
RM05	c2	130	126	27,2%	196	193	2,2%	Spheroidal	1,23
RM06	c2	188	178	9,9%	298	300	0.3%	Spheroidal	1,22
RM07	c2	122	115	33.1%	182	180	3.2%	Spheroidal	1.22
RM08	c2	137	132	24.9%	223	221	1.6%	Spheroidal	1.31
RM19	c2	1.39	135	21.9%	206	206	1.5%	Spheroidal	1.23
RM26	82 a	88	85	66.7%	130	131	19.8%	Spheroidal	1 24
RM27	c1	95	93	58.7%	136	136	15.1%	Spheroidal	1 24
RM28	a	187	183	5.5%	309	301	0.1%	Spheroidal	1 46
RM29	c1	181	176	9.6%	289	294	0.2%	Spheroidal	1 40
RM30	b1	169	165	8.0%	286	274	0,2%	Spheroidal	1 / 9
RM31	h2	162	161	13 1%	264	203	0,270	Spheroidal	1 38
RM32	c2	170	169	9.5%	204	201	0.2%	Spheroidal	1,30
DM22	C2	175	109	9,370	290	200	0,2%	Spheroidal	1,40
DM24	C2	170	172	9,270 11 10/	∠91 212	292	0,2%	Spheroidal	1,41
DM25	C2	164	161	11,170	276	271	0,270	Spheroidal	1,49
RIVI30	C2	164	101	10,070	270	271	0,4%	Spheroidal	1,42
RIVISO DM27	62 62	222	100	12,270	207	202	0,4%	Spheroidal	1,4Z
RIVI37	02	332	270	4,1%	700	012	0,0%	Spheroidal	1,55
RIVI38	C3	3/0	351	1,0%	798	813	0,0%	Spheroidal	1,50
RIVI39	C3	427	406	0,0%	142	/48	0,0%	Spheroidal	1,42
RM67	а	101	96	53,2%	156	154	10,6%	Spheroidal	1,22
RM67b	а	114	108	40,8%	170	171	5,5%	Spheroidal	1,24
RM68	а	211	210	5,5%	365	371	0,1%	Spheroidal	1,22
RM69	а	119	110	38,9%	211	207	3,5%	Spheroidal	1,34
RM69b	а	145	140	18,1%	228	226	0,8%	Spheroidal	1,41
RM70a	c1	98	94	55,3%	149	149	11,9%	Spheroidal	1,23
RM70b	c1	103	98	51,5%	163	159	9,4%	Spheroidal	1,24
RM70c	а	93	87	63,5%	141	139	17,2%	Spheroidal	1,21
RM70d	c1	116	110	38,7%	174	174	5,0%	Spheroidal	1,27
RM70e	c1	110	106	42,3%	167	162	6,5%	Spheroidal	1,24
RM70f	c1	123	114	33,8%	199	195	3,4%	Spheroidal	1,26
RM72a	c1	165	162	11,7%	254	257	0,3%	Spheroidal	1,41
RM72b	с1	133	128	28,0%	212	214	1,7%	Spheroidal	1,33
RM72c	а	123	114	35,3%	207	206	2,9%	Spheroidal	1,32
RM72d	с1	156	154	14,1%	244	245	0,5%	Spheroidal	1,40
RM72e	с1	132	125	28,8%	217	214	2,0%	Spheroidal	1,30
RM72f	c1	132	127	30,8%	221	216	2,1%	Spheroidal	1,31
RM72g	с1	164	159	12,9%	259	258	0,5%	Spheroidal	1,32
RM72i	c2	158	155	15,5%	250	251	0,6%	Spheroidal	1,39

RM72j-bis	c2	169	163	15,9%	274	279	0,5%	Spheroidal	1,32
RM72k	c1	158	155	15,5%	250	251	0,6%	Spheroidal	1,39

7

11

Based on the information provided by Applicants for the pigmentary titanium dioxide grades, 3 the SCCS noted the following points:

S<u>hape</u> 4 i)

5 The shape of all the primary particles of the pigmentary titanium dioxide grades (SEM and TEM Observations) are noted to be spheroidal. 6

Aspect ratio ii)

8 The aspect ratio values of the pigmentary grades determined by SEM observations are found 9 to range from: 10

- 1.25 (RM05, RM06, RM07, RM19, RM26, RM32, RM67, RM70b, RM70c, RM70e, RM70f) up to 1.33 (RM37, RM38)
- 12 The aspect ratio values determined by TEM observations are noted to range from:
- 13 1.20 (RM01) -
- up to 1.55 (RM37) 14
- 15 the Primary Particle size and % nano (size below 100 nm) of Pigmentary iii) 16 titatium dioxide grades (SEM and TEM observations and measurements)
- 17 SEM observations and measurements
- 18 The mean primary particle size of the pigmentary titanium grades (SEM observations) is noted 19 to range from 108 nm (RM27) to 388 nm (RM38), with the Median primary size (SEM observations) from 103 nm (RM26) to 360 nm (RM39). 20
- The fraction of the particles (number based) with size below 100 nm (SEM observations) is 21 22 noted to range from zero (RM37, RM38, RM39) to 45.9% (RM26).
- 24 TEM observations and measurements
- 25 The mean primary particle size of the pigmentary titanium grades (TEM) is noted to range from 88 nm (RM26) to 427 nm (RM39), with the median primary particle size of the 26 27 pigmentary titanium grades (TEM) from 85 nm (RM26) to 406 nm (RM39).
- 28 The fraction of the particles (number based) with size below 100 nm (TEM) is noted to range 29 from zero (RM39) to 66.7% (RM26).

30

23

31 Table 3.1.9.2.A3: Summary of the primary particle sizes (mean and median), % nano (size 32 below 100 nm) determined by SEM and TEM observations.

Pigmentary grades Primary Particles	Mean size Particle size	Median Size Particle size	% nano
SEM	108 - 388 nm	103 - 360 nm	0.0 - 45.9%
TEM	88 - 427 nm	85 - 406 nm	0.0 - 66.7%

- 34 Agglomerates / Aggregates sizes of Pigmentary grades measured by CPS DC
- 35 The mean size of Agglomerates / Aggregates by mass of the pigmentary titanium grades is found to range from 408 nm (RM08 - category c2) to 1295 nm (RM33 - category c2). 36
- The median size of Agglomerates / Aggregates by mass is found to range 37
- from 309 nm (RM32 category c2) to 979 nm (RM33 category c2) 38
- 39
- 40 The mean size of Agglomerates / Aggregates by number of the pigmentary titanium grades 41 is found to range from 101 (RM72f - category c1) to 874 (RM39 - category c3))
- The median size of Agglomerates / Aggregates by number is found to range from 166 nm 42 43 (RM26 – category a) up to 550 nm (RM39 – category c3)
- 44 45
- 46
- 47

Table 3.1.9.2.A4: Summary of the agglomerate / aggregate sizes of the Titanium

pigmentary	y grades (mass and	number based)	<u>.</u>	
Pigmentary	Mean size	Median Size	Mean size	Median Size
grades	(Mass based)	(Mass	(Number	(Number
Agglomerates /		based)	based)	based)
Aggregates				
CPS DC	408 – 1295 nm	309 - 979	101 - 874 nm	166 – 550 nm
		nm		

3

4

5 Table 3.1.9.1.B1: Nano Titanium grades: Size of Primary Particle, Shape, Aspect ratio, Size 6 of Agglomerates/Aggregates (from Ref.: PS and Surface Property - Nano Final.xlsx and from 7 Ref. PS and Surface Property - Nano (corrected).xlsx -30 June 2023): Primary particle sizes 8 (mean and median ones) determined by TEM expressed by number and by mass, shape and 9 aspect ratio determined by TEM, particle size of agglomerates / aggregates measured by CPS 10 DC expressed by mass and by number.

			Pri	mary	Shap	be	Particl	e Size of			
	Prii	mary	Particle	e Size by			Agglo	merates	Partic	le Size of	
	Particle	e Size by	m	ass			/Aggregates by		Agglo	merates	
	nur	mber	(Equ	ivalent			number		/Aggregates by		
	(Fer	et _{min})	Cir	cular			(CPS DC)		mass		
		,	Diar	neter)					(CPS DC)		
Produ		N 4 a all a sa	N 4								
ct	Mean	Median	Mean	Median	Deservetia	Aspec	Mean	Median	Mean	Median	
Code	(TFM)	(TEM)	(TEM)	(TEM)	n	t	size	size	size	size	
(nano	[nm]	[nm]	[nm]	[nm]		Ratio ¹	[nm]	[nm]	[nm]	[nm]	
) RM09	26	25	40	40	Spheroida	1.6	58	53	238	96	
RM10	18	17	36	36	Lanceolat	2.7	56	52	137	76	
RM11	21	20	41	37	Spheroida	1.6	60	55	296	116	
RM40	10	10	24	24	Lanceolat	3.2	56	50	428	116	
RM41	10	9	26	25	Lanceolat	3.6	47	44	604	414	
RM42	10	9	23	23	Lanceolat	3.3	85	75	921	632	
RM43	11	11	23	23	Lanceolat	3.0	48	44	685	532	
RM44	12	11	25	25	Lanceolat	3.3	99	72	1000	717	
RM45	13	13	33	32	Lanceolat	3.3	46	43	537	66	
RM46	12	12	30	30	Lanceolat	3.6	54	48	1074	823	
RM47	29	27	63	60	Lanceolat	2.8	66	56	227	180	
RM48	20	18	55	49	Lanceolat	3,1	50	47	438	69	
RM49	21	20	51	47	Lanceolat	3,1	56	51	207	80	
RM51	17	16	53	43	Lanceolat	2,6	53	48	693	555	
RM52	16	15	44	42	Lanceolat	2,8	49	45	372	146	
RM53	25	23	56	49	Lanceolat	2,4	54	48	287	179	
RM55	29	27	50	48	Spheroida	1,8	74	64	1156	805	
RM56	35	34	59	58	Spheroida	1,6	77	70	348	130	
RM57	31	30	51	50	Spheroida	1,8	65	60	985	417	
RM58	34	33	60	57	Spheroida	1,5	76	71	423	114	
RM59	46	44	81	78	Spheroida	1,5	102	94	302	166	
RM60	55	53	90	88	Spheroida	1,4	112	109	187	162	
RM61	51	48	90	87	Spheroida	1,5	125	121	206	191	
RM62	86	81	145	135	Spheroida	1,4	168	162	337	262	
RM63	14	13	34	33	Lanceolat	3,5	47	43	218	67	
RM64	27	26	43	42	Spheroida	1,6	68	63	612	113	
RM65	28	28	49	48	Spheroida	1,5	77	72	362	111	
RM74a	34	33	56	54	Spheroida	1,6	75	65	457	165	
RM74b	33	32	61	57	Spheroida	1,7	66	60	488	137	
RM74c	35	34	60	56	Spheroida	1,5	67	64	256	89	
RM74d	26	25	51	48	Spheroida	1,5	63	61	118	77	

Scientific Advice on Titanium dioxide (TiO₂) (CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280- 1, 1317-80-2/215-282-2)

RM74e	28	27	57	53	Spheroida	1,6	70	65	535	125
RM75	14	13	36	36	Lanceolat	4,4	47	45	314	59
RM76	20	20	45	45	Lanceolat	3,7	50	47	626	394
RM77	10	10	28	28	Lanceolat	4,2	50	47	198	62
RM78	27	26	45	45	Spheroida	2,1	64	58	212	117
RM79	21	20	39	39	Lanceolat	2,8	63	58	265	112
RM80	17	17	39	39	Lanceolat	3,8	47	45	151	59
RM81	38	36	62	60	Spheroida	1,7	71	65	678	152
RM82	22	21	39	39	Spheroida	1,7	58	52	170	94

1

(1) Aspect ratio based on Equivalent Circular Diameter measurements by TEM

2 3

4

5

7

8

9 10

11 12

14 15

16

Based on the information provided by Applicants, the SCCS noted for the nano titanium

dioxide grades that

i) <u>Shape</u>

- 6 The shapes of the primary particles are
 - spheroidal (RM09, RM11, RM55, RM56, RM57, RM58, RM59, RM60, RM61, RM62, RM64, RM65, RM74a, RM74b, RM74c, RM74d, RM74e, RM78, RM81, RM82)
 - Ianceolate (RM10, RM40, RM41, RM42, RM43, RM44, RM45, RM46, RM47, RM48, RM49, RM51, RM52, RM53, RM63, RM75, RM76, RM77, RM79, RM80)
 - ii) <u>Aspect ratio</u>

13 The aspect ratio values of the nano grades are noted to range:

- from 1.4 (RM60, RM62)
- up to 4.4. (RM75)
- iii) Primary particle sizes (by number) of the nano titanium dioxide grades (TEM),

The mean primary size (TEM) is ranging from 10 nm (RM40, RM41, RM42, RM 77) to 86 nm (RM62), with a median primary size (TEM) from 9 nm (RM41, RM42) to 81 nm (RM62).

Table 3.1.9.2.B2: Summary of the primary particle sizes (mean and median) for nano titanium dioxide grades (TEM observations and measurements)

		/
Nano grades	Mean size	Median Size
Primary Particles	Particle size	Particle size
	(by number)	(by number)
	_	-
TEM	10 – 86 nm	9 – 81 nm

22

23 iv) agglomerates/aggregates by number

• The mean size of agglomerates/aggregates by number (CPS DC measurements) is found to range from 46 nm (RM45) to 168 nm (RM62), with Median size of agglomerates/ aggregates by number from 43 nm (RM45, RM63) up to 162 nm (RM62)

 The mean size of agglomerates/aggregates by mass (CPS DC measurements) is found to range from 118 nm (RM74d) to 1156 nm (RM55), with the median size of agglomerates/aggregates from 59 nm (RM80) to 823 nm (RM46).

30

Table 3.1.9.2.B3: Summary of the mean and the median ranges of agglomerates / aggregates of the nano titanium dioxide grades determined by CPS DC.

aggregates er the hane	titalilarii aloxiao grado		0.
Mean size	Median size	Mean size	Median size
(number)	(number)	(mass)	(mass)
46 – 168 nm	43 - 162 nm	118 - 1156 nm	59 - 832 nm

33

1 Annex M: Aerodynamic diameter - Pigmentary and nano titanium dioxide grades

2

4

5

6 7

8

3 From Applicants

Rotating drum method as per DIN 55992-1:2006 ("Determination of a parameter for the dust formation of pigments and extenders - Part 1: Rotation method") or ISO EN 15051-2:2013.

From Ref.: CE-TiO2-23-003.0 - Att 1 Generic Description of Analytical Methods - final.pdf

9 Pigmentary grades

10

11 Table 3.1.9.3.A: Aerodynamic diameter ($\% < 10 \,\mu$ m) as a function of the pigmentary

titanium grades 12

13

Product	Aerodynamic	Product Code	Aerodynamic	Product Code	Aerodynami
Code	diameter		diameter		diameter
	(% <10 □□		(% <10 □□		(% < 10 □□
	m)i		m)i		m)i
RM01	0.0037	RM32	0	RM70c	<1
RM02	0.0013	RM33	0.001	RM70d	<1
RM03	0	RM34	0.001	RM70e	<1
RM04	0	RM35	0.002	RM70f	< 1
RM05	0	RM36	0.001	RM72a	< 1
RM06	0.002	RM37	0.002	RM72b	<1
RM07	0	RM38	0.001	RM72c	<1
RM08	0	RM39	0.005	RM72d	<1
RM19	<0.001/<0.000	RM67	<1	RM72e	< 1
	2				
RM26	0	RM67b	< 1	RM72f	< 1
RM27	0.001	RM68	<1	RM72g	<1
RM28	0.001	RM69	<1	RM72i	<1
RM29	0.001	RM69b	<1	RM72j-bis	<1
RM30	0	RM70a	<1	RM72k	<1
RM31	0.002	RM70b	<1		

14

- 15
- 16 17
- 18
- 19

Ref.: January 2023 PhysChem data on Cosmetics TiO2 grades final.pdf

Table from Page 10/28, Column N14) Aerodynamic diameter (%<10 µm)

Nano grades 20

21 Table 3.1.9.3.B: Aerodynamic diameter ($\% < 10 \mu m$) as a function of the nano titanium

grades 22

23

Product Code	Aerodynamic diameter	Product Code	Aerodynamic diameter	Product Code	Aerodynamic diameter
	(%< 10 µm)		(%< 10 µm)		(%< 10 µm)
RM09	0.00735	RM52	0.239	RM74a	<1
RM10	0.016	RM53	0.009	RM74b	<1
RM11	0.012	RM55	0.006	RM74c	<1
RM40	0	RM56	0.011	RM74d	<1
RM41	0.048	RM57	0.022	RM74e	<1
RM42	0.016	RM58	0.015	RM75	0.0470
RM43	0.122	RM59	0.006	RM76	0.0080
RM44	0.089	RM60	0.002	RM77	0.0470
RM45	0.016	RM61	0.005	RM78	0.0000
RM46	0.026	RM62	0.006	RM79	0.0000
RM47	0.038	RM63	<1	RM80	<1
RM48	0.012	RM64	<1	RM81	0.0000
RM49	0.051	RM65	<1	RM82	≤1
RM51	0.024				

24

Ref.: January 2023_PhysChem data on Cosmetics TiO2 grades_final.pdf

From Table on Page 18/28 – Column 14) Aerodynamic diameter (%< 10 μ m)

Based on the information provided by Applicants (Tables 3.1.9.3.A and 3.1.9.3.B), the SCCS
 noted that for:

5

- 6 Pigmentary grades
- The 7 pigmentary titanium grades with 0% of particles with aerodynamic diameter below 10
 µm are the following: RM03, RM04, RM05, RM07, RM08, RM30, RM32.
- 9 The other 37 pigmentary titanium grades are noted to exhibit a fraction of particles with
- 10 aerodynamic diameter below 10 μ m, less than 1%.

11

- 12 Nano grades:
- 13 The 4 (four) nano titanium grades with 0% of particles with aerodynamic diameter below 10
- 14 µm are the following: RM40, RM78, RM79, RM81.
- 15 The other 36 nano titanium grades are noted to exhibit a fraction of particles with
- 16 aerodynamic diameter below 10 μ m less than 1%.

from Table on Page 9/28

N8.2) VSSA (m².cm³)

Columns N8.1) Specific Surface Area (BET, m²/g),

- 1 Annex N: Specific Surface Area (SSA) and Volume Specific Surface Area (VSSA) -
- 2 Pigmentary and nano titanium dioxide grades
- 3

4 From Applicants

- 5 Specific Surface Area measurement is performed according to protocols inspired by the
- 6 standard NF ISO 9227 on the following points:
- 7 Measurement method: volumetric method
- 8 Exploitation of measurement data: Multipoint determination (5 points) in the relative
- 9 pressure range where the BET equation is valid, either between 0.05 and 0.3.
- 10 Sample Degassing: under vacuum
- 11 Time: about 16 hours
- 12 Temperature: ambient (optionally then additional 1 hour at 180°C)
- 13 Analysis gas: Nitrogen
- 14 Tolerance on the relative pressure, P/Po: 0.245 %
- 15 5 mm Hg
- 16 Po (saturation pressure) measurement interval: 90-120 min.
- 17

19

18 From Ref.: CE-TiO2-23-003.0 - Att 1_Generic Description of Analytical Methods - final.pdf

20 Pigmentary titanium dioxide grades

21

Table 3.1.9.4. A: Specific surface Area and Volumic Specific Surface Area as a function of the pigmentary titanium grades.

24

Product Code	Specific Surface Area (BET, m ² /g)	VSSA (m ² .cm ³)	Produ ct Code	Specific Surface Area (BET, m ² /g)	VSSA (m ² .cm ³)	Product Code	Specific Surface Area (BET, m²/g)	VSSA (m ² .cm ³)
RM01	9.6	36.5	RM32	5.9	22	RM70c	15.5	61.9
RM02	6.6	27.7	RM33	3	11	RM70d	9.7	33.7
RM03	6.7	26	RM34	6	22	RM70e	9.9	39.3
RM04	9.6	37	RM35	4.3	17	RM70f	8.5	31.8
RM05	10.2	39	RM36	3.4	13	RM72a	6.6	27.3
RM06	6.8	26	RM37	8	34	RM72b	6.6	27.5
RM07	10.1	38	RM38	2	8	RM72c	15.8	68.4
RM08	10.1	41	RM39	2	8	RM72d	4	14.7
RM19	8.6	34.5	RM67	9.5	37.1	RM72e	4.9	18.9
RM26	12	46	RM67b	9.1	36.4	RM72f	7.2	30.6
RM27	8.6	31	RM68	6.5	26	RM72g	6.2	24.4
RM28	7	30	RM69	6.3	27.9	RM72i	15.5	66.7
RM29	5	21	RM69b	8.5	36.6	RM72j-bis	5.3	19.9
RM30	9.4	40	RM70a	6.5	24.9	RM72k	5.8	18.9
RM31	12.8	52	RM70b	6.5	24.9			
		Ref.: Jan	uary 20	23 PhysC	hem data	on Cosmet	tics TiO2 gr	ades final.pdf

25 26

1 Nano Titanium dioxide Grades

2 3

3 Table 3.1.9.4. B: Specific surface Area and Volumic Specific Surface Area as a function of 4 the nano titanium grades.

	- J							
Product	Specific	VSSA	Product	Specific	VSSA	Produc	Specific	VSSA
Code	Surface	(m ² .cm ³	Code	Surface	(m ² .cm ³	t Code	Surface	(m ² .cm ³)
	Area)		Area)		Area	
	(BET,			(BET,			(BET,	
	m²/g)			m²/g)			m²/g)	
RM09	60.7	222	RM52	68	234	RM75	99.2	340
RM10	63.4	198	RM53	35	100	RM78	63.8	215
RM11	48.6	178	RM55	48	193	RM80	117	402
RM40	75	189	RM56	32	99	RM81	8.0	34
RM41	110	406	RM57	32	119	RM76	63.6	183
RM42	72	206	RM58	27	102	RM79	45.1	140
RM43	87	287	RM59	50	205	RM74a	27.86*	78*
RM44	33	83	RM60	15	56	RM74b	17.11*	53*
RM45	110	375	RM61	15	63	RM74c	29.59*	112.4*
RM46	51	189	RM62	10	37	RM74d	60.84*	255.4*
RM47	57	200	RM63	107.5	300	RM74e	39.26*	137.4*
RM48	62	198	RM64	36.2	122	RM77	84	269
RM49	48	142	RM65	31.1	110	RM82	50	213
RM51	68	207						

9

10

Ref.: January 2023_PhysChem data on Cosmetics TiO₂ grades_final.pdf - Table from Page 16/28,

Columns N8.1) Specific Surface Area (BET, m²/g) and N8.2) VSSA (m².cm³)

(*) BET and VSSA values corrected from initial file according to

Ref Update of Data TiO2 SCCS Dossier - Sensient to EU

Commission_20230202.pdf

11 12

Based on the data provided for Specific Surface Area (SSA) and Volumic Specific SurfaceArea (VSSA), the SCCS noted that for:

- 15 Pigmentary grades
- the SSA of the pigmentary titanium grades ranges from 2 m²/g (RM38, RM39) up to
 15.8 m²/g (RM72c),
- the VSSA of the pigmentary titanium grades ranges from 8 m².cm³ (RM38, RM39) up to
 68.4 m².cm³ (RM72c).
- 20 Nano grades
- the SSA of the nano titanium grades ranges from 8 m²/g (RM81) up to 117 m²/g
 (RM80),
- the VSSA of the nano titanium grades ranges from 34 m².cm³ (RM81) up to 402 m².cm³
 (RM80).
- 25

	Specific Surface Area (BET, m²/g)	Volumic Specific Surface Area (m².cm³)
Pigmentary Titanium Grades	2 m²/g - 15.8 m²/g	8 m ² .cm ³ - 68.4 m ² .cm ³
Nano Titanium Grades	8 m²/g - 117 m²/g	34 m ² .cm ³ - 402 m ² .cm ³

Annex O: Surface Components / Surface reactivity - Pigmentary and Nano Titanium dioxide grades

3

4 From Applicants:

5 The identity of the surface components and functional groups are not measured but inferred 6 from a knowledge of the chemical moieties that have been used to treat the surface. All 7 surface treatments are cosmetic ingredients that are widely used in cosmetic formulations. 8 Some of the surface species could be determined by methods such as infra-red spectroscopy 9 From Ref.: CE response to SCCS Request of 13 June 2023_29062023.pdf 10

11

12 Pigmentary titanium dioxide grades13

Table 3.1.9.5.A: Surface components / Surface reactivity as a function of the pigmentary
 titanium grades

Produ ct Code	Surface component s, functional groups	Reactive sites / Surface Reactivity	Produc t Code	Surface components, functional groups	Reactive sites / Surface Reactivity	Produc t Code	Surface components, functional groups	Reactive sites / Surface Reactivity
RM01	-OH; -PO42-	-OH; -PO42- / Iow	RM32	Carboxyl group, Hydroxyl group	-OH; / Iow	RM70 c	-OH; -PO42-	-OH; -PO42- / Iow
RM02	-OH; -PO42-	-OH; -PO42- / low	RM33	Alkyl chain, Carboxyl group	None/Iow	RM70 d	Rosa Centifolia Flower Wax, Rosa Damascena Flower Cera, Cera Alba	None/Iow
RM03	-OH; -PO42-	-OH; -PO42- / Iow	RM34	Carboxyl group, Amino group	None/Iow	RM70 e	Sodium Glycerophosphat e	-OH; -PO42- / low
RM04	-OH; -PO42-	-OH; -PO42- / Iow	RM35	Methyl group	None/Iow	RM70 f	Hydrogenated Lecithin	None
RM05	-OH; - (C3H5(OH)3); -PO42-	-OH; -PO42-/ low	RM36	Methyl group	None/Iow	RM72 a	Caprylylsilane	None/low
RM06	-OH; -PO42-	-OH; -PO42-/ low	RM37	Hydroxyl group	-OH / Iow	RM72 b	Caprylylsilane	None/Iow
RM07	-C8H17	None/Iow	RM38	Alkyl chain, Carboxyl group	None/Iow	RM72 c	-OH; -PO42-	-OH; -PO42- / low
RM08	-OH; - (C3H5(OH)3); -PO42-	-OH; -PO42-/ low	RM39	Methyl group	None/Iow	RM72 d	Persea Gratissima (Avocado) Oil, Hydrogenated Vegetable Oil, Tocopherol	None/Iow
RM19	-OH; - (C3H5(OH)3)	-OH / low	RM67	-OH; -PO42-	-OH; -PO42- / low	RM72 e	Bis-PEG-15 Dimethicone/ IPDI Copolymer, PEG-2- Soyamine, Isopropyl Titanium Triisostearate	None/low
RM26	-OH	-OH/ low	RM67 b	-OH; -PO42-	-OH; -PO42- / low	RM72 f	Phytic Acid, Hydroxyl group	-OH / low
RM27	Methyl group	None/Iow	RM68	-OH; -PO42-	-OH; -PO42- / low	RM72 g	Sodium Cocoyl Glutamate, Cystine, Lauric Acid, Arginine	None/Iow
RM28	-OH	-OH/ low	RM69	-OH; -PO42-	-OH; -PO42- / Iow	RM72 i	Hydroxyl group	-OH / low
RM29	Methyl group	None/Iow	RM69 b	-OH; -PO42-	-OH; -PO42- / Iow	RM72 j-bis	Hydroxyl, Caprylylsilane	-OH / low
RM30	Hydroxyl group	-OH / low	RM70 a	Caprylylsilane	None/low	RM72 k	Cocos Nucifera (Coconut) Oil, Aloe	None/low

From Table on Page 17/28

N9.3) Reactive sites/ Surface reactivity

Columns N9.1) Surface components, functional groups

Scientific Advice on Titanium dioxide (TiO₂) (CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280- 1, 1317-80-2/215-282-2)

							Barbadensis Leaf Extract	
RM31	Hydroxyl group	-OH / low	RM70 b	Caprylylsilane	None/Iow			
		Ref.: Jar	nuary 2	023_PhysChe Columns N9	m data on (.1) Surface N9.3) Rea	Cosmetio fr compor active si	cs TiO ₂ grades rom Table on hents, functior tes / Surface	s_final.pdf Page 9/28 nal groups Reactivity

Nano titanium dioxide grades

Table 3.1.9.5.B: Surface components / Surface reactivity as a function of the nano titanium dioxide grades

	î									
Product	Surface	Reactive	Produc	Surface	Reactive	Produc	Surface	Reactive		
Code	components,	sites/	t Code	components,	sites/	t Code	components,	sites/		
	functional	Surface		functional	Surface		functional	Surface		
	groups	reactivity		groups	reactivity		groups	reactivity		
RM09	-OH	-OH / Iow	RM52	Methyl group	none / low	RM74	Methyl group	none / low		
						а				
RM10	Methyl group	none / low	RM53	Alkyl chain,	none / low	RM74	Alkyl chain,	none / low		
				Carboxyl group		b	Carboxyl group			
RM11	Methyl aroun	none / low	RM55	Hydroxyl aroun	-OH / Iow	RM74	Canrylylsilane	none / low		
	metriyi group		IXIVI33	nyaroxyr group	0117 1011	(WI) 4	aroup			
DI 110			DME (gi oʻqp			
RM40	Aikyi chain,	none / low	RIVI56	Aikyi chain,	none / low	RM/4	Hydroxyi group	-OH / IOW		
	Carboxyi			carboxyr group		d				
DM41	yroup Hydroyyd			Mothyl group	popo / low		Mothyl group	nono / low		
RIVI4 I	roup	-OH / 10W	RIVI57	wetnyi group	none / low	RIVI74	wetnyi gi oup	none / low		
	group					е				
RM42	Alkyl chain,	none / low	RM58	Methyl group	none / low	RM75	Methyl group, -	-OH / low		
	Carboxyl						OH			
	group									
RM43	Methyl group	none / low	RM59	Hydroxyl group	-OH / Iow	RM76	Alkyl chain,	none / low		
							Carboxyl group			
RM44	Methyl group	none / low	RM60	Alkyl chain,	none / low	RM77	-OH	none / low		
				Carboxyl group						
RM45	Hydroxyl	-OH / Iow	RM61	Methyl group	none / low	RM78	-OH	-OH / low		
	group									
RM46	Hydroxyl	-OH / Iow	RM62	Alkyl chain,	none / low	RM79	Cetyl-group	none / low		
	group			Carboxyl group						
RM47	Hydroxyl	-OH / Iow	RM63	Alkyl chain,	none / low	RM80	-OH	-OH / low		
	group			Carboxyl group						
RM48	Alkyl chain,	none / low	RM64	Alkyl chain,	none / low	RM81	Hydroxyl group	-OH / low		
	Carboxyl			Carboxyl group						
	group									
RM49	Alkyl chain,	none / low	RM65	Alkyl chain,	none / low	RM82	Methyl group	none / low		
	Carboxyl			Carboxyl group						
	group									
RM51	Methyl group	none / low								
	Ref.: January 2023 PhysChem data on Cosmetics TiO ₂ grades final.pdf									
SCCS/1661/23

1 Annex P: Homogeneity and Stability – Pigmentary and nano titanium dioxide grades

23 From Applicants

The coating materials are applied to the surface to improve particle dispersion, inhibit or abolish photoactivity and improve compatibility with other ingredients present in sunscreen formulations. The coating materials are not UV absorbers and all these materials are common cosmetic ingredients which are widely used for different purposes in cosmetic products.

Stability of the coating on the particle is important for the technical properties of TiO2containing formulas (stability of emulsion, colour, segregation of particles).

11 Complete stability of coating materials on the TiO₂ particle has been demonstrated with 12 variation in pH, temperature, shear force and time (up to 180 days) in studies previously 13 submitted to the SCCS in 1998 (references 62, 63), in 1999 (references 68 and 72), 2000 14 (reference 96), 2009 (references 113 and 116) and 2014.

- 15 Hence it can be concluded that the coatings are stable under the conditions and 16 timespan of the *in vitro* tests performed.
- 16

9

10

Ref.: CE-TiO2-23-003.0 - CE Response to clarifications requested by SCCS 10 03 23 - final

18 19 20

26

27

21 Reference 62

The object of the investigations was the emulsion 408.259 placed at disposal by L'Oreal containing 5% of coated titanium dioxide UV-Titan M 160, produced by Kemira. This product contains alumina (AI2O3) and stearic acid (CH3(CH2)16COOH) as coating materials.

Reference 62: Investigations of coated Titanium Dioxide - Final Report - Berlin, May 1997

28 Reference 63

29 Summary

30 The mechanical stability of aluminium oxide coating on the titanium dioxide particles was 31 characterised by the ratio of the aluminium and titanium concentration in different samples.

31 Characterised by the ratio of the aluminium and tranium concentration in different samples. 32 The method of laser induced plasma spectroscopy is suited for the determination of the Ti/Al

ratio in liquid and solid samples. This method was used to determine the relative titanium /
 aluminium ratio in the investigated sunscreen systems.

As expected, the Al/Ti ratio is constant comparing the titanium dioxide dispersion Tioviel AQ-N, lot PRAQN 0051 with the sunscreen emulsion containing the Titanium dioxide AQ-N, lot 40.280. The Ti/Al ratio was found to be unchanged in different tapes strips taken after application of the sunscreen emulsion, 403.280. Instabilities of the alumina coating could not be detected, when the sunscreen components were handled under real conditions.

40

41 Reference 63 - Investigation of Alumina/silica coated titanium dioxide particles - TIOVEiL
 42 AQ-N (Tioxide Specialities LTD) - Final Report - Berlin, November 1997

- 43
- 44 Reference 68

Category A Samples.

<u>Treatment</u>	Company 1 % Al ₂ O ₃ /TiO ₂	Company 2* % Al ₂ O ₃ /TiO ₂	Company 3 % Al ₂ O ₃ /TiO ₂	Company 3 % SiO ₂ /TiO ₂	Company 4 % Al ₂ O ₃ /TiO ₂	Company 4 % SiO ₂ /TiO ₂
None	11.6	7.0	16.7	7.3	4.6	17.3
pH 5	11.1	7.0	16.8	7.4	4.6	17.1
pH 7	11.5	7.0	16.7	7.3	4.6	17.7
pH 9	11.3	7.0	16.5	7.4	4.6	17.3
Dispersion Shear	11.3	7.0	16.7	7.4**	4.6	17.4
80°C ,1 hour	11.4	7.0	16.4	7,4	4.6	17.4

Measured on 5% (w/v) samples.

** 30 minutes only

Category B Samples

Treatment	Company 1 Type 1 %C	Company 1 <u>Type 2</u> %C
None	2.80	3.70
pH 5	2.80	3.70
pH 7	2.81	3.68
pH 9	2.80	3.70
Dispersion Shear	2.80	3.70
80°C,1 hour		

Ref. 68: Stability test for coatings applied to ultra-fine, cosmetic grade, titanium dioxide 1999 (Stability Al2O3 TiO2, SiO2 TiO2, C TiO2)

SCCS comments on Reference 68

No indication has been provided on the size of the Titanium core particles.

Reference 72

Ref. 72: Coating of Titanium Dioxide, H. Driller, 1999(Stability_Al2O3_TiO2, SiO2_TiO2, C TiO2)

12

1 2

3

4 5 6

7

8 9

10 11

13 SCCS comments on Reference 72

14 Same results as Reference 68: No indication has been provided on the sizes of the Titanium

- 15 core particles
- 16

17 Reference 96

TYPICAL RESULTS

Test Material:	PSMA 2	PSMA 3	PSMA 4 ¹	PSMA 5 ²	PSMA 6
Coating: Treatment:	AL ₂ O ₃	AL ₂ O ₃ : SiO ₂	AL ₂ O ₃	AL ₂ O ₃	AL_2O_3 : SiO ₂
None pH5 pH7 pH9 Dispersion Shear Temperature (80°C, 1 hour)	11.6% 11.1% 11.5% 11.3% 11.3% 11.4%	4.6% : 17.3% 4.6% : 17.1% 4.6% : 17.7% 4.6% : 17.3% 4.6% : 17.4% 4.6% : 17.4%	7.0% 7.0% 7.0% 7.0% 7.0% 7.0%	6.8% 6.8% 6.9% 6.9% 2	16.7% : 7.3% 16.8% : 7.4% 16.7% : 7.3% 16.5% : 7.4% 16.7% : 7.4% 16.4% : 7.4%

18 19

20

Ref. 96: Stability test for surface treatments applied to fine particle, 2000(Stability-AI2O3_TiO2, AI2O3-SiO2_TiO2)

21 SCCS comments on Reference 96

22 No indication has been provided on the size of the Titanium core particles or on the

thickness (or the composition) of the coatings. The stability of some specific coatings has 23 24 been studied (Al₂O₃, Al₂O₃-SiO₂).

- 25
- 26

4

5

Reference 113

- The stabilities of hydrophobic, Al₂O₃ coated grade and hydrophilic Al₂O₃-Glycerin coated
- grade have been studied.

monthopic, Algos	COATED GR	RADE						L. SLIGHT O	UNILD C				
XRE-analysis							1. XRF-analysis						
. And analysis							5 % suspension in water, para	allel suspension	IS				
% suspension in water/me	thanol (20:80), p	arallel suspe	ensions				After the treatment the susper	nsion was centr	ifuged 10 m	nin (G-value	6000).		
fter the treatment the susp	ension was centr	ifuged 10 m	in (G-value	6000).			The sediment was dried at 10	5 °C over night	(constant v	reight) and i	ignited at 900	°C to const	ant weight
he sediment was dried at 1	05 °C over night	(constant w	eight) and	ignited at 900	°C to consta	ant weight.							
I-O- (%) and TiO- (%) cont	ents were measu	ured with XR	F				Al ₂ O ₃ (%) and HO ₂ (%) conter	nts were measu	ared with XF	KF.	2 nd europape	ion	
	1 [°] suspens	sion		2 ^{no} suspens	sion			1 suspens	sion		2 suspens	sion	
								Al ₂ O ₃ (%)	TiO ₂ (%)	TiO ₅ /	Al-O3 (%)	TiO ₂ (%)	TiO ₂ /
	Al ₂ O ₃ (%)	TiO ₂ (%)	Al ₂ O ₃ /	Al ₂ O ₃ (%)	TiO ₂ (%)	Al ₂ O ₃ /				Al ₂ O ₃			Al ₂ O ₃
			TiO ₂			TiO ₂							-
Original suspension	6.2	81.6	0.08	6.2	81.8	0.08	Original suspension	6.3	89.5	14.2	6.2	89.4	14.4
before centrifugation							before centrifugation						
after centrifugation	6.1	81.7	0.07	6.2	81.8	0.08	after centrifugation	6.3	89.6	14.2	6.2	89.4	14.4
Mixed 60 min at 70 °C	6.1	81.6	0.07	6.2	81.8	0.08	Mixed 60 min at 70 °C	6.1	89.6	14.7	6.1	89.4	14.7
Mixed 10 min/10 000 rpm	6.1	81.8	0.07	6.2	81.8	0.08	Mixed 10 min/10 000 rpm	6.2	89.6	14.5	6.2	89.5	14.4
with Ultra Turrax							with Ultra Turrax				100		12.2
Mixed 2 h at pH 5	6.1	81.6	0.07	6.1	81.8	0.07	Mixed 2 h at pH 5	6.1	89.4	14.7	6.2	89.4	14.4
Mixed 2 h at pH 7	6.1	81.7	0.07	6.2	81.8	0.08	Mixed 2 h at pH 7	6.2	89.3	14.4	6.3	89.6	14.2
Mixed 2 h at pH 9	6.2	82.9	0.07	6.2	82.3	0.08	Mixed 2 h at pH 9	6.2	89.4	14.4	6.2	89.6	14.5
eviation of the test method	Al-O ₂ + 0.1.96 a		0 10				beviation of the test method. /	1203 1 0.1 70 8	110 1102 - 0	.0 /0			
Deviation of the test method	: Al ₂ O ₃ ± 0.1 % a						2. Carbon-analysis						
Deviation of the test method Carbon-analysis % suspension in water/me	: Al ₂ O ₃ ± 0.1 % а thanol (20:80), р	arallel suspe	ensions				2. Carbon-analysis						
Veviation of the test method Carbon-analysis % suspension in water/me ifter the treatment the susp	: Al ₂ O ₃ ± 0.1 % a thanol (20:80), p ension was centr	arallel suspe ifuged 10 m	ensions in (G-value	6000).			2. Carbon-analysis 5 % suspension in water After the treatment the susper	nsion was centr	ifuged 10 m	in (G-value	6000)		
Veviation of the test method Carbon-analysis % suspension in water/me fter the treatment the susp the sediment was dried at 1	: Al₂O₃ ± 0.1 % a thanol (20:80), p ension was centr 05 °C over night	arallel suspe ifuged 10 mi (constant w	ensions in (G-value eight).	6000).			2. Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10	nsion was centr 5 °C over night	ifuged 10 m (constant v	nin (G-value veight).	6000).		
 Carbon-analysis Carbon-analysis suspension in water/me, fare the treatment the susp. he sediment was dried at 1 (%) content was measured 	: Al ₂ O ₃ ± 0.1 % a thanol (20:80), p ension was centr 05 °C over night d with Leco <u>carb</u>	arallel suspe ifuged 10 mi (constant w on analys <u>er.</u>	ensions in (G-value eight).	6000).			2. Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was defined at 10 C (%) content was measured	nsion was centr 5 °C over night with Leco carb	ifuged 10 m (constant v on analyser	nin (G-value veight).	6000).		
 Carbon-analysis Carbon-analysis % suspension in water/me filter the treatment the susp. he sediment was dried at 1 (%) content was measured 	: Al ₂ O ₃ ± 0.1 % a thanol (20:80), p ension was centr 05 °C over night <u>d with Leco carb</u> : 1 ²¹ su	arallel suspe ifuged 10 mi (constant w on analyser. ispension	ensions in (G-value eight).	6000). 2 ^{na} suspensio	<u>n</u>		 Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 <u>C (%) content was measured</u> 	nsion was centr 5 °C over night with Leco carb sus	ifuged 10 m (constant v on analyser pension	nin (G-value veight).	6000).		
Leviation of the test method Carbon-analysis % suspension in water/me iffer the treatment the susp he sediment was dried at 1 c (%) content was measured	: Al ₂ O ₃ ± 0.1 % a thanol (20:80), p ension was centr 05 °C over night <u>d with Leco carb</u> 1 st su	arallel suspe ifuged 10 m : (constant w <u>on analyser.</u> ispension C (%)	ensions in (G-value eight).	6000). 2 ^{na} suspensio C (%)	on		Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C (%) content was measured	nsion was centr 5 °C over night with Leco carbi sus C	ifuged 10 m (constant v on analyser pension C (%)	nin (G-value veight).	6000).		
leviation of the test method Carbon-analysis % suspension in water/me ther the treatment the suspi he sediment was dried at 1 (%) content was measurer Original suspension	: Al ₂ O ₃ ± 0.1 % a thanol (20:80), p ension was centr 05 °C over night d with Leco carbo 1 [#] su 0	arallel suspe ifuged 10 m : (constant w on analyser. ispension C (%) 8.1	ensions in (G-value eight).	6000). 2 ^{na} suspensio C (%) 5.9	n		 Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C (%) content was measured Original suspension before 	nsion was centr 5 °C over night with Leco carb sus (ifuged 10 m (constant v on analyser pension 2 (%) 0.4	nin (G-value veight).	6000).		
Leviation of the test method Carbon-analysis % suspension in water/me ther the treatment the susp- he sediment was dried at 1 (%) content was measured Original suspension before centrifugation	: Al ₂ O ₃ ± 0.1 % a thanol (20:80), p ension was centr 05 °C over night <u>d with Leco carbo</u> 1 ⁴⁴ su (arallel suspe ifuged 10 m : (constant w on analyser. ispension C (%) 6.1	ensions in (G-value eight).	6000). 2 ^{na} suspensic C (%) 5.9	on		Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C (%) content was measured Original suspension before centrifugation	nsion was centr 5 °C over night with Leco carbi sus (ifuged 10 m (constant v on analyser pension 2 (%) 0.4	nin (G-value veight).	6000).		
eviation of the test method Carbon-analysis % suspension in water/me fire the treatment the suspe- he sediment was dried at 1 (1%) content was measured Driginal suspension refore centrifugation mer centrifugation	: Al ₂ O ₃ ± 0.1 % a thanol (20:80), p ension was centr 05 °C over night d <u>with Leco carb</u> 1 ¹⁷ su C	arallel suspe ifuged 10 mi (constant w on analyser. ispension 2 (%) 6.1 6.1	ensions in (G-value eight).	6000). 2 nd suspensio C (%) 5.9 6.0	m		 Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C (%) content was measured Original suspension before centrifugation after centrifugation 	nsion was centr 5 °C over night with Leco carbi sus (ifuged 10 m (constant v on analyser pension 2 (%) 0.4 0.2	nin (G-value veight).	6000).		
eviation of the test method . Carbon-analysis % suspension in water/me filer the treatment the suspe- the sediment was dried at 1 . (%) content was measured Original suspension before centrifugation after centrifugation Mixed 80 min at 70 °C	: Al ₂ O ₃ ± 0.1 % a thanol (20:80). p ension was centr 05 °C over night d <u>with Leco carb</u> 1 ²⁷ su C	arallel suspe ifuged 10 mi (constant w on analyser. ispension 2 (%) 6.1 6.1 6.1	ensions in (G-value eight).	6000). 2 nd suspensio C (%) 5.9 6.0 6.1	'n		Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C (%) content was measured Original suspension before centrifugation after centrifugation Mixed 30 min at 80 °C	nsion was centr 5 °C over night with Leco carb sus (ifuged 10 m (constant v on analyser pension 2 (%) 0.4 0.2 0.2	nin (G-value veight).	6000).		
leviation of the test method . Carbon-analysis % suspension in water/me fler the treatment the susp- he sediment was dried at 1 (%) content was measurer Original suspension before centifugation after centifugation after centifugation Mixed 10 min 1000 rpm	: Al ₂ O ₃ ± 0.1 % a thanol (20:80), p ension was centr 05 °C over night d with Leco carb 1 ²¹ su C	arallel suspe ifuged 10 m : (constant w <u>on analyser.</u> :spension 2 (%) 6.1 6.1 6.1 6.1 6.1 6.1	ensions in (G-value eight).	6000). 2 nd suspensio C (%) 5.9 6.0 6.1 6.1	on		 Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C (%) content was measured Original suspension before centrifugation after centrifugation after centrifugation (Mixed 30 min at 80 °C Mixed 30 min 480 °C 	nsion was centr 5 °C over night with Leco carb sus (ifuged 10 m (constant v on analyser pension 2. (%) 0.2 0.2 0.2 0.2 0.2	nin (G-value veight).	6000).		
eviation of the test method . Carbon-analysis % suspension in water/me flee the treatment the suspe- flee the sediment was dried at 1 to the sediment was dried at 1 to the sediment was measured Original suspension oether centrifugation after centrifugation after centrifugation Mixed 00 min at 70 °C Mixed 10 min 110 000 rpm whill the Turrary	: Al ₂ O ₃ ± 0.1 % a thanol (20:80). p ension was centr 05 °C over night <u>d with Leco carb</u> . 1 ²⁷ su c	arallel suspe ifuged 10 mi (constant w on analyser. ispension C (%) 6.1 6.1 6.1 6.0	ensions in (G-value eight).	6000). 2 ^{no} suspensio C (%) 5.9 6.0 6.1 6.1	m		 Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C1% content was measured Original suspension before centrifugation after centrifugation Mixed 30 min at 80 °C Mixed 10 min/10 000 rpm wit Ultra Turrax 	nsion was centr 5 °C over night with Leco carbi sus () h	ifuged 10 m (constant v on analyser pension 2 (%) 0.4 0.2 0.2 0.2 0.2	nin (G-value veight).	6000).		
leviation of the test method Carbon-analysis % suspension in water/me differ the treatment the suspe- he sediment was dried at 1 (%) content was measurer Original suspension before centrifugation after centrifugation after centrifugation after and the test of the wined 10 min 10 000 rpm with Ultra Turrax Wined 2 h at pH 5	: Al ₂ O ₃ ± 0.1 % a thanol (20:80). p ension was centr 05 °C over night d with Leco carb 1 ¹⁰ su C	arallel suspe ifuged 10 mi (constant w on analyser. spension C (%) 6.1 6.1 6.1 6.1 6.1 6.1 6.1	ensions in (G-value eight).	6000). 2 nd suspensic C (%) 5.9 6.0 6.1 6.1 6.1 6.1	n		 Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C (%) content was measured Original suspension before centrifugation after centrifugation Mixed 30 min at 80 °C Mixed 30 min at 80 °C Mixed 30 min 480 °C Mixed 20 min 420 °C 	nsion was centr 5 °C over night with Leco carbo sus c th	ifuged 10 m (constant v pension C (%) 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.4	iin (G-value veight).	6000).		
eviation of the test method . Carbon-analysis % suspension in water/me flee the treatment the suspe- flee the sediment was dried a 1 is (%) content was measured Original suspension before centrifugation after centrifugation after centrifugation Mixed 40 min at 70 °C Mixed 10 min 110 600 rpm with Ultra Turax Mixed 2 h at pH 7	thanol (20:80), p ension was centr 05 °C over night d with Leco carbi 1 [™] 50 C	arallel suspe ifuged 10 m (constant w on analyser. ispension C (%) 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1	ensions in (G-value eight).	6000). 2 ⁷⁰ suspensio C (%) 5.9 6.0 6.1 6.1 6.1 6.1 6.1	'n		2. Carbon-analysis 5 % suspension in water After the treatment the susper The sediment was dried at 10 C1%) content was measured Original suspension before centrifugation after centrifugation Mixed 30 min at 80 °C Mixed 10 min/10 000 rpm wit Ultra Turrax Mixed 2 h at pH 5 Mixed 2 h at pH 5	nsion was centr 5 °C over night with Leco carb sus c th	ifuged 10 m (constant v on analyser pension C (%) 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	iin (G-value veight).	6000).		

6 7 8

Ref. 113: Stability studies for coatings of ultrafine titanium dioxide products, 2009

SCCS comments of Ref. 113 9

10 No information has been provided on the size distribution of the TiO₂ core particles or on the

thickness (composition) of the coatings. Two specific coatings on TiO₂ have been studied 11

12 (Al₂O₃ and Al₂O₃-Glycerin).

13

1 Annex Q: Dispersibility – Pigmentary and nano titanium dioxide grades

2 3

Dispersibility of Pigmentary grades

4 5

Table 3.1.11.A1: Particle size by the so-called by Applicants "modified SCCS dispersibility

6 method" (from Ref.: Dispersibility – Pigmentary.xlx, Third data package - 31 March 2023)

7
/

Particle Size by so-called modified SCCS Dispersibility method			alled sibility	Initial particle size (from Table Table 3.1.9.1.A1)					
Product Code	Category	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]
COUE		by number by mass		by number		by mass			
RM01	а	204	195	343	298	271	255	424	364
RM30	b1	234	225	332	322	270	309	484	431
RM31	b2	309	297	472	446	299	375	769	671
RM70a	c1	210	202	388	321	120	186	476	330
RM05	c2	206	196	339	292	262	275	470	410
RM39	c3	549	545	789	775	874	550	919	887

8 9

Ref.: Dispersibility – Pigmentary.xlx, Third data package - 31 March 2023

10 11

Table 3.1.11.A2: Particle size by modified NanoGenotox method (from Ref.: Dispersibility
 Nanogenotox - Pigment.xlx: Fourth data package, 21 April 2023)

13

_	Particle Size by Nanogenotox Dispersibility method (from					r I r (from آ	hitial par Fable Tab	ticle size de 3.1.9.1	1.A1)	
Product Code	Category	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	
		by number		by r	by mass		by number		by mass	
RM01	а	221	215	345	316	271	255	424	364	
RM30	b1	243	244	368	358	270	309	484	431	
RM31	b2	361	339	631	563	299	375	769	671	
RM70a	c1	291	264	605	484	120	186	476	330	
RM05	c2	218	214	365	319	262	275	470	410	
RM39	c3	522	543	863	824	874	550	919	887	

14 15

Ref.: Dispersibility Nanogenotox - Pigment.xlx: Fourth data package, 21 April 2023)

16

Comparaison of the particle size after dispersion using the Nanogenotox protocol
 and the Modified SCCS protocol (From Ref.: Dispersibility Nanogenotox - Report, 4th Data
 Package, 21 April 2023)

Table 3.1.11.A3 compares the particle sizes of TiO₂ cosmetics grades dispersed using the Nanogenotox protocol and the Modified SCCS protocol (described in the March submission) to establish the effect of dispersion energy and measured using CPS DC.

24

25

1 Table 3.1.11.A3: Comparison of Secondary Particle Size after Different Dispersion Protocols

- (measured by CPS DC) for Representative Titanium Dioxide pigments (From Ref. Dispersibility
 Nanogenotox Report.pdf 4th data package, 21 April 2023).
- 4

	Particle Size by Dispersibil	Modified SCCS ity protocol	Particle Size by Nanogenotox Dispersibility protocol			
Product	Median size [nm]	Median size [nm]	Median size [nm]	Median size [nm]		
Code	by number	by mass	by number	by mass		
RM01	195	298	215	316		
RM30	225	322	244	358		
RM31	297	446	339	563		
RM70a	202	321	264	484		
RM05	196	292	214	319		
RM39	545	775	543	824		

5 6

The median sizes derived using the Nanogenotox protocol are around 10% larger than those
obtained using the modified SCCS protocol (difference is even larger for the hydrophobic
grade RM70a).

10 11 12

Ref.: Dispersibility Nanogenotox - Report.pdf - 4th data package, 21 April 2023

13 Dispersibility of Nano grades

The histograms for particle size (agglomerate / aggregates particles) (both by number and mass) determined using the modified SCCS method have been provided. The particle size data provided by Applicants have been reported in Table 3.1.11.B1 and Table 3.1.11.B2 for the modified SCCS dispersibility method and the Nanogenotox dispersibility protocol, respectively.

19

Table 3.1.11.B1: Particle size by modified SCCS dispersibility method (from Ref.:
Dispersibility - Nano.xlx - Third data package 31 March 2023 and Dispersibility - Nano
(corrected).xlx - 30 June 2023)

	Partio Appl Dis	cle Size b icants " M spersibili	y so-cal lodified ty methe	led by SCCS od "	Initial Particle Size extracted from Table 3.1.9.1.B1			
Product Code	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]
	by number		by mass		by number		by mass	
RM09	58	53	238	96	58	53	238	96
RM11	60	55	296	116	60	55	296	116
RM75	47	45	314	59	47	45	314	59

23 24 25

- 1 Table 3.1.11.B2: Particle size by modified Nanogenotox dispersibility method (from Ref.:
- 2 Dispersibility Nanogenotox.xlx Fourth data package 21 April 2023 and Ref.: Dispersibility
- 3 Nanogenotox Nano (corrected).xlx 30 June 2023)

	Partic Di	le Size b spersibi	y Nanoge ity metho	enotox od	Initial Particle Size extracted from Table 3.1.9.1.B1			
Product Code	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]	Mean size [nm]	Median size [nm]
	by number		by mass		by number		by mass	
RM09	65	59	854	187	58	53	238	96
RM11	99	81	361	242	60	55	296	116
RM75	56	53	643	98	47	45	314	59

Comparaison of the particle size after dispersion using the Nanogenotox protocol
 and the Modified SCCS protocol (From Ref.: Dispersibility Nanogenotox - Report, 4th Data

7 Package, 21 April 2023)

8 Table 3.1.11.B3 compares the particle sizes of TiO₂ cosmetics grades dispersed using the

9 Nanogenotox protocol and the Modified SCCS protocol to establish the effect of dispersion

10 energy and measured using CPS DC.

11

12 Table 3.1.11.B3: Comparison of Secondary Particle Size after Different Dispersion Protocols

(measured by CPS DC) for Representative Titanium Dioxide (nano) UV filters (From Ref.:
 Dispersibility Nanogenotox - Report, 4th Data Package, 21 April 2023)

	Particle Size by Dispersibil	Modified SCCS ity protocol	Particle Size by Nanogenotox Dispersibility protocol		
Product	Median size [nm]	Median size [nm]	Median size [nm]	Median size [nm]	
Code	by number	by mass	by number	by mass	
RM09	53	96	59	187	
RM11	55	116	81	242	
RM75	45	59	53	98	

15 16

Table 3.1.11.B3 compares the particle sizes of TiO₂ cosmetics grades dispersed using the
Nanogenotox protocol and the Modified SCCS protocol to establish the effect of dispersion
energy and measured using CPS DC.

The median sizes by number are close for the different protocols (the Nanogenotox protocol sizes always being larger), with the greatest difference being for the hydrophobic sample, RM11. The median sizes by mass are much larger using the Nanogenotox protocol.

All of the nano samples measured are well above the 30nm threshold for secondary particle size set by the SCCS Opinion of 2014 irrespective of the dispersion protocol applied

Ref.: Dispersibility Nanogenotox - Report, 4th Data Package, 21 April 2023

25 26

27

28

29

1 Annex R: TEM Observations of internalization of nanoparticles in V79 Cells

2 3

Report: RM09: Gene Mutation Assay in Chinese Hamster V79 Cells in vitro

- (V79/HPRT) 4023311_final Report 4
- 5 From Applicants:
- Cross-sections of V79 cells could be examined by chemical staining with osmium tetroxide 6
- 7 (enhancement of contrast) and ultramicrotomy with a transmission electron microscope.
- For all three concentrations examined (25, 50, 100 ug/mL), the TEM ultra-thin sections 8 9
- revealed V79 cell in which the RM09 nanoparticles could be detected.
- 10 The nanoparticles are almost entirely found with the cells. Most of the observed V79 cells showed agglomeratres of RM09 nanoparticles. Only occasionally separated particles or single 11
- 12 small agglomerates can be observed.
- 13 In general, no RM09 nanoparticle agglomerates were observed in the nuclei of the cells.
- In conclusion, cellular uptake of RM09 was demonstrated at all concentrations evaluated and 14 observed exclusively in cytoplasmic vesicles but not in the cell nucleus. 15
- 16

17 Concentration: RM09 - 100 ug/mL

1 Concentration: RM09 - 50 ug/mL

2 3

Concentration: RL09 - 25 ug/mL

1 Report: RM11: Gene Mutation Assay in Chinese Hamster V79 Cells in vitro

2 (V79/HPRT) - 4023312_final Report

3 From Applicants

4 Cross sections of V79 cells could be examined by chemical staining with osmium tetroxide 5 (enhancement of contrast) and ultramicrotomy with a transmission electron microscope.

For all three concentrations examined (25, 50 and 100 ug/mL), the TEM ultra-thin cuts show
V79 cell in which the RM11 nanoparticles could be detected. Nevertheless, many cells show
no obvious internalization of RM11 nanoparticles and many of the RM11 nanoparticle
agglomerates can be observed outside the cells. The majority of the RM11 nanoparticles
(inside and outside the cells) are present in agglomerated form. Only occasionally separated

- 11 particles or single smaller agglomerates can be seen.
- 12 In general, no RM11 nanoparticle agglomerates were observed in the nuclei of the cells.
- 13 In conclusion, cellular uptake of RM11 nanoparticles was demonstrated at all concentrations
- 14 evaluated and observed exclusively in cytoplasmic vesicles but not in the cell nucleus.
- 15 16 17

18

Concentration: RM11 - 100 ug/mL

20 Concentration RM11 - 50 ug/mL

Concentration RM11 - 25 ug/mL

RAW MATERIAL 09

6 RM09 - Summary and conclusion of DLS measurements from Gene Mutation Assay 7 in Chinese Hamster V79 Cells in vitro (V79/HPRT) 8

9 Four samples were measured in three replicates via DLS at 37°C for 24 hours with one data 10 point per hour.

For sample 24h RM09 0.8 ug/mL - S9 mix the z - average diameter at T0 (first measurement 11 12 point after preparation of the sample mixture) was 50 nm and 57 nm at Tend (last 13 measurement point of the accelerated stability measurement). Signal intensity was 14 approximately 1-fold above the formulation signal level. The higher intensity of the sample signal in comparison with the background signal of the formulation buffer, the less likely an 15 impact of background noise on the experiment data. 24 h RM09 100 ug/mL - S9 mix had a 16 17 z-average of 135 nm at TO and 137 nm at Tend. An interference of the FBS with DLS

18 measurements could not be observed.

19 Samples were centrifugated before the experiment, as an initial intensity test showed high 20 scattering due to large particles in the samples, which led to abortion of data collection. For neither of the samples, a clear trend toward larger particle sizes could be measured 21 22 within the tested time frame. 23

Ref.: 4023311 final Report - Report RM09: Gene Mutation Assay in Chinese Hamster V79 Cells in vitro (V79/HPRT)

27 Detailed Results of the DLS experiments 28

30 From: 4023311_final Report - Report RM09: Gene Mutation Assay in Chinese 31 Hamster V79 Cells in vitro (V79/HPRT)

- 32
- 33 From Applicants:

34 To reflect the stability of the dispersion and the agglomeration/aggregation behavior of the 35 test material during cell culture exposure in the genotoxicity experiment, particle size determination of the test dispersion using dynamic light scattering (DLS) was performed. 36

37

24

25

26

29

38 3.6.3. Nano characterization of the test solution with dynamic light scattering (DLS) 39 (non-GLP):

- 40 The DLS measurement was performed at:
- 41 ZentriForce Pharma Research GmbH Dr. Marius Schmid Carl-Friedrich-Gauß-Ring 5 69124
- 42 Heidelberg
- 43

44 The stock solution of the test item and the application medium was prepared at ZentriForce 45 Pharma Research GmbH.

46 The solutions were prepared on the day of measurement according to chapter 3.3 (Test item 47 preparation).

- 48 The negative and solvent control as well as the highest and lowest test item concentrations 49
- was measured by DLS 24 hours with a measurement each hour in order to analyze the stability 50 of the dispersion and the agglomeration/aggregation behaviour of the test item over the time.
- This data was used to reflect the stability of the dispersion and applomeration/aggregation 51

52 behaviour of the test material during the cell culture exposure in the genotoxicity experiment. 53

- As stated in the Short Report (non-GLP) of ZentriForce Pharma Research GmbH: "For neither 54
- of the samples a clear trend toward larger sizes could be measured within the tested time 55
- 56 frame." (cf. Annex 3).

- 1
- 2 3.6.4 Data Recording

3 The data generated were recorded in the raw data. The results are presented in tabular form, 4 including experimental groups with the test item, solvent, and positive controls.

5

6 Materials and methods (extracted from Annex 3)

7 Samples

8 Sample was provided by the customer. Preparation of sixteen sample mixtures to be analyzed

9 via DLS was conducted by the customer in ZentriForce Laboratory 2N21. A list of all samples

10 prepared by the customer and analyzed with in project RICC001a is given in Table 1.

11

Table 1: Samples for RICC001a

Sample Name	Samle Type	Description	Storage conditions at ZentriForce Pharma
24 h RM09 Negative control - S9 mix	RM09 24 h MEM - 10% FBS Water	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
24 h Solvent control – S9 mix	RM09 24h + MEM 10% FBS LM	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
24 h RM09 0.8 μg/mL – S9 mix	RM09 24h + MEM 10% FBS Konz 1	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
24 h RM09 100 μg/mL – S9 mix	RM09 24h + MEM 10% FBS Konz 8	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation

12 13

14 Preparation of samples for DLS measurements

Sample mixtures (see Table 1) were prepared by the customer in the ZentriForce Laboratories. Subsequently, 1 mL of each sample were transferred into a microtube and centrifugated at 2767 RCF for 5 minutes. Supernatant was transferred to an Aurora 384 well plate for DLS Measurements.

19

As a preliminary test, samples 24 h Solvent control – S9 mix, 4 h Solvent control – S9 mix, 24 h RM09 0.8 ug/mL – S9 mix, 24 h RM09 100 ug/mL – S9 mix, *4 h RM11 0.8 ug/mL – S9 mix, *4 h RM11 100 ug/mL – S9 mix and *4 h Solvent control + S9 mix were measured with and without previous centrifugation at 2767 g for 5 minutes.

*Samples are covered in report RICC001b.

25

For sample centrifugation, 1 mL of each sample were transferred into a 1.5 mL microtube and centrifuged at 2767 RCF for 5 minutes. Supernatant was transferred to an Aurora 384 well plate for DLS accelerated stability measurement.

Due to high scatter intensities for uncentrifugated samples 24 h RM09 100 ug/mL – S9 mix (no data) and RM11 0.8 ug/mL – S9 mix, (incomplete data), the accelerated stability study was conducted on samples that were centrifugated before transfer to the well plate.

- 32
- 33 DLS measurements

All light scattering services were executed on a DynaPro@Plate Reader III (Wyatt Technology). Each sample was measured in triplicate (n= 3). The adequate performance of the instrument regarding its intended application was verified via a systema suitability test (SSF) prior to sample measurement. The software Dynamics (V.7.10.21, Wyatt Technology) was used for sample measurements and data evaluation. Measurement parameters for the SST are depicted in Table 3.

40

Laser power and attenuation for sample measurement were set to auto-attenuation to adjust
 to potential formation of larger particles during accelerated stability experiment. Sample-

specific measurement parameters are listed in Table 4. The well plate was centrifugated at
3.000 rpm for 2 min after sample loading, following a standard procedure to remove air
bubbles from the wells.

4

5 One data point per hour was recorded for each sample replicate. Normalized intensities are 6 calculated by the Dynamics software and reported for comparability between samples. In all 7 cases, a standard deviation (sample) was used.

9 Reported parameters are listed in Table 5 – Table 10 in section 3.

10

8

- 11 SST parameters
- 12 An SST was performed before sample measurement. 1.4 mg/mL in BSA in 100 mM NaCl,
- 13 stored at -80°C, were thawed before the SST. SST experiment parameters are listed in Table
- 14 3. SST results are shown in the Appendix. SST was passed for RICC001a sample measurement
- 15
- 16 Table 3: DLS SST measurement parameters.

DLS acquisition time (s)	DLS acquisitions per measurement	Laser power (%)	Attenuation level (%)	Measurements per well within a scan	Number of scans	Temperature (°C)	Plate sealant
5	5	100	0	1	1	20	none

17 18

19 DLS Sample measurements

20 Table 4: DLS sample measurement parameters.

DLS acquisition time (s)	DLS acquisitions per measurement	Laser power (%)	Attenuation level (%)	Measurements per well within a scan	Number of scans	Temperature (°C)	Plate sealant
5	3	auto	auto	1	24	37	scaling tape

21 22

23 Results

Four samples were measured in three replicates via DLS at 37°C for 24 hours with one data point per hour. Results for the first and last data point of the experiment for each sample are listed in Table 5 – Table 10.

27

For sample 24 h RM09 0.8 ug/mL – S9 mix, the z-average diameter at T0 (first measurement point after preparation of the sample mixture) was 50 nm and 57 nm at Tend (last measurement point of the accelerated stability measurement). Signal intensity was approximatively 1-fold above the formulation signal level. The higher intensity of the sample signal in comparison with the background signal of the formulation buffer, the less likely an impact of background noise on the experiment data.

34

24 h RM09 100 ug/mL - S9 mix had a z-average diameter of 135 nm at T0 and of 137 nm at
 Tend.

37

The z-average diameter in relation to incubation time is shown in Figure 1 to Figure 4 for eachsample respectively.

40

Samples were centrifugated before the experiment, as an initial intensity test at 20°C showed
high scattering dure to large particles in the samples, which led to abortion of data collection.

Detailed results and intensity distributions of all replicates of the measured samples are shown
 in the Appendix.

- 1 Table 5: Averages and standard deviations of z-average and intensity-based D10, D50 and
- 2 D90 radii, T0. Samples were measured in triplicate.

Sample name	z-average diameter (nm)	z-average radius (nm)	D10 (nm)	D50 (am)	D90 (nm)
24 h RM09 Negative control - S9 mix	16.6±0.4	8.3 = 0,2	3.3 ± 0.1	12.0 = 0.6	62.2 = 3,4
24 h Solvent control - S9 mix	16.3 = 0	8.1 = 0.1	3.2 ± 0.1	13.1 = 2.7	41,4 = 13.7
24 h RM09 0 8 µg/mJ. S9 mix	50.0 ± 9.1	25.0 ± 4.5	5.0 ± 0.8	45.7 = 5.7	56.3 = 9.8
24 h RM09 100 µg/mL - S9 mix	134.5 ± 1.2	67.2 ± 0.6	43.8 1 2.6	72.7 - 2.6	11531.6.0

Table 6: Averages and standard deviation of mass-based D10, D50 and D90, T0. Samples were measured in triplicate.

Sample name	D10 (nm)	D50 (nm)	D90 (nm)
24 h RM09 Negative control – S9 mix	2.3 = 0.4	3.0 ± 0.2	4.7 ± 0.5
24 h Solvent control - S9 mix	2.3 ± 0.4	3.0 ± 0.3	4.7 ± 0.2
24 h RM09 0.8 µg/mL - S9 mix	3.2 ± 1.0	3.7 ± 1.1	5.4 ± 0.6
24 h RM09 100 µg/mL – S9 mix	34.9 ± 43.4	108.1 ± 0.8	114.5 ± 0.0

Table 7: Averages and standard deviations of normalized intensities, TO. Samples were measured in triplicate.

Sample name	Normalized Intensity (kCnt/s)
24 h RM09 Negative control – S9 mix	26155 ± 723
24 h Solvent control – $S9$ mix	26063 ± 813
$24hRM090.8\mu g/mL-S9mix$	46978 ± 8739
24 h RM09 100 µg/mL – S9 mix	1582471 ± 97289

14 Table 8: Averages and standard deviations of z-average and intensity-based D10, D50, D90

15 radii, Tend. Samples were measured in triplicate.

Sample name	z-average diameter (nm)	z-average radius (nm)	D10 (nm)	D50 (nm)	D90 (nm)
24 h RM09 Negative control – S9 mix	15.3 ± 0.4	7.7 ± 0.2	3.2 ± 0.1	11.2 = 1.5	55.8 ± 17.6
24 h Solvent control - S9 mix	15.5 ± 0.5	7.8 ± 0.3	3.2 ± 0.0	10.7 ± 1.0	67.6 ± 29.1
24 h RM09 0.8 µg/mL – S9 mix	57.1 ± 10.8	28.6 ± 5.4	5.1 ± 0.6	49.9 = 3.3	156.2 ± 155.1
24 h RM09 100 $\mu g/mL-S9~mix$	136.5 ± 2.3	68.2 ± 1.2	49.4 ± 8.1	71.8 = 1.9	103.6 ± 18.1

Table 9: Averages and standard deviations of mass-based D10, D50 and D90 radii, Tend.Samples were measured in triplicate.

Sample name	D10 (nm)	D50 (nm)	D90 (nm)
24 h RM09 Negative control – S9 mix	2.1 ± 0.3	2.9 ± 0.3	4.8 ± 0.1
24 h Solvent control - S9 mix	2.1 ± 0.2	2.9 ± 0.2	4.8 ± 0.2
24 h RM09 0.8 µg/mL – S9 mix	2.4 = 1.2	3.0 ± 1.2	5.5 ± 0.4
24 h RM09 100 µg/mL - S9 mix	23.6 = 31.0	95.6 ± 19.0	105.6 ± 14.8

1 Table 10: Averages and standard deviation of normalized intensities, Tend. Samples were

2 measured in triplicate.

3

4

5

6 Summary and conclusion of DLS measurements from Gene Mutation Assay in
7 Chinese Hamster V79 Cells in vitro (V79/HPRT)

8

9 Four samples were measured in three replicates via DLS at 37°C for 24 hours with one data
10 point per hour.

11 For sample 24 RM09 0.8 ug/mL – S9 mix the z – average diameter at T0 (first measurement 12 point after preparation of the sample mixture) was 50 nm and 57 nm at Tend (last measurement point of the accelerated stability measurement). Signal intensity was 13 approximately 1-fold above the formulation signal level. The higher intensity of the sample 14 signal in comparison with the background signal of the formulation buffer, the less likely an 15 impact of background noise on the experiment data. 24 h RM09 100 ug/mL - S9 mix had a 16 17 z-average of 135 nm at TO and 137 nm at Tend. An interference of the FBS with DLS 18 measurements could not be observed.

Samples were centrifugated before the experiment, as an initial intensity test showed high

- scattering due to large particles in the samples, which led to abortion of data collection.
 For neither of the samples, a clear trend toward larger particle sizes could be measured within
 the tested time frame.
- 23

1 Appendix

2 3

Table 12: z-average and intensity-based D10, D50 and D90 radii, T0

Sample name	Replicate	z-average diameter (nm)	z-average radius (nm)	D10 (nm)	D50 (nm)	D90 (nm)
	1	16.2	8.1	3.3	12.1	60.1
A CONTRACTOR OF A	2	16.9	8.5	33	11.4	60.4
24 h RM09 0.8 µg/mL - 59 mix	3	16.7	8.3	3.2	12.6	66.1
	AVG = STD	16.6 = 0.4	8.3 = 0.2	3.3 = 0,1	12.0 = 0.6	62.2 ± 3.4
	1	16.3	8.2	3.3	16.1	29.5
	2	16.3	8.1	3.2	11,1	56.3
24 h RM09 0.8 µg/mL - S9 mix	3	16.3	8.1	3.1	12.0	38.3
	AVG STD	16.3 0	8.1 - 0.1	32 0.1	13.1-2.7	41.4 + 13.7
	T	442	22.1	4.3	39.1	45.0
	2	60,4	30.2	4.8	49.1	61.2
24 ft RM09 0.8 µg/ml. S9 mix	3	45.3	22.7	5.9	49.0	62.7
	AVG - STD	50 ± 9,1	25.0 - 4.5	5.0 ± 0.8	45.7 - 5.7	56.3 ± 9.8
	1	134.5	67.2	453	75.4	114.1
	2	133.4	66.7	40.8	72.4	121.9
24 h KM09 0.8 µg/mL - 89 mix	3	135.7	57.8	45.3	70.3	109.9
	AVG - STD	134.5 ± 1.2	67.2 + 0.6	43.8 - 2.6	72.7 - 2.6	115.3 + 6.0

4 5 6

Table 13: z-average and intensity-based D10, D50 and D90 radii, Tend

Sample name	Replicate	z-average diameter (nm)	z-average radius (nm)	D10 (nm)	D50 (nm)	D90 (nm)
		14.8	7.4	3,1	10.3	59.7
Konz124 h RM09 0.8 µg/mL -	2	15.5	7.8	3.2	12.9	36,6
S9 mix	3	15,5	7.8	3,2	10,3	71,3
	AVG - STD	15.3 - 0.4	7.7 - 0.2	3.2 ± 0.1	11.2 - 1.5	55.8 + 17.6
	1	1.5	7.5	3.2	9.7	67.8
Konz124 h RM09 0.8 µg/mL – S9 mix	2	16	8.0	3.2	10.8	96.6
	3	15.6	7.8	3.1	11.7	38.4
	AVG STD	15.5 0.5	7.8 0.3	3.2 ± 0.0	10.7 1.0	67.6 1 29.1
	1	63.2	31.6	5.7	49,4	335.3
Konz124 ft RM09 0.8 µg/mL -	2	63.5	31.8	4.8	53.5	65.6
S9 mix	3	44.7	22.3	4.7	46.9	67.7
	AVG = STD	57.1 ± 10.8	28.6 ÷ 5.4	5.1 = 0.6	49.9 = 3.3	156.2 ± 155.1
Konz124 h RM09 0 8 ug/mL-	- I	133.9	66.9	42.0	72.2	118.0
	2	138.4	69.2	48.0	73.6	109.5
S9 mix	3	137.1	68.6	58.1	69.8	\$3.3
	AVG = STD	136.5 ± 2.3	68.2 = 1.2	49.4 = 8.1	71.8 = 1.9	103.6 ± 18.1

7 8 9

Table 14: mass-based D10, D50 and D90 radii, T0

Sample name	Replicate	D10 (nm)	D50 (nm)	D90 (am)
	1	2,2	3,0	5,0
AND DECEMBER OF THE OWNER	2	2.0	2.8	5.0
24 h KM09 0.8 µg/mL - S9 mix	3	2.7	3.2	42
	AVG = STD	2.3 ± 0.4	3.0 = 0.2	4.7 = 0,5
	1	2,8	3,4	45
ALL DEPONDENT OF THE	2	2.0	2,8	4.9
24 h KM09 0.8 µg/mL – S9 mix.	3	2.2	2.9	4.7
	AVG ± STD	2.3 ± 0.4	3.0 = 0.3	4.7 = 0.2
	1	3.8	4.3	4.9
	2	3.8	4.4	5.3
24 h KM09 0.8 µg mL - 89 mix	3	2.1	2.5	6.1
	AVG ± STD	3.2 = 1.0	3.7 - 1.1	5.4 ± 0.6
	1	14.3	108.4	114.4
11 D1 00 0 0 0 0	2	5.8	107.2	114.5
24 h KM09 0.8 µg ml. S9 mis	3	84.8	108.8	114.5
	AVG ± STD	34.9±43.4	108.1 ± 0.8	114.5 = 0.0

1 Table 15: Mass-based D10, D50 and D90 radii, Tend

Sample name	Replicate	D10 (nm)	D50 (nm)	D90 (nm)
	1	2.0	2,7	4.7
211.0100.00	2	2,4	3.1	4.7
24 h KM09 0.8 µg/mL - 59 mix.	3	1.9	2.7	4.9
	AVG ± STD	2.1 ± 0.3	$2.9 \simeq 0.3$	4.8 ± 0.1
	1.	2.0	2.8	5.0
SAL DAMAGE	2	2.1	2.8	4.9
24 h RM09 0.8 µg/mL = 89 mix	3	2.4	3.1	4.6
	AVG ± STD	2.1 = 0.2	2.9 = 0.2	4.8 ± 0.2
	1	2.0	2.2	5.9
ant million of a line in the	2	3.8	4.4	53
24 h KM09 0,8 µg/mL - 59 mix	3	1.5	2.3	5.2
	AVG = STD	2.4 = 1.2	3.0 = 1.2	5,5 = 0.4
	1	6.2	107.5	114.4
NAL DEPROD	2	5.1	105.7	113.9
24 h KM09 0,8 µg/mL - S9 mix	3	59.4	73.7	88.4
	AVG ± STD	23.6 + 31.0	95.6 ± 19.0	105.6 ± 14.8

2

3 4

From Report: 4023313_final_report - RM09: Micronucleus Test in Chinese Hamster
V79 Cells in vitro

- 7 0
- 8 From Applicants

9 To reflect the stability of the dispersion and the agglomeration/aggregation behavior of the test material during cell culture exposure in the genotoxicity experiment, particle size 10 11 determination of the test dispersion using dynamic light scattering (DLS) was performed in the parallel study (ICCR Study Number 4023311 "RM09: Gene Mutation Assay in Chinese 12 Hamster V79 Cells in vitro (V79/HPRT)") as well (external assignment under non-GLP). In the 13 V79/HPRT study, the test item preparation and exposure were performed under comparable 14 conditions, and thus the results from the TEM and DLS analysis are considered transferable 15 between the two studies. 16 17

18 In the accelerated stability study, it was demonstrated via dynamic light scattering (DLS) 19 measurements that the test item RM09 showed stable particle sizes without increased 20 aggregation/agglomeration for at least 24 hours. Moreover, samples from the test item 21 exposure were sent for transmission electron microscopy analysis. The cellular uptake of

SCCS/1661/23

1 RM09 nanoparticles was demonstrated at all concentrations evaluated and the test item was 2 observed exclusively in cytoplasmic vesicles but not in the cell nucleus 3 RAW MATERIAL 11 4 5 RM11 - Summary and conclusion of DLS measurements from Gene Mutation Assay in Chinese Hamster V79 Cells in vitro (V79/HPRT) 6 7 8 For sample 4h RM11 0.8 ug/mL - S9 mix, the z-average diameter at T0 was ca. 183.3 nm 9 and 290 nm at Tend, with a high standard deviation for both data points due to a signal 10 intensity that was approximately 1-forld above the scattering level of the formulation buffer. 11 4h RM11 100 ug/mL - S9 mix had a z-average diameter of 168 nm at T0 and 176 nm at 12 Tend. 13 All samples containing S9 mix showed comparable z-average diameters at T0 and at Tend, 14 when compared to each other, as well as comparable scattering intensities, including the 15 Water and LM samples. The normalized intensities of the solvent control sample with S9 mix 16 (T0: 1.0 x 10E6 kCnt/s and Tend: 1.7 x 10E6 kCnt/s) were in a comparable range to the 17 values measured for the samples containing the test material and S9 mix (0.8 ug/mL: TO: 18 1.0 x 10E6 kCnt/s and Tend: 1.7 x 10E6 kCnt/s - 100 ug/mL: T0 1.2 x 10E6 kCnt/s and Tend: 19 1.7 x 10E6 kCnt/s). Therefore the data possibly reflects the z-average diameter of the S9 20 components instead of the z-average diameter of the nanoparticles. 21 22 24 h RM 11 0.8 ug/mL - S9 had a z-average diameter of approx. 24 nm at T0 and 32 nm at 23 Tend, wit a low signal amplitude. An interference of the FBS with the DLS measurements could not be observed. RM 11 24 h + 10 % FBS Konz 8 had a z-average diameter of 109 nm 24 25 at TO and of 118 nm at Tend. 26 Samples were centrifuged before the experiment, as an initial intensity test at 20°C showed 27 high scattering due to large particles in the samples, which led to abortion of data collection. 28 29 For neither of the samples, but the samples containing the S9 mix, a clear trend toward larger 30 particles sizes could be measured with the tested time frame. 31 32 Ref. 4023312_final Report - RM11: Gene Mutation Assay in Chinese Hamster V79 Cells in 33 vitro (V79/HPRT) 34 35 36 Detailed Results of the DLS experiments 37 38 From 4023312_final Report - RM11: Gene Mutation Assay in Chinese Hamster V79 Cells in 39 vitro (V79/HPRT) 40 41 Introduction 42 The aim of this study was the analytical testing of nanoparticles by dynamic light scattering 43 (DLS). For this purpose, an accelerated stability study at 37°C was conducted for a total of 44 approximately 24 hours. 45 46 Samples 47 Sample was provided by the customer. Preparation of sixteen sample mixtures to be analyzed via DLS was conducted by the customer in ZentriForce Laboratory 2N21. A list of all smaple 48 49 mixtures prepared by the customer and analyzed within project RICC001b in given in Table 50 1. 51

1 Table 1: Samples from RICC001b.

Sample Name	Sample Type	Description	Storage conditions at ZentriForce Pharma
24 h Negative control - S9 mix	RM11 24 h + 10% FBS + Water	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
24 h Solvent control – S9 mix	RM11 24 h + 10% FBS + LM	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
24 h RM11 0.8 µg/mL – S9 mix	RM11 24 h + 10% FBS + Konz 1	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
24 h RM11 100 µg/mL - 89 mix	RM11 24 h + 10% FBS + Konz 8	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
4 h Negative control – S9 mix	RM114h+Water	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
4 h Solvent control - S9 mix	RM11 4 h + LM	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
4 h RM11 0.8 μg/mL - S9 mix	RM114 h + Konz 1	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
4 h RM11 100 μg/mL - S9 mix	RM114 h + Konz 8	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
4 h Negative control + S9 mix	RM114 h + 89 + Water	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
4 h Solvent control + S9 mix	RM11 4 h + S9 + LM	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
$4~h~RM11~0.8~\mu g/mL + S9~mix$	RM11 4 h + S9 + Konz 1	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation
4 h RM11 100 $\mu g/mL + S9$ mix	RM11 4 h + S9 + Konz 8	Mixture was prepared by customer in ZentriForce laboratory	Sample was measured immediately after preparation

2

- 6 Preparation of samples for DLS measurements
- 7 Sample mixtures (see Table 1) were prepared by the customer in the ZentriForce8 Laboratories.
- 9 As a preliminary test, samples 24h Solvent control S9 mix, 4 h Solvent control S9 mix,
- 10
- As a preliminary test, samples 24 h Solvent control S9 mix, 4 h Solvent control S9 mix, 24 h RM09 0.8 ug/mL S9 mix, *24 h RM09 100 ug/mL S9 mix, 4 h RM11 0.8 ug/mL –
- S9 mix, 4 h RM11 100 ug/mL S9 mix and 4 h Solvent control + S9 mix were measured with
 and without previous centrifugation at 2767 RCF for 5 minutes in a Thermo Fisher Heraeus
- 15 Megafuge 8
- 16 *Samples are covered in report RICC001a
- 17
- For sample centrifugation, 1 mL of each sample were transferred into a 1.5 mL microtube and
 centrifuged at 2767 RCF for 5 minutes. Supernatant was transferred to an Aurora 384 well
 plate for DLS accelerated stability measurement.
- Due to high scatter intensities for uncentrifugated samples 24 h RM09 100 ug/mL S9 mix (no data) and RM11 0.8 ug/mL – S9 mix, (incomplete data), the accelerated stability study was conducted on samples that were centrifugated before transfer to the well plate.
- 24 25

1 DLS measurements

2 All light scattering services were executed on a DynaPro@Plate Reader III (Wyatt 3 Technology). Each sample was measured in triplicate (n = 3). The adequate performance of the instrument regarding its intended application was verified via a systema suitability test 4 5 (SSF) prior to sample measurement. The software Dynamics (V.7.10.21, Wyatt Technology) 6 was used for sample measurements and data evaluation. Measurement parameters for the 7 SST are depicted in Table 3.

8

9 Laser power and attenuation for sample measurement were set to auto-attenuation to adjust 10 to potential formation of larger particles during accelerated stability experiment. Sample-11 specific measurement parameters are listed in Table 4. The well plate was centrifugated at 3.000 rpm for 2 min after sample loading, following a standard procedure to remove air 12 13 bubbles from the wells.

14

15 One data point per hour was recorded for each sample replicate. Normalized intensities are 16 calculated by the Dynamics software and reported for comparability between samples. In all cases, a standard deviation (sample) was used. 17

18

19 Reported parameters are listed in Table 5 - Table 10 in section 3.

20

21 SST parameters

22 An SST was performed before sample measurement. 1.4 mg/mL in BSA in 100 mM NaCl, stored at -80°C, were thawed before the SST. SST experiment parameters are listed in Table 23 24

- 3. SST results are shown in the Appendix. SST was passed for RICC001a sample measurement
- 25 26

Table 3: DLS SST measurement parameters.

DLS acquisition time (s)	DLS acquisitions per measurement	Laser power (%)	Attenuation level (%)	Measurements per well within a scan	Number of scans	Temperature (°C)	Plate sealant
5	5	100	0	1	1	20	none

27

28

29 **DLS Sample measurements**

30 Table 4: DLS sample measurement parameters.

DLS acquisition time (s)	DLS acquisitions per measurement	Laser power (%)	Attenuation level (%)	Measurements per well within a scan	Number of scans	Temperature (°C)	Plate sealant
5	3	auto	auto	1	24	37	sealing tape

31 32

33

Results 34

35 Twelve samples were measured in three replicates via DLS at 37°C for 24 hours with one data 36 point per hour. Results for the first and last data point of the experiment for each sample are listed in Table 5 - Table 10. 37

38

39 For sample 4h RM11 0.8 ug/mL - S9 mix, the z-average diameter at T0 (first measurement 40 point after the preparation of the sample mixture) was 183 nm and 290 nm at Tend (last 41 measurement point of the accelerated stability measurement), with a high standard deviation 42 for both data points. Signal intensity was approximately 1-fold above the formulation signal 43 level. The higher intensity of the sample signal in comparison with the background signal of 44 the formulation buffer, the less likely an impact of background noise on the experiment data.

45

4 h RM11 100 ug/mL - S9 mix had a z-average diameter of 168 nm at T0 and 176 nm at 46 47 Tend.

SCCS/1661/23

1 All samples with S9 mix showed comparable z-average diameters at T0 and Tend when 2 compared to each other, as well as comparable scattering intensities, including the Water and 3 LM samples.

4

24 h RM11 0.8 ug/mL - S9 mix had a z-average diameter of approx. 24 nm at T0 and 32 nm
at Tend, with a low signal - to - noise ratio. 24 h RM11 100 ug/mL - S9 mix had a z-average
diameter of ca. 109 nm at T0 and of 118 nm at Tend.

9 The z-average diameter in relation to incubation time in shown in Figure 1 to Figure 12 for 10 each sample, respectively.

11

8

Samples were centrifugated before the experiment, as an initial intensity test at 20°C showed
 high scattering due to large particles in the samples, which led to abortion of data collection.

14

Detailed results and intensity distributions of all replicates of the measured samples are shownin the Appendix.

17

Table 5: Averages and standard deviation of z-average and intensity-based D10, D50 andD90 radii. Samples were measured in triplicate.

Sample name	z-average diameter (nm)	z-average radius (nm)	D10 (nm)	D50 (nm)	D90 (nm)
4 h Negative control - S9 mix	5.7 ± 7.6	2.8 ± 3.8	114.9 ± 53.6	161.8 ± 68.7	230.3 = 89.4
4 h Solvent control - S9 mix	6.3 ± 0.7	3.2 ± 0.4	1.8 ± 0.2	4.0 ± 0.4	72.0 ± 60.6
$4~h~RM11~0.8~\mu g/mL-S9~mix$	183.3 ± 153.2	91.7 ± 76.6	4.1 ± 3.3	53.5 ± 39.8	56.9 ± 42.5
4 h RM11 100 μg/mL – S9 mix	168.1 ± 4.6	84.1 = 2.2	62.7 ± 2.1	73.0 ± 3.2	85.3 ± 7.5
4 h RM11 Negative control + S9 mix	167.7 ± 4.8	83.8 = 2.4	48.2 ± 5.2	87.1 ± 6.6	158.2 = 26.8
4 h RM11 Solvent control + S9 mix	168.0 ± 1.3	84.0 ± 0.7	44.5 ± 2.1	92.4 ± 3.0	182.0 = 21.4
$4~h~RM11~0.8~\mu g/mL + S9~mix$	166.0 ± 1.5	83.0 ± 0.8	42.7 ± 2.5	93.6±7.5	197.4 = 26.3
$4~h~RM11~100~\mu\text{g/mL}+S9~mix$	169.9 ± 4.4	84.9 = 2.2	55.7 ± 12.4	87.7 ± 1.7	140.6 = 36.0
24 h Negative control - S9 mix	15.3 = 0.2	7.7 ± 0.1	3.1 ± 0.1	11.9 ± 1.4	60.2 ± 12.1
24 h Solvent control - S9 mix	15.6 = 0.7	7.8 ± 0.3	2.9 ± 0.2	10.0 ± 0.2	57.1 ± 11.9
$24\ h\ RM11\ 0.8\ \mu g/mL-S9\ mix$	23.7 ± 10.4	11.8 ± 5.2	3.0 ± 0.1	13.2 ± 2.7	92.4 ± 53.2
$24 \ h \ RM11 \ 100 \ \mu g/mL - S9 \ mix$	109.4 ± 9.0	54.7 ± 4.5	49.5 ± 4.2	67.3 ± 3.0	84.4 ± 8.6

20 21 22

23 24

Table 6: Averages and standard deviations of mass-based D10, D50 and D90 radii, T0. Samples were measured in triplicate.

Sample name	D10 (nm)	D50 (nm)	D90 (am)
4 h Negative control \$9 mix	129.2 - 45.2	162.4 - 85.9	223.3 = 108.6
4 h Solvent control S9 mix	36.4 = 61.1	40.0 ± 66.3	67.5=111.4
4 h RM11 0.8 µg/mL - S9 mix	4.0 ± 3.4	4.3 = 3.7	4.5 = 3.8
4 h RM11 100 µg/mL S9 mix	65.3 = 2.9	79.6 = 10.8	90.3 = 12.4
4 h RM11 Negative control + S9 mix	97.0±2.6	112.6 ± 1.5	2814.3 ± 4546.4
4 h RM11 Solvent control = S9 mix	98.4 = 0.6	112.2 = 0.9	199.2 - 24.1
4 h RM11 0.8 µg/mL S9 mix	97.8 - 1.3	112.4 = 0.9	220.9 - 52.4
4 h RM11 100 µg/mL - S9 mix	94.9 = 2.5	110.1 ± 1.5	142.4 = 47.6
24 h Negative control S9 mix	2.2 ± 0.5	2.9 ± 0.4	4.5 = 0.2
24 h Solvent control - S9 mix.	2.0 ± 0.1	2.5 = 0.0	45=0.2
24 h RM11 0.8 µg/mL S9 mix	2.5 ± 0.3	3.0 ± 0.2	3.9 = 0.3
24 h RM11 100 µg/mL - S9 mix	3.5 ± 1.1	3.9 ± 1.2	5.6 = 0.4

25 26

Table 7: Averages and standard deviations of normalized intensities, TO. Samples weremeasured in triplicate.

Sample name	Normalized Intensity (kCnt/s)
4 h Negative control - S9 mix	491 ± 18
4 h Solvent control - S9 mix	873 ± 265
4 h RM11 0.8 µg/mL – S9 mix	1568 + 649
4 h RM11 100 μg/mL – S9 mix	87409 ± 6594
4 h RM11 Negative control + S9 mix	1028178 ± 52698
4 h RM11 Solvent control + S9 mix	954261 ± 21475
4 h RM11 0.8 µg/mL + S9 mix	976951 ± 56708
4 h RM11 100 µg/mL - S9 mix	1179233 ± 63976
24 h Negative control - S9 mix	25920 ± 185
24 h Solvent control - S9 mix	27324 ± 710
24 h RM11 0.8 µg/mL - S9 mix	29530 ± 4786
24 h RM11 100 µg/mL - S9 mix	131965 ± 12189

Table 8: Averages and standard deviation of z-average and intensity-based D10, D50 and D90 radii, Tend. Samples were measured in triplicate.

Sample name	z-average z-average diameter (nm)	z-average radius (nm)	D10 (nm)	D50 (nm)	D90 (nm)
4 h Negative control - S9 mix	263.4 ± 263.6	131.7 ± 131.8	$\textbf{93.8} \pm \textbf{34.9}$	181.0 ± 44.3	394.8 ± 151.5
4 h Solvent control – S9 mix	4.5 ± 0.5	2.3 ± 0.3	1.9 ± 0.0	3.4 ± 0.2	6.0 ± 0.4
$4 \ h \ RM11 \ 0.8 \ \mu g/mL - S9 \ mix$	$\textbf{289.8} \pm \textbf{146.4}$	144.9 ± 73.2	$\textbf{39.3} \pm \textbf{18.2}$	41.0 ± 18.3	$\textbf{42.9} \pm \textbf{18.8}$
4 h RM11 100 μg/mL – S9 mix	175.6 ± 9.4	87.8 ± 4.7	60.9 ± 5.4	69.0 ± 5.1	78.2 ± 7.8
4 h RM11 Negative control + S9 mix	235.5 ± 84	140.9 ± 3.4	83.4 ± 15.1	135.9 ± 6.7	258.2 ± 100.3
4 h RM11 Solvent control + S9 mix	265.6 ± 4.2	132.8 ± 2.1	64.8 ± 18.1	146.6 ± 14.2	235.9 ± 15.1
4 h RM11 0.8 μg/mL + S9 mix	272.5 ± 6.8	136.3 ± 3.4	74.6 ± 8.6	129.3 ± 36.6	223.0 ± 121.0
$4~h~RM11~100~\mu\text{g/mL}+S9~mix$	266.6 ± 3.6	133.3 ± 1.8	70.0 ± 24.4	149.5 ± 16.3	237.7 ± 44.2
24 h Negative control - S9 mix	15.4 ± 0.2	7.7 ± 0.1	3.8 ± 1.2	8.6 ± 2.8	32.1 ± 23.1
24 h Solvent control – S9 mix	15.2 ± 0.2	7.6 ± 0.1	3.2 ± 0.1	11.4 ± 2.5	62.1 ± 4.3
24 h RM11 0.8 µg/mL - S9 mix	31.6 ± 24.6	15.8 ± 12.3	3.6 ± 1.1	18.5 ± 20.8	91.2 ± 99.5
24 h RM11 100 μg/mL – S9 mix	118.3 ± 6.3	59.2 ± 3.1	42.9 ± 28.5	74.5 ± 5.4	96.0 ± 17.6

Table 9: Averages and standard deviations of mass-based D10, D50 and D90 radii. Samples were measured in triplicate.

Sample name	D10 (nm)	D50 (nm)	D90 (nm)
4 h Negative control - S9 mix	107.6 ± 2.7	201.9 ± 35.4	362.7 ± 94.2
4 h Solvent control - S9 mix	1.4 ± 0.1	2.0 ± 0.1	3.5 ± 0.1
$4~h~RM11~0.8~\mu g/mL-S9~mix$	39.3±18.2	41.0 ± 18.4	42.8 ± 18.8
4 h RM11 100 μg/mL – S9 mix	61.6 ± 5.2	70.9 ± 6.2	80.2 ± 10.1
4 h RM11 Negative control + S9 mix	104.4 ± 2.0	142.1 = 39.6	4369.2 ± 876.3
4 h RM11 Solvent control + S9 mix	105.2 ± 2.4	151.2 = 31.9	250.0 ± 14.9
4 h RM11 0.8 µg/mL + S9 mix	72.4 ± 57.9	105.3 ± 90.0	233.0 ± 130.3
$4~h~RM11~100~\mu\text{g/mL}+S9~mix$	106.6 ± 3.3	152.7 = 38.6	246.7 ± 50.4
24 h Negative control - S9 mix	3.1 ± 1.8	3.6 ± 1.5	5.0 + 0.5
24 h Solvent control - S9 mix	2.3 ± 0.6	3.0 ± 0.5	4.6 ± 0.3
$24 \ h \ RM11 \ 0.8 \ \mu g/mL - S9 \ mix$	1.9 ± 0.5	2.4 ± 1.0	5.4 ± 0.5
$24 \ h \ RM11 \ 100 \ \mu g/mL - S9 \ mix$	2.6 ± 1.2	3.0 ± 1.1	18.6 ± 22.6

1 Table 10: Averages and standard deviations of normalized intensities, Tend. Samples were measured in triplicate.

2

Sample name	Normalized Intensity (kCnt/s)		
4 h Negative control - S9 mix	581 ± 218		
4 h Solvent control - S9 mix	636 ± 10		
4 h RM11 0.8 µg/mL – S9 mix	1455 ± 186		
4 h RM11 100 μg/mL - S9 mix	81240 ± 11116		
4 h RM11 Negative control + S9 mix	1650677 ± 46392		
4 h RM11 Solvent control + S9 mix	1673810 ± 25857		
4 h RM11 0.8 μg/mL + S9 mix	1702196 ± 43908		
4 h RM11 100 µg/mL + S9 mix	1684673 ± 54586		
24 h Negative control - S9 mix	26819 ± 1056		
24 h Solvent control - S9 mix	28015 ± 1734		
24 h RM11 0.8 µg/mL - S9 mix	40310 ± 10775		
24 h RM11 100 µg/mL - S9 mix	168958 ± 21979		

3 4

5

6

1

Summary and conclusion - From Report: 4023312_final Report - RM11: Gene Mutation Assay in Chinese Hamster V79 Cells in vitro (V79/HPRT)

7 For sample 4h RM11 0.8 ug/mL - S9 mix, the z-average diameter at T0 was ca. 183.3 nm and 290 nm at Tend, with a high standard deviation for both data points due to a signal 8 9 intensity that was approximately 1-forld above the scattering level of the formulation buffer. 10 4h RM11 100 ug/mL - S9 mix had a z-average diameter of 168 nm at T0 and 176 nm at 11 Tend.

All samples containing S9 mix showed comparable z-average diameters at T0 and at Tend, 12 13 when compared to each other, as well as comparable scattering intensities, including the Water and LM samples. The normalized intensities of the solvent control sample with S9 mix 14 15 (T0: 1.0 x 10E6 kCnt/s and Tend: 1.7 x 10E6 kCnt/s) were in a comparable range to the values measured for the samples containing the test material and S9 mix (0.8 ug/mL: T0: 16 17 1.0 x 10E6 kCnt/s and Tend: 1.7 x 10E6 kCnt/s - 100 ug/mL: T0 1.2 x 10E6 kCnt/s and Tend: 18 1.7 x 10E6 kCnt/s). Therefore the data possibly reflects the z-average diameter of the S9 19 components instead of the z-average diameter of the nanoparticles.

24 h RM 11 0.8 ug/mL - S9 had a z-average diameter of approx. 24 nm at T0 and 32 nm at
Tend, with a low signal amplitude. An interference of the FBS with the DLS measurements
could not be observed. RM 11 24 h + 10 % FBS Konz 8 had a z-average diameter of 109 nm
at T0 and of 118 nm at Tend.

6 Samples were centrifuged before the experiment, as an initial intensity test at 20°C showed
7 high scattering due to large particles in the samples, which led to abortion of data collection.
8

9 For neither of the samples, but the samples containing the S9 mix, a clear trend toward larger10 particles sizes could be measured with the tested time frame.

- 11
- 12 DLS detailed results
- 13 14

Table 12: z-average and intensity-based D10, D50 and D90 radii, T0

Sample name	Replicate	z-average diameter (nm)	z-average radius (nm)	D10 (nm)	D50 (nm)	D90 (nm)
	1	14.5	7.2	105.4	149.0	213.5
	2	1.7	0.8	172.5	235.9	326.8
4 h Negative control – S9 mix	3	1	0.5	66.7	100.4	150.4
	AVG ± STD	5.7 ± 7.6	2.8 ± 3.8	114.9 ± 53.6	161.8 ± 68.7	230.3 ± 89.4
	1	6.3	3.2	1.5	3.7	128.0
	2	5.6	2.8	2.0	3.9	7.7
4 h Solvent control - S9 mix	3	6.9	3.5	1.7	4.5	80.4
	AVG ± STD	6.3 ± 0.7	3.2 ± 0.4	1.8 ± 0.2	4 ± 0.4	72.0 ± 60.6
	1	84	42.0	3.2	67.9	72.6
	2	359.8	179.9	1.4	84.1	89.3
4 h RM11 0.8 μg/mL - S9 mix	3	106.2	53.1	7.8	8.4	8.8
	AVG = STD	183.3 ± 153.2	91.7 ± 76.6	4.1 ± 3.3	53.5 ± 39.8	56.9 ± 42.5
	1	163.1	81.6	61.6	69.3	78.2
	2	172.1	86.0	61.5	75.3	93.1
4 n RM11 100 µg/mL – 59 mix	3	169.2	84.6	65.1	74.3	84.7
	$AVG\pm STD$	168.1 ± 4.6	84.1 ± 2.2	62.7 ± 2.1	73.0 ± 3.2	85.3 ± 7.5
	1	164	82.0	44.0	94.6	171.8
4 h Maasting asstal + 60 min	2	165.9	82.9	54.0	82.4	127.3
4 n Negative control + 59 mix	3	173.1	86.6	46.7	84.2	175.5
	$AVG \pm STD$	167.7 ± 4.8	83.8 = 2.4	48.2 ± 5.2	87.1 ± 6.6	158.2 ± 26.8
	1	168.5	84.3	42.9	93.0	203.1
4 h Solvent control + S9 mix	2	168.9	84.5	46.9	89.1	160.4
	3	166.5	83.2	43.7	95.0	182.4
	$AVG \doteq STD$	168 ± 1.3	84.0 = 0.7	44.5 ± 2.1	92.4 ± 3.0	182.0 ± 21.4
	1	164.3	82.1	39.8	99.8	184.5
4 b DM11 0 8 up in I + 50 min	2	166.6	83.3	44.1	95.8	180.1
4 ft KM 11 0.8 µg/mL + 39 mix	3	167.1	83.6	44.2	85.2	227.7
	$AVG \pm STD$	166 ± 1.5	83.0 ± 0.8	42.7 ± 2.5	93.6 ± 7.5	197.4 ± 26.3
	1	165.5	82.7	41.7	86.5	182.1
4 h RM11 100µg/mL + S9 mix	2	170	85.0	65.4	89.7	118.4
	3	174.2	87.1	60.0	87.0	121.4
	$AVG \pm STD$	169.9 ± 4.4	84.9 ± 2.2	55.7 ± 12.4	87.7 ± 1.7	140.6 ± 36
	1	15.3	7.7	3.1	10.8	69.4
	2	15.4	7.7	3.0	11.6	46.4
24 h Negative control – S9 mix	3	15.1	7.6	3.3	13.5	64.7
	AVG = STD	15.3 ± 0.2	7.7 ± 0.1	3.1 ± 0.1	11.9 ± 1.4	60.2 ± 12.1
	1	15	7.5	3.1	10.3	70.8
	2	15.4	7.7	2.8	9.9	50.1
24 h Solvent control – S9 mix	3	16.3	8.1	2.9	9.8	50.3
	$AVG \pm STD$	15.6 ± 0.7	7.8 ± 0.3	2.9 ± 0.2	10.0 ± 0.2	57.1 ± 11.9
	1	19.6	9.8	3.0	12.7	139.4
241 DM11 0 8	2	35.5	17.7	3.1	16.1	103.1
24 h KM11 0.8 µg/mL – S9 mix	3	16	8.0	2.9	10.7	34.7
	$AVG \pm STD$	23.7 ± 10.4	11.8 ± 5.2	3.0 ± 0.1	13.2 ± 2.7	92.4 ± 53.2
	1	99.1	49.6	44.7	69.9	93.6
241- PM11 100	2	113.5	56.7	51.8	68.0	83.2
24 n KM11 100 µg/mL – 89 mix	3	115.7	57.8	52.0	63.9	76.5
	$AVG \pm STD$	109.4 ± 9	54.7 ± 4.5	49.5 ± 4.2	67.3 ± 3.0	84.4 ± 8.6

Table 13: z-average and intensity-based D10, D50 and D90 radii, Tend.

Sample name	Replicate	z-average diameter (nm)	z-average radius (nm)	D10 (nm)	D50 (nm)	D90 (nm)
	1	0.9	0.4	101.2	225.6	563.1
	2	528	264.0	124.4	180.5	269.3
4 n Negative control – S9 mix	3	261.2	130.6	55.8	137.1	352.0
	$AVG \pm STD$	263.4 = 263.6	131.7 ± 131.8	93.8 ± 34.9	181.0 ± 44.3	394.8 ± 151.5
	1	5.1	2.6	2.0	3.3	5.8
4 h Column control CO min	2	4.3	2.1	2.0	3.6	6.5
4 h Solvent control – 59 mix	3	4.2	2.1	1.9	3.5	5.9
	$AVG\pm STD$	4.5 ± 0.5	2.3 ± 0.3	1.9 ± 0.0	3.4 ± 0.2	6.0 ± 0.4
	1	352.6	176.3	41.1	42.7	45.3
4 b PM11 0 8 ug/mJ S0 mix	2	122.4	61.2	20.3	21.9	23.0
4 ii KM11 0.8 µg/m2 – 59 mix	3	394.3	197.2	56.6	58.4	60.3
	$AVG\pm STD$	289.8 ± 146.4	144.9 ± 73.2	39.3 ± 18.2	41.0 ± 18.3	42.9 ± 18.8
	1	167.1	83.6	58.1	63.5	69.3
4 h PM11 100 ug/mI _ \$9 mix	2	174.1	87.0	57.5	69.9	84.1
4 fr RM11 100 µg/mL – 59 mix	3	185.7	92.9	67.2	73.6	81.0
	$AVG\pm STD$	175.6 ± 9.4	$\textbf{87.8} \pm \textbf{4.7}$	60.9 ± 5.4	69.0 ± 5.1	78.2 ± 7.8
4 h Magating control + 80 min	1	278.4	139.2	66.1	142.9	373.5
4 in regarive control + 59 mix	2	289.5	144.8	90.1	135.1	210.1
	3	138.7	138.7	94.1	129.6	191.0
	AVG ± STD	235.5 ± 84	140.9 ± 3.4	83.4 ± 15.1	135.9 ± 6.7	258.2 ± 100.3
	1	267.5	133.8	74.6	130.2	228.0
	2	260.8	130.4	76.0	154.2	253.3
4 h Solvent control + S9 mix	3	268.5	134.3	43.9	155.3	226.4
	AVG ± STD	265.6 = 4.2	132.8 ± 2.1	64.8 ± 18.1	146.6 ± 14.2	235.9 ± 15.1
	1	264.6	132.3	84.4	87.4	90.3
	2	276.4	138.2	68.6	155.2	327.4
4 h RM11 0.8 µg/mL + 89 mix	3	276.5	138.3	70.7	145.2	251.3
	$AVG \pm STD$	272.5 = 6.8	136.3 ± 3.4	74.6 ± 8.6	129.3 ± 36.6	223.0 ± 121.0
	1	266.6	133.3	47.5	168.0	251.6
	2	270.1	135.0	66.4	143.3	273.3
4 h RM11 100µg/mL + 89 mix	3	263	131.5	96.0	137.2	188.3
	$AVG \pm STD$	266.6 = 3.6	133.3 ± 1.8	70.0 ± 24.4	149.5 ± 16.3	237.7 ± 44.2
	1	15.5	7.7	3.0	10.3	43.4
24 h Magatina control 80 min	2	15.2	7.6	3.1	10.2	47.4
24 h Negauve control – 59 mix	3	15.4	7.7	5.1	5.3	5.6
	$AVG\pm STD$	15.4 ± 0.2	7.7 ± 0.1	3.8 ± 1.2	8.6 ± 2.8	32.1 ± 23.1
	1	15.1	7.6	3.2	9.6	65.3
24 h Solvant control S0 mix	2	15.1	7.6	3.1	10.3	57.2
24 h Solvent control – 59 mix	3	15.5	7.7	3.4	14.2	63.7
	$AVG\pm STD$	15.2 ± 0.2	7.6 ± 0.1	3.2 ± 0.1	11.4 ± 2.5	62.1 ± 4.3
	1	17.1	8.5	3.9	6.6	31.7
24 h RM11 0 8 µg/ml - \$9 mix	2	60	30.0	4.5	42.5	206.1
24 n Rait 1 0.0 µg/nii: - 57 niix	3	17.8	8.9	2.4	6.4	35.8
	$\Lambda VG\pm STD$	31.6 = 24.6	15.8 ± 12.3	3.6 ± 1.1	18.5 ± 20.8	91.2 ± 99.5
	1	122.8	61.4	10.1	75.2	112.8
24 h RM11 100 µg/mL - S9 mix	2	121.1	60.5	60.7	79.5	97.5
- a substance of the second	3	111.1	55.6	58.1	68.7	77.7
	AVG + STD	118.3 = 6.3	59.2 ± 3.1	42.9 ± 28.5	74.5 ± 5.4	96.0 ± 17.6

⁴

From Report: 4023314_final_report - RM11: Micronucleus Test in Chinese Hamster V79 Cells in vitro

11 From Applicants

1 To reflect the stability of the dispersion and the agglomeration/aggregation behavior of the 2 test material during cell culture exposure in the genotoxicity experiment, particle size 3 determination of the test dispersion using dynamic light scattering (DLS) was performed in 4 the parallel study (ICCR Study Number 4023312 "RM11: Gene Mutation Assay in Chinese 5 Hamster V79 Cells in vitro (V79/HPRT)") as well (external assignment under non-GLP). In the V79/HPRT study, the test item preparation and exposure were performed under comparable 6 7 conditions, and thus, the results from the TEM and DLS analyses are considered transferable 8 between the two studies.

10 In the accelerated stability study, it was demonstrated via dynamic light scattering (DLS) 11 measurements that the test item RM11 showed stable particle sizes without increased 12 aggregation/agglomeration for at least 24 hours. Moreover, samples from the test item 13 exposure were sent for transmission electron microscopy analysis. The cellular uptake of 14 RM11 nanoparticles was demonstrated at all concentration evaluated and the test item was 15 observed exclusively in cytoplasmic vesicles but not in the cell nucleus.

16

- 17
- 18

Annex T. Tables and references from the document "Dossier on the Human Safety Evaluation of Titanium Dioxide in Cosmetic Products (CAS No. 13463-67-7, 12026-

Evaluation of Titanium Dioxide in Cosmetic Products (CAS No. 13463-67-7, 12026-28-7, 1317-70-0, 1317-80-2, 20338-08-3/ EC No. 236-675-5, 243-744-3, 1317-70-0, 215-282-2, 234-711-4). (Submission I with focus on potential oral exposure).
COSMETICS EUROPE INGREDIENT N° S75. 28 April 2023" pages 37-53/84.

5 6

1

Table 8. Datasets reviewed by study type/endpoint and those achieving moderate or higher weight

Study type	Number of datasets reviewed	Number of datasets achieving moderate or higher weight after WoE assessment
In vitro ⁷		
Bacterial reverse mutation (Ames test)	15	0
Mammalian cell gene mutation	16	2
Micronucleus (MN) or chromosomal aberration (CA)	62	12
In vivo ⁸		
Gene mutation	9	2
MN or CA	35	13
Comet	51	3
8-hydroxy-deoxyguanosine (8-OHdG) adducts	4	2
Totals	192	34

Type of titanium dioxide tested	Nanoparticle characterisation	Endpoint tested/ method	WoE conclusion	Comments	Reference
Nano, P25 anatase/rutile (NM- 105), average size 21 nm. When dispersed in PBS and sonicated, mean size distribution increased to 112 nm (with FBS) and 296 nm (without FBS). *NanoTEST dispersion protocol used for hazard studies. NPs suspended in 10% FBS (in PBS) at a concentration of 5 mg/mL probe sonicated for 15 min. and diluted in cell culture medium.	Nano score 10. * Titanium dioxide NPs obtained from JRC Nanomaterial Repository (NM- 105) which have been extensively characterised and this information is summarised. Additional characterisation performed in relevant biological medium.	HPRT Mutations Cell type: V79-4 cells Concentrations: 3-75 μg/cm ² for 24 hours.	Negative	Top concentration equivalent to 585 μg/mL. Only slight cytotoxicity. ROS/oxidative stress not investigated. ToxR Klimisch score 2	Kazimirova et al., 2020 in Kirkland et al., 2022
Nano (40 nm). *Lack of detail provided about NP preparation for genotoxicity studies. Stock concentration of NPs suspended in deionised water.	Nano score 1. * No information on NP characteristics obtained from the supplier provided. Limited independent characterisation performed. No characteris-ation performed in relevant biological medium.	TK Mutations Cell type: L5178Y cells Concentrations: 4 hours treatment – and + S9, 24 hours treatment -S9; 312- 2000 μg/mL in each case.	Negative	Top concentration induced ca.50- 60% reduction in RTG. Followed OECD TG 490 (2016). ROS/oxidative stress not investigated. ToxR Klimisch score 1.	Du <i>et al.,</i> 2019 in Kirkland <i>et</i> <i>al.,</i> 2022
Ultrafine (called uf- C in Warheit <i>et al.,</i> 2007; 140 nm median size).	Not done – not relevant	CA Cell type: CHO- K1 Concentrations: 4+16 hours – S9	Negative	GLP study, complied with OECD TG 473 (1998). >60% mitotic inhibition at	Donner (2006); unpublishe d study report published

Table 9: Summary of moderate, moderate-high or high weight in vitro Studies

Type of titanium dioxide tested	Nanoparticle characterisation	Endpoint tested/ method	WoE conclusion	Comments	Reference
		at 750, 1250 & 2500 µg/mL; 4 + 16 hours +S9 at 62.5, 125 & 250 µg/mL; 20+0 hours – S9 at 25, 50 & 100 µg/mL.		top concentration in all parts of study. ROS/oxidative stress not investigated. ToxR Klimisch score 1.	in Warheit <i>et al.,</i> 2007 in Kirkland <i>et al.,</i> 2022
Nano/bulk not specified but for T 805. *Stock concentration of NPs prepared in ethanol for genotoxicity studies.	Nano score 3. *Limited independent characterisation performed – reliant on information provided by the supplier. No characterisation performed in relevant biological medium.	CA Cell type: CHO cells Concentrations: 88.72; 209.7 and 800 μg/mL (-S9 20- hour treatment); 167.8; 640; 800 μg/mL (+S9 3- hour treatment)	Negative	S9 3-hour treatment performed in separate study. 800 µg/mL is approximately 10 mM. OECD TG 473 (1998). ROS/oxidative stress not investigated. ToxR Klimisch score 2	Riley (1999) in Kirkland <i>et</i> <i>al.,</i> 2022
Assumed to be pigmentary since nano is not mentioned.	Not done – not relevant	CA Cell type: CHO- K1 cells Concentrations: 4+16 hours -S9 (25, 50, 100 μg/mL), 4+16 hours +S9 (25, 50, 75, 100, 150 μg/mL), or 20+0 hours -S9 (25, 50, 75 μg/mL).	Negative	Little or no mitotic inhibition but >50% growth inhibition at top concentration. GLP study complied with OECD TG 473 (1998). ROS/oxidative stress not investigated. ToxR Klimisch score 1.	Glover (2011) in Kirkland <i>et</i> <i>al.,</i> 2022
Nano; anatase <25 nm (Sigma Aldrich). *NPs suspended in serum free culture medium (0.1 mg/mL) and probe sonicated for 20 minutes on ice for	Nano score 7. * Information on NP characteristics obtained from the supplier provided. Some independent characterisation	MN Cell type: Caco- 2 cells (from ATCC) Concentrations: 1, 2, 3.5, 5, 10 and 20 μg/cm2 (corresponding	Negative	6 hours treatment without cytochalasin B may not be long enough for nanos, but 24+24 hours is robust.	Zijno <i>et al.,</i> 2015 in Kirkland <i>et</i> <i>al.,</i> 2022

Type of titanium	Nanoparticle	Endpoint	WoE	Comments	Reference
dioxide tested	characterisation	tested/ method	conclusion		
genotoxicity studies.	performed. Some characterisation performed in relevant biological medium.	to 6.4–128.0 μg/mL) in culture medium (without FCS.); 6 and 24 hours then adding cytochalasin B for 24 hours.		ROS/oxidative stress not investigated in this study but previously shown ROS induced at these concentration s. ToxR Klimisch score 2	
T-LiteTM SF	Nano score 8.	MN	Negative	The authors	Landsiedel
(Titanium dioxide		Cell type: V79		clearly	et al., 2010
for Sunscreens), 10	* Some	cells		identified that	in Kirkland
x 50 nm, Rutile,	information on NP	Concentrations:		NP can be	et al., 2022
coated with	characteristics	75 to 300 μg/mL		seen on the	Ť
aluminium	obtained from	for 4-hours;		slides at	
hydroxide and	the supplier	18.8 to		2.5 μg/mL and	
dimethicone/	provided.	75 μg/mL for 24		above.	
methicone	Independent	hours.			
copolymer.	characterisation			ROS/oxidative	
* - .1	also performed.			stress not	
*For the MIN assay	Characterisation			investigated.	
NPS were	performed in			Toy D Klimisch	
suspended in cell	hiological			score 1	
genotoxicity	medium			30010 1.	
studies.					
Nano; AEROXIDE	Nano score 8.	MN	Negative	No cytotoxic	Armand
P25, (NM-105		Cell type: A549	Ū.	effect even	2016 in
manufactured by	* Titanium	cells		after 2	Kirkland et
Evonik for JRC	dioxide NPs	Concentrations:		months of	al., 2022
lspra); 24 nm,	obtained from	1 – 50 μg/mL		treatment	
86%	JRC Nanomaterial	over 2 months		with 50	
anatase/14%	Repository (NM-	with 2 medium		μg/mL.	
rutile.	105) which have	changes		DOG I	
*NDe were	been extensively	(containing NPs)		RUS increased	
INPS were	characterised and	per week. IVIN			
ultranure sterile	unis information is	hours 1 week 2		(measured	
water (10 mg/ml)	Additional	weeks, 1 month		with Fpg	
and probe	characterisation	and 2 months.		modified	
sonicated (in	performed in			comet) has	
pulsed mode) for	relevant			been shown.	
30 min.	biological				
Suspensions were	medium.			ToxR Klimisch	
vortexed and				score 1.	
diluted in cell					
culture medium for					
genotoxicity					
studies.					

- (N1 1			a .	P (
lype of titanium dioxide tested	Nanoparticle characterisation	Endpoint tested/ method	WOE conclusion	Comments	Reference
Nano; NM- 102 (JRC, Ispra) 21 nm. *Nanogenotox dispersion protocol used: NPs were pre-wetted in 0.5% ethanol and then suspended in 0.05% BSA in MilliQ water (2.56 mg/mL) and probe sonicated for 16 min. on ice. Stock suspension diluted in cell culture medium for genotoxicity	Nano score 9. * Titanium dioxide NPs obtained from JRC Nanomaterial Repository (NM- 102) which have been extensively characterised and this information is summarised. Additional characterisation performed in relevant biological medium.	MN Cell type: BEAS- 2B cells Concentrations: 1, 10 and 20 μg/mL for acute (24 hours) and chronic treatment (1 to 3 weeks); sequential treatment with NPs and cytochalasin B.	Negative	Cytotoxicity not assessed. Oxidative stress investigated but no positive effect for titanium dioxide. ToxR Klimisch score 1.	Vales <i>et al.</i> , 2014 in Kirkland <i>et</i> <i>al.</i> , 2022
studies. Nano; NM-100 (anatase, 50–150 nm, non-coated), NM-101 (anatase, 5–8 nm, coated) and NM-103 (rutile, 20–28 nm, coated). *NANOOREG dispersion protocol used for hazard studies: NPs were suspended in 0.05% BSA in MilliQ water (2.56 mg/mL) and probe sonicated for 15 min. on ice. Stock suspensions were then diluted in 0.05% BSA to a concentration of 0.1 mg/mL and then diluted in cell culture medium.	Nano score 10. * Titanium dioxide NPs obtained from JRC Nanomaterial Repository (NM- 101 and NM-103) which have been extensively characterised and this information is summarised. Additional characterisation performed in relevant biological medium.	MN Cell type: BEAS- 2B cells Concentrations: 1–30 μg/mL, 3-, 24- or 48-hour treatments under serum free conditions. MN scored with flow cytometry and manually by the CBMN cytochalasin B assay (added after 20 hours).	Weak positive (<2-fold and inverse dose- response) for NM- 103	Authors noted induction of oxidative DNA damage for all three materials & increased necrotic cells particularly for NM-103. ToxR Klimisch score 1.	Di Bucchianic o <i>et al.</i> , 2017 in Kirkland <i>et</i> <i>al.</i> , 2022
Commercial titanium dioxide (84% anatase, 16% brookite crystal phase composition, 8), NP as nanopowder and as colloidal	Nano score 6. * Information on NP characteristics obtained from the supplier provided. Some independent characterisation	MN Cell type : Balb/3T3 cells Concentrations: 10, 20 and 40 μg/cm ² , (corresponding to 32,	Positive for citrate- coated titanium dioxide and P25 (only at lowest concentrat	Oxidised purines & pyrimidines induced by all particles tested. Significant apoptotic & necrotic cells	Stoccoro et al., 2016 in Kirkland et al., 2022

Type of titanium	Nanonarticlo	Endnoint	WoF	Commente	Peference
dioxide tested	characterisation	tested/ method	conclusion	comments	Reference
nanosuspension (nanosol). Pristine (uncoated), citrate-coated and silica-coated titanium dioxide were tested with Aeroxide® P25 as benchmark material. *No information on NP preparation for genotoxicity	also performed. Some characterisation performed in relevant biological medium.	64, and 128 μg/mL); 48 hour treatment	ion), others weakly positive.	induced by citrate-coated & P25. ToxR Klimisch score 1.	
Nano: Anatase 20- 60 nm; Rutile 30 x 100 nm rods; Mixture anatase and rutile 45 – 262 nm; Anatase 50 – 270 nm; Rutile 50 – 3000 nm (Sigma-Aldrich, USA). *NPs were suspended in cell culture medium without serum and bath sonicated for 45 min.	Nano score 4. * Reliant on information provided by the supplier. Limited independent characterisation performed. Some characterisation performed in relevant biological medium.	MN Cell type: Human peripheral blood lymphocytes from 2 healthy male donors (<40 years old) Concentrations: 50, 100 and 200 μg/mL, 20 hours.	Negative for all particle types	Authors used 2 protocols: (1)sequential treatment (20 hours NP and then cytochalasin B was added for the next 28 hours); (2) co- treatment (30 min NP alone and then together with cytochalasin B for 28 hours). The results did not differ. Treatments carried out in the dark. Oxidative DNA damage suggested, 8- OHdG induced at highest concentration. 100 and 200 µg/mL.	Andreoli et al., 2018 in Kirkland et al., 2022
				score 1	
AEROXIDE_ P25 (Degussa- Evonik);	Nano score 3 *Reliant on	MN Cell type: A549, A172,	Negative	Uptake of titanium dioxide was	Brandao <i>et</i> <i>al.,</i> 2020 in

Type of titanium	Nanoparticle	Endpoint	WoE	Comments	Reference
dioxide tested	characterisation	tested/ method	conclusion		
25 nm, 80%	information	HepG2 & SH-		clearly shown	Kirkland et
anatase/20% rutile.	provided by the	SY5Y cells		for all cell	al., 2022
	supplier. Limited	Concentrations:		lines.	
*NPs were	characterisation	10, 50, 100 and			
suspended in cell	performed in	200 μg/mL, 3-		ROS/oxidative	
culture medium	relevant media.	and 24-hours		stress not	
and prope	*۱۸/۱۵:۱۵+۱:۰۰۰:+۰۰۰۰	treatments.		investigated.	
on ice (1.5 min. on	information on			ToyP Klimisch	
and 1 min_off	NP			score 1	
twice and 2 min	characteristics			30010 1.	
on) for genotoxicity	was provided in				
studies.	the manuscript				
	P25 has been				
	extensively				
	characterised				
	in the published				
	literature.				
Commercial rutile	Nano score 6.	MN	Negative	Agglomeratio	Pittol et al.,
(TiPure R-103).		Cell type: L-929		n of nanos in	2018 in
	*No information	mouse		culture	Kirkland et
*NPs were	on NP	fibroblasts		medium.	al., 2022
suspended in cell	characteristics45	Concentrations:		DOC (
culture medium for	obtained from	15, 30 and 60		ROS/oxidative	
genotoxicity	the supplier	ppm,		stress not	
studies.	provided. Some	6- and 24-nour		investigated.	
	characterisation	without S9		ToyP Klimisch	
	nerformed No	cytochalasin B		score 1	
	Characterisation	then added		30010 1.	
	in relevant	until harvest at			
	biological	72 hours. Data			
	medium.	given for 24-			
		hour exposures			
		only			

(CE, 2022, 2023; TDMA, 2022; Kirkland et al., 2022)

Type of titanium dioxide tested	Nanoparticle characterisation	Endpoint tested/ method	WoE conclusion	Comments	Reference
Nano: RM09 (purity ≥99%; surface modification: coated with amorphous silica; particle number size distribution: number weighted median x50: 20 nm measured by SEM, Feret min) *NPs were suspended following the Nanogenotox protocol (Jensen <i>et al.</i> , 2011); suspended in 0.05% w/v bovine serum albumin (BSA)- water solution containing 0.5% ethanol using ultrasonication	* Information on NP characteristics obtained from Sponsor. Dispersion stability analysis in relevant biological medium.	HPRT Mutations Cell type: V79 lung fibroblast cell line Concentrations: 0.8-100 μg/mL for 24 hours in the absence of S9 (since test item core and coating are inorganic materials, which are not metabolised by S9 fraction)	Negative	The cellular uptake of RM09 nanoparticles by V79 cells was demonstrated and the test substance was observed exclusively in cytoplasmic vesicles but not in the cell nucleus.	Sokolowski, 2023 in CE, 2023

Table 10. Summary of recently conducted in vitro studies on titanium dioxide nano grade

Type of titanium dioxide tested	Nanoparticle characterisation	Endpoint tested/ method	WoE conclusion	Comments	Reference	
Nano: RM11 (purity ≥99%; surface modification: coated alumina and dimethicone; particle number size distribution: Number weighted median x50: 19 nm measured by SEM, Feret min) * NPs were suspended following the Nanogenotox protocol (Jensen <i>et al.</i> , 2011); suspended in 0.05% w/v bovine serum albumin (BSA)- water solution containing 0.5% ethanol using ultrasonication	* Information on NP characteristics obtained from Sponsor. Dispersion stability analysis in relevant biological medium.	HPRT Mutations Cell type: V79 lung fibroblast cell line Concentrations: 0.8-100 μg/mL for 24 hours in the absence of S9, and for 4 hours in the absence and presence of S9.	Negative	The cellular uptake of RM11 nanoparticles by V79 cells was demonstrated at all concentrations evaluated and the test substance was observed exclusively in cytoplasmic vesicles but not in the cell nucleus.	Sokolowski, 2023 in CE, 2023	
Nano: RM09 (purity ≥99%; surface modification: coated with amorphous silica; particle number size distribution: number weighted median x50: 20 nm measured by SEM, Feret min). * NPs were suspended following the Nanogenotox protocol (Jensen <i>et al.</i> , 2011):	* Information on NP characteristics obtained from Sponsor. Dispersion stability analysis in relevant biological medium (data from Sokolowski, 2023).	MN Cell type: Chinese hamster lung fibroblast V79 cell line Concentration: 1.1-100 μg/mL for 24 hours in the absence of S9 (since test item core and coating are inorganic materials, which are not metabolised by S9 fraction)	Negative	The cellular uptake of RM09 nanoparticles by V79 cells was demonstrated and the test substance was observed exclusively in cytoplasmic vesicles but not in the cell nucleus (data from Sokolowski, 2023).	Naumann, 2023 in CE, 2023	
suspended in 0.05% w/v bovine serum albumin (BSA)- water solution containing 0.5% ethanol using ultrasonication Nano: RM11 * Information (purity ≥99%; on NP surface characteristics Cell type: coated with Sponsor. lung fibroblast coated with Sponsor. lung fibroblast coated with Sponsor. lung fibroblast silica; particle stability analysis number size in relevant Concentration: distribution: biological 1.1-100 µg/mL for number medium (data 24 hours in the weighted from absence of S9, median x50: 19 Sokolowski, and for 4 hours in nm measured 2023). the absence and biological content of the test substance (data from sokolowski, 2023).	Type of titanium dioxide tested	Nanoparticle characterisation	Endpoint tested/ method	WoE conclusion	Comments	Reference
--	---	--	--	-------------------	---	---------------------------------
balancecharacteristicscentrype:handputrices by2020modification:obtained fromChinese hamsterV79 cells wascoated withSponsor.lung fibroblastdemonstrated andamorphousDispersionV79 cell linethe test substancesilica; particlestability analysiswas observednumber sizein relevantConcentration:exclusively indistribution:biological1.1-100 µg/mL forcytoplasmicnumbermedium (data24 hours in thevesicles but not inweightedfromabsence of S9,the cell nucleusmedian x50: 19Sokolowski,and for 4 hours in(data fromnm measured2023).the absence andSokolowski, 2023).	suspended in 0.05% w/v bovine serum albumin (BSA)- water solution containing 0.5% ethanol using ultrasonication Nano: RM11 (purity ≥99%; surface	* Information on NP characteristics	MN Cell type:	Negative	The cellular uptake of RM11 nanonarticles by	Naumann, 2023 in CE, 2023
by SEM, Feret presence of S9 min), followed by 20 * NPs were hours recovery suspended following the Nanogenotox protocol (Jensen <i>et al.</i> , 2011); suspended in 0.05% w/v bovine serum albumin (BSA)- water solution containing 0.5%	surrace modification: coated with amorphous silica; particle number size distribution: number weighted median x50: 19 nm measured by SEM, Feret min), * NPs were suspended following the Nanogenotox protocol (Jensen <i>et al.</i> , 2011); suspended in 0.05% w/v bovine serum albumin (BSA)- water solution containing 0.5%	characteristics obtained from Sponsor. Dispersion stability analysis in relevant biological medium (data from Sokolowski, 2023).	Cell type: Chinese hamster lung fibroblast V79 cell line Concentration: 1.1-100 µg/mL for 24 hours in the absence of S9, and for 4 hours in the absence and presence of S9 followed by 20 hours recovery		nanoparticles by V79 cells was demonstrated and the test substance was observed exclusively in cytoplasmic vesicles but not in the cell nucleus (data from Sokolowski, 2023).	2023

 Table 11: Summary of moderate, moderate-high or high weight in vivo studies (adapted from Kirkland et al., 2022)

Type of titanium dioxide tested	Nanoparticle characterisation	Endpoint tested/ method	WoE conclusion	Comments	Reference
Unitane 220 (comparable to food grade E-171)	Not done – not relevant	Bone marrow CA Species: Mice Doses: Single IP dose of 625, 1250 & 2500 mg/kg; bone marrow sampled 17 & 36 hours later	Negative with some limitations.	Only 50 cells/animal scored for CA. Not clear whether slides coded. No direct measure of bone marrow toxicity, but %PCE reduced in MN study in same paper. IP route not considered physiologically relevant. ROS/oxidative stress not investigated. ToxR Klimisch score 2	Shelby & Witt 1995 in Kirkland <i>et al.,</i> 2022
Unitane 220 (comparable to food grade E-171)	Not done – not relevant	Bone marrow and blood MN Species: Mice Doses: 3 IP studies. 3 daily doses, #1: 250, 500 & 1000 mg/kg bw/day, bone marrow 24 hours; #2: "DRF" 500, 1000 & 1500 mg/kg bw/day,	Positive, with reproducible , weak increase at 1000 mg/kg bw/day in bone marrow, but at lowest dose in blood so no significant trend.	IP route not considered physiologically relevant. Only 2000 PCE/animal scored for MN. Peripheral blood 52% toxicity seen; minimal bone marrow toxicity ROS/oxidative stress not investigated. ToxR Klimisch score 1.	Shelby & Witt, 1995 & Shelby <i>et</i> <i>al</i> . 1993 Kirkland <i>et</i> <i>al</i> .,2022

Type of titanium	Nanoparticle	Endpoint	WoE	Comments	Reference
dioxide tested	citaracterisation	method	conclusion		
E171 purchased from Bolsjehuset (Denmark). 99.8% anatase, 0.2% rutile. *NPs suspended in saline with 0.25% lecithin and sonicated for 5 min for genotoxicity studies.	Nano score 7. *Some information on NP characteristics obtained from the supplier provided. Some independent characterisation also performed. Characterisation performed in relevant biological medium. *NB The characteristics of the NPs (P25) have been extensively	Peripheral blood 48 hours; #3: 500, 1000, 1500 mg/kg, bone marrow 24 hours 8-OHdG adducts in lung cells Species: Rats Dose: Single intratracheal instillation of 0.15, 0.3, 0.6 & 1.2 mg. Tissues sampled 90 days later	Negative	Although 30 rats/group were treated, unclear how many were sampled. No oxidative damage found. ToxR Klimisch score 1	Rehn et al., 2003 in Kirkland et al., 2022
Nano (Aeroxide P25). * NP suspended in drinking water and bath sonicated for 15 minutes.	Nano score 6. * Information on NP characteristics obtained from supplier provided and this information is summarised. Limited independent characterisation performed but P25 has been extensively characterised, and citations are provided to relevant literature. Some characterisation s in relevant	Peripheral blood MN Species: Mice Doses: Drinking water, 50, 100, 250, and 500 mg/kg total from 5 days dosing. Water consumption ranged 3-7 mL/mouse/da y. Average of 5 mL/day for 30g avg. weight mouse was used to calculate total dose.	Positive, 2.1x increase at top dose, but error bars for control and treated measuremen ts overlap, so may not be biologically relevant.	Not clear whether NCE or PCE were scored. Difficult to verify exposure doses from the descriptions, and whether settling out of particles in drinking water was controlled. Oxidative stress indicated since 8- OHdG increased, and evidence of pro- inflammatory response. ToxR Klimisch score 1.	Trouiller <i>et</i> <i>al.</i> 2009 in Kirkland <i>et</i> <i>al.</i> , 2022

titanium dioxide tested	characterisation	tested/	conclusion		
dioxide tested					
		method			
	biological				
Micro (TDM)	Mano score 2	Bono marrow	TDM induced	TDM and TDN	Sychova at
and nano	Nano score 2.	forestomach	2X increase	induced apoptosis	al = 2011 in
simethicone	*No information	colon & testis	in MN in	in testis and	Kirkland <i>et</i>
(TDN).	on NP	MN	bone	cytotoxicity in	al., 2022
	characteristics	Species: Mice	marrow;	forestomach &	
*NPs	obtained from	Doses: Oral	TDN	colon. Authors	
suspended in	the supplier	dosing at 40,	simethicone	conclude genotoxic	
distilled water	provided.	200, and	was	effects are	
tor	Limited	1000 mg/kg	negative.	secondary to	
studies	characterisation	days Bone	TDN	and/or oxidative	
staales.	performed. No	marrow and	negative in	stress.	
	characterisation	testis sampled	forestomach,		
	in relevant	24 hours after	colon &	ToxR Klimisch score	
	biological	last dose.	testis.	3, unreliable.	
NI 10	medium.	.	AL	–	
Nano, 10 nm	Nano score /.	Peripheral	Negative	larget tissue	Sadıq et al.,
anatase.	* NPs	reticulocytes		by measuring	2012 in Kirkland et
*NPs	synthesized by	MN		titanium in bone	al., 2022
suspended in	the researchers.	Species: Mice		marrow.	,
PBS (5 mg/mL)	Characterisation	Doses: IV			
and vigorously	of NPs	dosing at 0.5,		ROS/oxidative	
mixed and	performed.	5.0, and		stress not	
sonicated for	Some	50 mg/kg		investigated.	
genotoxicity	characterisation	bw/day for 3		ToyP Klimisch score	
studies.	relevant	sampled on		1	
	biological	day 4.		-	
	medium.				
Nano, anatase	Nano score 5.	Comet in lung	Negative	Slides not coded.	Naya <i>et al.,</i>
(ST-01), 5 nm.				Inflammatory	2012 in
*ND-	*Limited	Species: Rats		response at 1 & 5	Kirkland et
suspended in	NP	Doses'		mg/kg.	ai., 2022
2 mg/mL	characteristics	Intratrachea		Inflammation	
disodium	obtained from	l instillation;		induced, oxidative	
phosphate	the supplier	1 & 5 mg/kg		stress discussed,	
followed by	provided.	single dose,		but no DNA	
agitation in a	Limited	0.2 & 1 mg/kg		damage.	
bead mill with	Independent	once per		ToyD //limiash	
το μπ zirconium	nerformed	weekioro		2	
oxide beads	Some	WCCR3.			
for 2 hours,	characterisation				
	in relevant				
centrifuged					
centrifuged and the	biological				
centrifuged and the supernatant	biological medium.				
centrifuged and the supernatant used for	biological medium.				
genotoxicity studies. Nano, anatase (ST-01), 5 nm. *NPs suspended in 2 mg/mL disodium phosphate followed by agitation in a bead mill with 15 µm zirconium oxide beads for 2 hours,	characterisation performed in relevant biological medium. Nano score 5. *Limited information on NP characteristics obtained from the supplier provided. Limited independent characterisation performed. Some characterisation in relevant	bw/day for 3 days. Blood sampled on day 4. Comet in lung Species: Rats Doses: Intratrachea I instillation; 1 & 5 mg/kg single dose, 0.2 & 1 mg/kg once per week for 5 weeks.	Negative	ToxR Klimisch score 1 Slides not coded. Inflammatory response at 1 & 5 mg/kg. Inflammation induced, oxidative stress discussed, but no DNA damage. ToxR Klimisch score 2.	Naya et al., 2012 in Kirkland et al., 2022

Table 12. Comparison of test response profiles from titanium dioxide to the profile characteristics of confirmed genotoxic carcinogens (adapted from Brusick *et al.*, 2016; based on Bolt *et al.*, 2004 and Petkov *et al.*, 2015)

Characteristic	Carcinogens with a proven genotoxic mode of action	Titanium dioxide
Profile of Test Responses in Genetic assays	Positive effects across multiple key predictive endpoints (i.e., high weight studies such as gene mutation in bacteria or <i>in vivo</i> , chromosomal aberrations or micronuclei <i>in vivo</i>).	No valid evidence for gene mutation in mammalian cells or <i>in vivo</i> ; chromosomal damage in rodents only at doses inducing cytotoxicity, inflammation, oxidative stress.
Structure Activity Relationships	Positive for structural alerts associated with genetic activity.	Not done
DNA binding	Agent or breakdown product are typically electrophilic and exhibit direct DNA binding.	No evidence of DNA binding, and no evidence of 8-OHdG adducts in robust <i>in vivo</i> studies.
Consistency	Positive test results are highly reproducible both <i>in vitro</i> and <i>in vivo</i> .	Conflicting and/or non-reproducible responses in the same test or test category both <i>in vitro</i> and <i>in vivo</i> .
Response Kinetics	Responses are dose dependent over a wide range of exposure levels.	Dose responses in robust, reliable test systems generally not observed.
Susceptibility to Confounding Factors (e.g. Cytotoxicity)	Responses are typically found at nontoxic exposure levels.	Positive responses in robust, reliable test systems typically associated with evidence of apoptosis, necrosis, inflammation, and oxidative stress.

1 2 3 (TDMA, 2022; Kirkland *et al.*, 2022)

The SCCS note: not all references cited in the text were listed by the Applicant in the References section they provided

6 7

4

- Annex U. The SCCS analysis of two *in vitro* study reports submitted by the Applicant,
 which did not include any genotoxic endpoint
- 3 4

IN VITRO STUDY #1. The alveolar macrophage assay

56 Materials and methods7

8 Physicochemical characterisation of raw materials9

10 The following TiO₂ raw materials were tested by the Applicant:

11

Particle name	BET (m ² /g)
E171-E	10
G1-1b	48
G2-5	302
G3-1	6
G4-19	15
G5-4	14
G6-3	70
G7-5b	57
G8-2b	65, 65.9, 64.0 ¹⁾
G9-5c	8
G9-5d	8
G10-4	80
G16-5	n.d.
G17-5	n.d.

12 13

To prepare stock suspensions of all particles for cell culture experiments, all powder materials were retrieved with heat-sterilized spatula from their containers and were dispersed in sterile pyrogen free H20 at a concentration of 2 mg/mL. Suspensions were vortexed and ultrasonicated for 12 s, using a Branson 450D Sonifier, equipped with a 5 mm sonotrode; total ultrasonic energy amounted to 18 J/mL. As shown in the Figure below, all aqueous suspensions prepared this way tended to settle and were re-suspended before each testing round.

21

2 Two materials, namely G16-5 and G6-3, were found to be too hydrophobic to be dispersed in

3 H₂O and were pre-wetted with a low volume of ethanol (50 μ L added to 22 mg of dry powder) 4 thus allowing the subsequent immersion in H₂O. Of note, the final concentrations of ethanol 5 and in the cell assay amounted to less than 0.05 % (v/v), which is without measurable effect

6 on the toxicological assays, as previously reported.

7 The particle size distribution of the stock suspensions was determined by particle tracking
8 analyses (PTA) which calculated the hydrodynamic particle diameter from recorded particle
9 trajectories.

10

11 Biological testing

12 NR8383 cells, alveolar macrophages that were isolated from the lungs of a normal rat (ATCC, USA; ATCC® Number: CRL-2192TM) were maintained in F-12K cell culture medium 13 14 supplemented with 15% fetal calf serum (FCS), 1% penicillin/streptomycin, and 1% Lglutamine as described by Wiemann et al., 2016 (doi: 10.1186/s12951-016-0164-2). For the 15 assay, cells were seeded into 96-well plates (3 x 105 cells/well) and kept at 37 °C and 5 % 16 17 CO2. Each well contained 200 µL F-12K cell culture medium in which the concentration of FCS was reduced to 5%. After 24 h, the medium was replaced by serum-free test material 18 19 preparations: to determine the release of LDH, GLU and TNF from the cells, the test material 20 suspensions were serially diluted to 90, 45, 22.5, and 11.25 µg/mL with serum-free F-12K. 21 To measure release of H₂O₂, the same dilutions were prepared in KRPG buffer (129 mM NaCl, 22 4.86 mM KCl, 1.22 mM CaCl₂, 15.8 mM NaH₂PO₄, 5-10 mM glucose; pH 7.3-7.4).

23

24 Assays were carried out as described (Wiemann et al., 2016; doi: 10.1186/s12951-016-0164-25 2). In brief, H₂O₂ released into the KRPG supernatant was quantified with the Amplex Red® 26 assay measuring the formation of resorufin. Lactate dehydrogenase (LDH) activity was measured photometrically (in triplicates) using 50 µL from each well for the Roche Cytotoxicity 27 28 Kit and measured according to the manufactures protocol. To measure glucuronidase (GLU) activity, 50 µL of the supernatant (sampled after 16-h test material incubation) were 29 incubated with 100 µL 0.2 M sodium acetate buffer (pH 5) containing 13.3 mM p-nitrophenyl-30 31 D-glucuronide and 0.1% Triton X-100. Concentration of tumor necrosis factor a (TNF) was 32 determined with a specific enzyme-linked immosorbent assay (ELISA) for rat TNF (Quantikine 33 ELISA Kit, Bio-Techne GmbH, Wiesbaden-Norderstadt, Germany) according to the 34 manufacturer's protocol. 35

36 RESULTS

37

38 Physicochemical characterisation of raw materials39

40 Calculated hydrodynamic diameter values (Mean and Mode values, D10, D15 and D90 values

are listed in Table below). Mode values ranged from 59.1 (G17-5) to 277.9 (G7-5b) and hardly
exceeded 300 nm.

Particle name	Pestled in a Mortar ¹⁾	Dispersion Protocol	Conc. for Measureing [µg/mL]	Diluent	Particles/mL ²⁾		Hydron	dynamic Diamete	er ³⁾	
_	Mean case					Mean ± SEM	Mode ± SEM	D10 ± SEM	D50 ± SEM	D90 ± SEM
E171-E	no	1	18	H ₂ O	1.16E+09	179.2 ± 2.1	137.9 ± 13.3	87.3 ± 0.9	167.9 ± 4	278.3 ± 4.7
G1-1b	no	1	18	H ₂ O	1.14E+09	180.4 ± 9.2	169.4 ± 27.5	87.2 ± 14.8	182.6 ± 10	268.7 ± 7
G2-5	no	1	18	H ₂ O	2.66E+08	204.4 ± 19.3	120.2 ± 45.4	78.1 ± 22.2	208.9 ± 22	311.4 ± 6.8
G3-1	no	1	n.m.	H ₂ O	n.m.	n.m.	n.m.	n.m.	n.m.	n.m.
G4-19	no	1	18	H ₂ O	1.60E+09	191.7 ± 2.2	140.7 ± 7.6	117.9 ± 4.8	188.5 ± 4.9	272.8 ± 1.6
G5-4	no	1	18	H ₂ O	1.32E+09	218.5 ± 2.3	214.2 ± 39.1	132.2 ± 2.4	225.5 ± 4.8	296 ± 2.7
G6-3	yes	1	18	H ₂ O	9.64E+08	214.5 ± 3.8	171.6 ± 5.8	126.8 ± 3.3	204.5 ± 7	312 ± 6.1
G7-5b	no	1	18	H ₂ O	6.18E+08	252.2 ± 5.7	277.9 ± 12.5	156.8 ± 10.9	261.1 ± 4.9	340.5 ± 4.8
G8-2b	yes	2	18	H ₂ O	1.31E+09	173.1 ± 4.3	146.5 ± 1.8	104.8 ± 1.1	159.2 ± 1.7	267 ± 10.3
G9-5c	no	1	18	H ₂ O	2.88E+08	237 ± 4.9	211.4 ± 29	136 ± 4.4	240.6 ± 8.9	321.2 ± 4.1
G9-5d	no	1	18	H ₂ O	7.04E+08	230.2 ± 2	214.4 ± 51.3	123.1 ± 5.1	239.3 ± 0.8	317.6 ± 4.1
G10-4	no	1	n.m.	H ₂ O	n.m.	n.m.	n.m.	n.m.	n.m.	n.m.
G16-5	no	2	18	H ₂ O	1.10E+09	202.1 ± 5.3	208.3 ± 9.7	117.6 ± 13	204.6 ± 8.2	284.3 ± 1
G17-5	no	1	18	H ₂ O	1.13E+08	174.2 ± 4.7	59.1 ± 16.6	62.5 ± 12.1	158.1 ± 12.6	299.7 ± 34.2

Also, in the Figure below, no values larger than 400 nm were found. Of note, no nanosized TiO₂ particles were detectable by PTA in cell culture (37oC) medium or KRPG buffer incubated 5 with the particles for 16 h (at or 90 min, respectively). The absence of diffusible TiO₂ (nano)particles under these conditions shows that nanoparticles present in aqueous stock 6 7 suspensions agglomerate upon transfer into physiological media and are subject to complete 8 gravitational settling.

1 *In vitro* Findings

2 In the macrophage assay, all TiO₂ materials were applied at a nominal concentration of 22.5, 3 45, 90, and 180 µg/mL. Four parameters were tested in the cell culture supernatant after 4 administration of particles. Lactate dehydrogenase (LDH, a cytoplasmic enzyme), 5 glucuronidase (GLU, a (phago)lysosomal enzyme), and tumor necrosis factor a (TNF a) were measured after 16 h. The concentration of H₂O₂ released from the cells was measured in 6 7 KRPG buffer after 90 min.

- 8
- 9 TiO₂ samples

10 In general, the response of the NR8383 alveolar macrophages to all TiO₂ samples were largely uniform (Table below). Most materials elicited moderate dose-dependent increases of LDH 11 12 and GLU beginning at concentrations of 45-90 µg/mL. Even at the maximum concentration (180 μ g/mL) baseline values of the cell control were hardly doubled. Induction of H₂O₂ 13 formation/release was measurable at a low level and significant values were reached at 90-14 15 180 µg/mL. Induction of TNF was hardly found except for G8-2b, where an endotoxin 16 contamination was found to be a likely explanation.

	[µg/mL]	LDH [% of pos. CTR] mean ± SD	GLU [% of pos. CTR] mean ± SD		H ₂ O ₂ [µmol/L] mean ± SD		TNFα [pg/mL] mean ± SD	
E171-E	0	18.53 ± 0.97	1.38 ± 0.12		1.17 ± 0.48	-	20.16 ± 4.44	
	22.5	21.48 ± 1.11	1.75 ± 0.50		0.39 ± 0.12		18.86 ± 10.31	
	45	24.23 ± 0.62 *	2.12 ± 0.21		0.34 ± 0.45		23.76 ± 6.15	
	90	28.96 ± 2.65 ***	2.24 ± 0.22 *		0.82 ± 0.25		25.81 ± 6.80	
	180	31.49 ± 3.59 ***	3.10 ± 0.28		1.54 ± 0.67		24.26 ± 0.38	
G1-1b	0	18.53 ± 0.97	1.38 ± 0.12		1.17 ± 0.48		20.16 ± 4.44	
	22.5	21.29 ± 0.64	1.78 ± 0.15		0.78 ± 0.32		27.78 ± 14.64	
	45	27.32 ± 1.73 ***	1.75 ± 0.21		0.98 ± 0.27		37.68 ± 26.41	
	90	39.14 ± 2.59 ***	2.33 ± 0.26 *		1.41 ± 0.44		32.42 ± 4.52	
	180	63.41 ± 4.02 ***	5.16 ± 0.50 *		2.11 ± 0.31		35.98 ± 3.95	
G2-5	0	18.53 ± 0.97	1.38 ± 0.12		1.17 ± 0.48		20.16 ± 4.44	
	22.5	18.40 ± 0.27	1,85 ± 0.18		0.94 ± 0.14		24.20 ± 10.46	
	45	24.57 ± 0.68 **	1.95 ± 0.40		1.75 ± 0.27		34.25 ± 19.74	
	90	31.80 ± 0.75	2.68 ± 0.45		2.82 ± 0.42		33.12 ± 4.01	
	180	39.21 2 3,65	3.00 ± 0,44		3.03 ± 0.31		43.87 ± 0.40	ē.
G3-1	0	18.53 ± 0.97	1.38 ± 0.12		1.17 ± 0.48		20.16 ± 4.44	
	22.5	18.54 ± 0.37	1.61 ± 0.37		1.12 ± 0.33		20.57 ± 5.23	
	45	22.62 ± 1.44	1,92 ± 0,26		1.14 ± 0.28		22.56 ± 4.93	
	180	20.90 ± 2.75 34.24 + 3.55 ***	3.70 + 0.41		2.07 + 0.38		22 95 + 3 01	
G4.40	0	16 27 + 1 74	1 20 + 0.02		1.07 ± 0.28		10.69 + 5.10	
64-19	22.5	10.27 ± 1.74	1.20 ± 0.02		0.61 + 0.25		17.72 + 2.40	
	45	23 33 + 1.22 **	2 16 + 0 16		1.18 ± 0.56		21.74 + 4.91	
	90	27.63 ± 0.87 ***	2.41 ± 0.17	**	1.47 ± 0.49		21.74 ± 4.98	
	180	29.52 ± 1.81 ***	2.90 ± 0.30 *	***	2.58 ± 0.25	***	20.04 ± 1.26	
G5-4	0	16.27 ± 1.74	1.20 ± 0.02		1.07 ± 0.28		19.68 ± 5.10	
	22.5	18.99 ± 2.25	1.72 ± 0.25		0.88 ± 0.35		22.71 ± 9.03	
	45	22.98 ± 3.43 **	1.61 ± 0.29		0.85 ± 0.48		22.21 ± 7.76	
	90	26.56 ± 2.10 ***	1.94 ± 0.23 *		1.62 ± 0.48		22.16 ± 6.20	
	180	28.16 ± 0.75 ***	2.98 ± 0.25 *		1.43 ± 0.45		22.62 ± 3.50	
G6-3	0	16.27 ± 1.74	1.20 ± 0.02		1.07 ± 0.28		19.68 ± 5.10	
	22.5	14.83 ± 1.76	1.86 ± 0.31		0.80 ± 0.25		18.23 ± 4.08	
	45	21.08 ± 3.09 *	2.31 ± 0.69		1.02 ± 0.11		18.35 ± 3.49	
	90	25.89 ± 1.60 ***	2.34 ± 0.40		1.79 ± 0.14		18.94 ± 3.35	
100.00	180	27.32 ± 1.30	2.61 ± 0.61		2.69 ± 0.36		18.99 ± 0.54	
G7-5b	0	16.27 ± 1.74	1.20 ± 0.02		1.07 ± 0.28		19.68 ± 5.10	
	22.5	17.26 ± 3.09	1.34 ± 0.47		1.13 ± 0.27		19,96 ± 8.76	
	45	18.95 1 2.89	1,32 ± 0,33		1.43 ± 0.40		21.22 ± 8.25	
	180	30.04 + 2.50 ***	3 24 + 0 77		2 17 + 0.37		32 43 + 6 67	
G8.2h	0	16.81 + 3.51	1 20 + 0 16		0.06 + 0.58		17 93 + 4 72	
00-20	22.5	19.69 ± 1.95	1.81 ± 0.28		0.55 ± 0.32		127.64 ± 42.35	
	45	22.88 ± 1.73 *	2.11 ± 0.51		0.95 ± 0.32		349.08 ± 85.46	
	90	27.71 ± 2.97 ***	1.64 ± 0.48		1.67 ± 0.33		1032.10 ± 187.94	
	180	30.67 ± 2.23 ***	1.25 ± 0.82		2.75 ± 0.75	***	1892.39 ± 103.95	***
GB-2b 1)	0	19.84 ± 3.25	1.29 ± 0.20				8.40 ± 0.99	
heated)	22.5	16.99 ± 3.21	2.65 ± 1.29		*		10.22 ± 0.82	
	45	23.26 ± 3.40	2.50 ± 0.64		±		11.89 ± 1.92	
	90	27.11 ± 3.68	2.63 ± 0.39		ź		12.70 ± 2.12	
	180	27.82 ± 1.82	2.73 ± 0.02		*		15.58 ± 3.22	
G8-2b 1)	0	19.84 ± 3.25	1.29 ± 0.20				8.40 ± 0.99	
	22.5	17.99 ± 4.48	2.20 ± 0.02		±		55.69 ± 19.19	
	45	22.36 ± 2.80	2.47 ± 0.13		±		101.27 ± 37.20	٠
	90	28.95 ± 6.00	2.87 ± 0.50 *		±		353.29 ± 156.83	+**
	180	33.18 + 1.80 **	242 ± 0.21				1103.00 + 402.80	-

	[µg/mL]	LDH [% of pos. CTR] mean ± SD	GLU [% of pos. CTR] mean ± SD	1	H ₂ O ₂ [µmol/L] mean ± SD		TNFα [pg/mL] mean ± SD	
G9-5c	0	16.81 ± 3.51	1.20 ± 0.16		0.96 ± 0.58		17.93 ± 4.72	
	22.5	18.28 ± 2.45	1.46 ± 0.38		1.03 ± 0.28		20.67 ± 7.37	
	45	24.08 ± 1.02 **	1.93 ± 0.41	÷	1.06 ± 0.30		22.12 ± 8.82	
	90	25.73 ± 2.52 ***	2.11 ± 0.11	10	1.44 ± 0.23		23.15 ± 8.68	
	180	29.39 ± 3.29 ***	3.26 ± 0.63		1.76 ± 0.47	*	21.24 ± 3.75	
G9-5d	0	16.81 ± 3.51	1.20 ± 0.16		0.96 ± 0.58		17.93 ± 4.72	
120.22	22.5	16.07 ± 1.01	1.64 ± 0.24		0.71 ± 0.52		23.04 ± 10.61	
	45	21.53 ± 1.24	1.59 ± 0.22		1.33 ± 0.30		23.18 ± 8.90	
	90	24 26 ± 2 35 *	1.67 ± 0.34		2.28 + 0.12	***	23 92 ± 9.27	
	180	30.01 ± 5.53 ***	2.41 ± 0.53	***	2.78 ± 0.75	***	20.94 ± 3.17	
G10-4	0	16.81 + 3.51	1 20 + 0 16		0.96 + 0.58		17 93 + 4 72	
0104	22.5	16 20 + 1 55	1.55 + 0.22		0.99 + 0.14		22 38 + 8 77	
	45	20.47 + 1.67	1.00 ± 0.22		1 29 + 0 21		25.07 + 11.45	
	90	27.49 + 2.85 ***	1.04 + 0.24		1.60 + 0.06		37.05 + 10.82	
	180	35 51 + 3 70 ***	2 72 + 0 35		2.12 + 0.12	***	31 28 + 3 36	
	100	55.51 2 5.78	2.72 2 0.00		2.12 2 0.12		51.20 1 5.00	
G16-5	0	17.89 ± 0.45	1,36 ± 0.21	1	1.06 ± 0.24		18.00 ± 3.63	
	22.5	17.82 ± 2.36	1.98 ± 0.23	2	0.60 ± 0.29		14.09 ± 3.93	
	45	24.00 ± 2.86 *	2.04 ± 0.15		0.79 ± 0.14		18.85 ± 3.26	
	90	28.56 ± 2.26 ***	2.54 ± 0.31		1.10 ± 0.32		19.04 ± 2.25	
	180	28.42 ± 2.92 ***	3.38 ± 0.20		2.08 ± 1.23	•	20.69 ± 2.65	
G17-5	0	17.89 ± 0.45	1.36 ± 0.21		1.06 ± 0.24		18.00 ± 3.63	
	22.5	18.64 ± 1.54	1.86 ± 0.12		0.90 ± 0.35		16.43 ± 1.29	
	45	21.79 ± 2.62	2.16 ± 0.19	**	0.83 ± 0.25		17.40 ± 1.97	
	90	25,88 ± 3.57 **	2.49 ± 0.27	***	1.00 ± 0.41		19.16 ± 1.64	
	180	26.07 ± 2.52 ***	3.42 ± 0.29		1.26 ± 0.25		21.69 ± 3.77	
Quartz DQ12	0	17.89 ± 0.45	1.36 ± 0.21		1.06 ± 0.24		18.00 ± 3.63	
	22.5	15.38 ± 2.57	1.57 ± 0.11		0.86 ± 0.22		19.88 ± 7.15	
	45	22.42 ± 2.54	2.12 ± 0.23		1.09 ± 0.08		31.71 ± 11.98	
	90	47.40 ± 1.60 ***	5.57 ± 0.18		1.35 ± 0.14		60.75 ± 10.53	104
	180	74.49 ± 2.61 ***	13.24 ± 0.32		1.76 ± 0.31		89.69 ± 13.22	***
Quarte 0012 1	0	16 09 + 1 26	1 51 + 0 36				9.40 + 0.00	
Quarte Dare	22.5	10.00 ± 1.20	2.00 + 0.98		1		12.01 + 2.27	
	45	10,83 ± 0.82	2.00 ± 0.00		I I		12.01 ± 2.2/	
	45	2/./0 1 0.51	2.65 ± 0.30		Ŧ		22.11 2 0.10	***
	180	80.73 + 8.82 ***	17.62 + 1.54		2		110 14 + 43 06	
10-10-10	100	98.19 1 0.02	17.94 1 1.94	-	10.01		110.14 2 43.00	-
ymosan	360				15.54 ± 0.73		- G. & - 10	
PS	0.5						454.55 ± 146.70	

¹⁾ Results from a second measurement campaign with heat-treated G8-2b (220oc, 16 h, n=2) to destroy putative endotoxin contamination. LDH: lactate dehydrogenase, GLU: glucuronidase, H₂O₂: hydrogen peroxide, TNF α : tumor necrosis factor α . All Measurements are mean \pm stansard deviation of three biological replicas (n=3). Value significantly different from controls are marked by asterisks: *: P < 0.05, **: P < 0.01, and ***: P < 0.001.

3 Discussion (by the Applicant)

Analysis of the *in vitro* bioactivity of 14 TiO₂ materials revealed largely homogeneous responses of the particle-treated NR8383 alveolar macrophages with respect to cytotoxicity which was reflected by a uniform dose-dependent release of both, LDH and GLU. Considering the degree of cytotoxicity, G1-1b and G2-5 were somewhat more bioactive than all other substances. The oxidative response to TiO₂ particles H₂O₂ production) was small and significant elevations were mostly confined to the maximum concentration. Pro-inflammatory effects, reflected by a release of TNFa were found in two cases, one of which could be attributed to a heat-sensitive contamination with endotoxin.

12 The cellular particle loading could be successfully documented by phase contrast microscopy combined with PTA analysis of the culture medium under cell culture conditions. It became 13 14 clear that nearly all TiO₂ particles were completely ingested secondary to gravitational settling. Limitations were found for the ground materials G8-2b and G16-5 where some large 15 16 particles were still present and found to be associated with macrophages, and for G1-1b, G2-17 5, G6-3 and G7-5 where few small particles remained visible outside the cells at the highest 18 concentration step. Since also in these cases cells were heavily loaded with particles, the 19 contribution of the non-ingested particles fraction to the cellular particle burden is deemed to

¹ 2 3 4

be very small. For those TiO_2 samples which were completely ingested the cellular burden may be calculated from the constant cell numbers per well (3x105), and the administered **dose (200 µL with 22.5, 45, 90 and 180 µg/mL), thus calculating to a mean cellular dose of** 15, 30 60 and 120 pg/cell, respectively. Of note, this cellular burden matches with the cellular burden found for lavaged alveolar macrophages from inhalation experiments with AlOOH which has a slightly lower 17% lower density (Pauluhn 2009; doi: 10.1093/toxsci/kfp046).

7 The administered concentrations of all materials covered the No Adverse Effect Concentration 8 (NOAEC) and the Low-Adverse-Effect-Concentration (LOAEC) at least for one parameter 9 (LDH). Thereby standard deviations of the biological replicas were surprisingly low, and this partly contributed to the low LOAECs as calculated by ANOVA. Nevertheless, the cells' 10 responses to all TiO₂were widely homogeneous, as shown by the color coded LOAECs in Table 11 12 below. The Table below also outlines the allocation of the TiO₂ samples to the active/passive 13 categories, which is based on the specific surface area of internalized particles. Following the 14 considerations outlined in Wiemann et al., 2016 (doi: 10.1186/s12951-016-0164-2), a particle is deemed to be active, if 2 out of 4 possible LOAECs underscore a defined threshold. 15 16 Thus, 12 out of 14 TiO₂ materials may be categorized as active, although their effect on the cells is comparatively low and their BET value may differ up to 50-fold. The specific surface 17 area is generally believed to drive the bioactivity of nano-sized particles and has been used 18 19 as a well-accepted dose metric. It is therefore surprising that TiO₂ samples with low and high 20 BET surface exhibit a very similar overall reactivity and that the materials with a BET up to 21 70 m²/g were classified as active, whereas G2-5 and G10-4 with a BET value of 302 and 80 22 m²/g, respectively, were classified as passive. However, we cannot exclude that the effective surface of TiO₂ particles contacting or influencing cellular components becomes reduced by 23 24 the agglomeration of particles in cell culture medium which may contributes to this finding. At least G2-5 with the largest BET surface was found to induce some TNFa release. Further 25 26 particle characterization data (such as crystallinity, coating) need to be considered to fully 27 interpret the findings.

- 28 Overall, the response to hydrophilic as well as hydrophobic TiO₂ (nano)materials was uniform
- 29 and dominated by a mild cytotoxicity.

Material			LOAEC (µg/mL)			LO	AEC x BE	ET (mm²/n	nL)	100.1	Result	
	BET (m²/g)	LDH	GLU	τνεα	H ₂ O ₂	LDH	GLU	TNFα	H ₂ O ₂	No. of Results < 6000 mm²/mL	Active (A) Passive (P	
E171-E	10	45	45			450	450			2	А	
G1-1b	48	45	90		180	2160	4320		8640	2	A	
G2-5	302	45	90	180	90	13590	27180	54360	27180	0	Р	
G3-1	6	90	90		180	360	360		720	3	A	
G4-19	15	45	45		180	675	675		2700	3	A	
G5-4	14	45	90			630	1260			2	А	
G6-3	70	45	45		90	3150	3150		6300	2	A	
G7-5b	57	90	180		90	5130	10260		5130	2	A	
G8-2b ¹⁾	65	45		45	180	2925		2925	11700	2	A	
G9-5c	8	45	45		180	360	360		1440	3	A	
G9-5d	8	90	180		90	720	1440		720	3	A	
G10-4	80	90	90		90	7200	7200		7200	0	Р	
G16-5	n.m.	45	22.5		180	/	/	/	/	/	/	
G17-5	n.m.	45	22.5			/	/	/	/	/	/	

Ref.: Final report – DRAFT. Effects of Fourteen TiO2 Materials on NR8383 Alveolar Macrophages. Prof. Dr. Martin Wiemann (Responsible Scientist). 29th of July 2022

The SCCS comments on the results from study report on Effects of TiO_2 raw materials on NR8383 macrophages

10 The study results do not include any genotoxicity endpoints.

11 The raw materials tested induced rather mild cytotoxicity on NR8383 cells measured with LDH 12 and GLU tests. However, the SCCS noted that 16 h of exposure is a relatively short exposure time for other cell impairment/death signs to develop. After prolonged incubation time, 13 cytotoxic effects could be observed at even lower TiO₂ concentrations. Considering high 14 15 persistence of TiO₂ particles in biological tissues, pulse exposure with prolonged observation 16 time would also be a valuable option. Even if no confirmation of cellular uptake by electron 17 microscopy was provided, the SCCS assumes that all the TiO₂ raw materials could be 18 internalised by the macrophages, as was partially documented by phase contrast imaging. Although ROS generation was measured after 90 minutes with generally low (usually at the 19 20 2 highest concentrations tested) or no response from the cells, the SCCS noted that longer 21 incubation times could be applied by the Applicant with possibly greater effects. As was shown 22 by the results, all the raw materials induced no or very slight increase (G2-5) of TNF-a. The proposed calculation of biological activity of TiO₂ raw materials could be interesting for 23

- 1 regulatory purposes, however, in the opinion of the SCCS the proposal would need further,
- 2 more stringent validation.
- 3 In conclusion, the results indicate rather low cytotoxicity of the TiO₂ raw materials on NR8383
- 4 rat macrophages after 16 h of exposure, however longer incubation times with extended panel
- 5 of cytotoxicity endpoints would be required to gain broader view on potential hazard of the
- 6 raw materials.
- 7
- 8

1 IN VITRO STUDY #2. MucilAir-Rat-RF

The aim of the study was to evaluate and rank the potential toxicity (1), inflammatory effects (2), innate immune response, and ciliary function (3) of a single exposure to TiO₂ materials (nanoparticles) over one week (endpoints at 48, 96 and 168 hours) to correlate these early

5 key events observed in *in vivo* intratracheal rat instillation studies.

7 Materials and methods

- 9 The following TiO₂ raw materials were tested by the Applicant:
- 10

8

Name	Code	Batch	CAS munber	EC number	Purity	Comments
Aeroxide® TiO ₂ P 25 (Evonik ; August 8, 2021)	G1-1b	618052498	13463-67-7	236-675-5	>99.5 %	Phase 1a-b
Sachtleben® TR_AA (Venator ; August 8, 2021)	G3-1	G2TMGE0110/ 433009363/ UOC9363	13463-67-7	236-675-5	≥90 - ≤100 %	Phase 1a-b
Ti-Pure [™] Titanium Dioxide Pigment (Chemours ; August 8, 2021)	G7-5	40003782184	13463-67-7	236-675-5	80.7 %	Phase 1a-b
Ti-Pure [™] Titanium Dioxide Pigment (Chemours)	G7-5b	3328610025	13463-67-7	236-675-5	85.09 %	Phase 1b

11 12

- 13 The study was structured into 3 phases:
- Phase 1: Feasibility Test. 3 TiO₂ forms were used (high inflammatory, mid inflammatory and non-inflammatory compounds). This phase is subdivided into two main tasks.
- 16 Phase 1a. Dose range finding study
- 17 Phase 1b: Extended feasibility study including some relevant biomarkers
- Phase 2: Main test (part 1) conducted only if Phase 1 is successful. 4 TiO₂ forms will
 be evaluated (5 non-inflammatory and 1 repetition mid-inflammatory compounds).

20

22

21 Exposure to the test materials

Name	Volume applied	Exposure time	Exposure	Concentrations (semi-log scale)	Comments
All products Phase 1a	20 µl	168 hours (at 48 and 96 hours TEER/washing)	1	0.002, 0.01, 0.05, 0.2, 1, 5, 20, 100 μg/cm ²	Apical, in 0.9 % NaCl
All products Phase 1b	20 µl	168 hours (at 48 and 96 hours TEER/washing)	1	1, 5, 20, 50 μg/cm ²	Apical, in 0.9 % NaCl
Vehicle	20 µl		1		Apical 0.9 % NaCl

23 24

Exposure parameters in both Phase 1a and 1b; The surface of the epithelium is 0.33 cm² and
 the exposure volume is 20 uL. For 100 ug/cm² the quantity needed is 3.3 ug in 20 uL, which
 corresponds to a solution of 1.65 mg per mL of saline solution.

29 Assay Model:

- 1 MucilAir[™]-Rat-RF is a reconstituted 3D tissue from rat airways, fully differentiated,
- 2 pseudostratified in vitro epithelium co-cultured with rat fibroblasts. Cultured at the air liquid
- interface, the model displays high trans-epithelial electrical resistance and cilia beating, 3 4 demonstrating the full functionality of the epithelial tissue.
- 5 The mature MucilAir[™]-Rat-RF is composed of basal cells, ciliated cells and mucus producing
- cells. 6
- 7 TiO₂ forms (high inflammatory, mid-inflammatory and noninflammatory compounds -
- 8 provided by sponsor, G1-1b, G3-1, G7-5).
- 9 Number of repeats: 3
- 10 Number of concentrations: 8 concentrations (semi-log scale - 0.002; 0.01; 0.05; 0.2; 1; 5; 11 20; 100 µg/cm²; N=72)
- 12 Negative controls: Untreated cultures (UN) N=3; Vehicle control - Apical treatment (20 uL of 0.9 % NaCl; N=3);13
- Positive controls (N=3): Triton X-100 (10 %, 50 μ L apical; for cytotoxicity); Number of 14 MucilAir[™]-Rat = 81
- 15 16
 - Apical Exposure to TiO₂ material Information from Apical Side Information from Culture TEER Medium LDH
- 17
- Figure XX: Apical exposure to TiO₂ materials on MucilAir[™]-Rat-RF. Endpoint measurements 18 19 were performed at both the apical and basal sides. Measures of transepithelial electrical
- 20 resistance (TEER) and cytotoxicity (LDH assay) were performed.
- 21
- 22 Phase 1b
- 23 Tested compounds: 3 TiO₂ forms used (high inflammatory, mid-inflammatory and noninflammatory compounds - Samples: G1-1b, G3-1, G7-5b) 24
- 25 Number of repeats: 3
- 26 Number of concentrations: 4 concentrations (1, 5, 20, 50 μ g/cm² – N=36)
- 27 Additional concentration: 1 concentration for sample G7-5 (3 repeats) to show comparability with the new sample, G7-5b = 50 μ g/ cm² 28
- Negative controls: Untreated cultures (UN) N=3, Vehicle control Apical treatment (20 μ L of 29 30 0.9 % NaCl) N=3
- Positive controls: Triton X-100 (10 %, 50 µL apical; for cytotoxicity) N=3, Cytomix Basal 31
- 32 treatment (500 ng/mL TNFa, 0.2 mg/mL LPS, 1 % FCS; for inflammation) N=3
- 33
- 34 An additional parallel series performed for oxidative stress gene markers (SOD-2, GPx, GST)
- 35 at 48h including TEER and LDH release measurement.
- 36

Figure XXX: Single apical exposure to TiO₂ materials on MucilAir[™]-Rat-RF. Endpoint
measurements were performed at both the apical and basal sides and from the MucilAir[™]
tissue. Transepithelial electrical resistance (TEER), cilia beating frequency (CBF) and H₂O₂
were assessed on the apical side. Cytotoxicity (LDH assay) and cytokine release were
measured from the basolateral medium. The epithelial tissue was lysed for gene expression
analysis.

- 9 10 Methods:
- 11 Tissue integrity TEER. (An increase of the TEER value reflects a blockage of the ion channel 12 activities), cytotoxicity (LDH release), cilia beating frequency (CBF), cytokines (release of
- 13 Interleukin 8 and 6,) and RANTES (Regulated on Activation, Normal T cell Expressed and
- 14 Secreted) by ELISA, Hydrogen peroxide concentration measured fresh (without storage) from
- 15 the apical wash using OxiSelect[™] Hydrogen Peroxide/ Peroxidase Assay Kit; Oxidative stress-
- related genes (SOD-2, GPx, GST) and Quantitative RT-PCR; houskeeping (reference) geneGAPDH.
- 18 Statistical analysis: one-way or two-way ANOVA with Dunnett's multiple comparison post-
- 19 tests, Student's t test.
- 20
- 21 Results:
- 22 Phase 1a
- 23 Tissue integrity (TEER)

Effect of single apical exposure to G1-1b, G3-1 and G7-5 TiO₂ material on tissue integrity in
 MucilAir[™]-Rat-RF.

TEER was measured 2, 4 and 7 days post exposure (n=3 cultures, mean±SEM). Threshold limit is 100 Ω .cm⁻².

28 The untreated and vehicle treated cultures showed TEER values in the normal range of

MucilAir™ (200-600 Ω.cm-²). Positive control Triton X-100 (10 %) induced a decrease of TEER
 below 100 Ω.cm-².

31 Apical exposure to G1-1b tended to decrease TEER values in a dose-dependent manner, but 32 the integrity of the tissue was well preserved (> 100 Ω .cm⁻²) at all concentrations. Apical exposure to G3-1 induced a decrease in TEER at 4 and 7 days after exposure at all 33 concentrations, but the integrity of the tissue was well preserved (> 100 Ω .cm⁻²) at all 34 concentrations. After apical exposure to G7-5, a dose-dependent decrease of TEER was 35 36 observed at 48 hours (except for 20 μ g/cm²) and a general decrease in TEER at 4 and 7 days post exposure, but the integrity of the tissue was well preserved (> 100 Ω .cm⁻²) at all 37 38 concentrations. The reason for the outliers at 20 μ g/cm² is unknown.

Figure xxx: Effect of single apical exposure to G1-1b TiO₂ material on tissue integrity in MucilAir[™]-Rat-RF. TEER was measured 2, 4 and 7 days post exposure (n=3 cultures, mean±SEM). Threshold limit is 100 Ω.cm⁻².

6

7 Cytotoxicity (LDH release)

8 Effect of single apical exposure to three TiO₂ materials on cytotoxicity in MucilAir[™]-Rat-RF. 9 LDH release was measured at 2, 4 and 7 days post exposure (n=3 cultures, mean±SEM) (48 or 72 hours accumulation). Threshold limit is 5 % cytotoxicity, which corresponds to a 10 physiological LDH release in MucilAir™ (human). No cytotoxicity was detected in negative 11 12 control. The 10 % Triton X-100 solution induced toxicity was 100 %. No cytotoxicity (< 5 %) 13 was detected for single apical exposure to G1-1b, except for a small cytotoxicity, 10 %, at $0.002 \,\mu g/cm^2$ at 96 hours. No cytotoxicity (< 5 %) was detected for single apical exposure to 14 15 G3-1 and G7-5.

Figure XX: Effect of single apical exposure to G1-1b TiO₂ material on cytotoxicity in MucilAir[™]-Rat-RF. LDH release was measured at 2, 4 and 7 days post exposure (n=3 cultures, 5 mean±SEM) (48 or 72 hours accumulation). Threshold limit is 5 % cytotoxicity, which corresponds to a physiological LDH release in MucilAir[™] (human).

Summary of results of phase 1a:

	Presence of T	iO ₂ in apical pa	Tingun integritu	Cutatovisity			
	48h	96h	168h	rissue integrity	Cytotoxicity		
G1-1b	[20] and [100] µg/cm ² +++	[20] and [100] µg/cm ² ++	[20] and [100] µg/cm ² ++	Tight	Potentially artefactual increase for 0.002 μg/cm ² at 96h		
G3-1	[20] and [100] µg/cm ² +++	[20] and [100] µg/cm ² ++	[20] and [100] µg/cm ² ++	Tight	No		
G7-5	[20] and [100] µg/cm² +++	[20] and [100] µg/cm ² ++	[20] and [100] µg/cm ² ++	Tight	No		

10 11

- 12 Phase 1b
- Tissue integrity (TEER) 13
- Effect of single apical exposure to TiO₂ materials on tissue integrity in MucilAir[™]-Rat-RF. TEER 14 15 was measured 2, 4 and 7 days post exposure (n=6 at 48 hours, n=3 cultures at 96 and 168 hours, mean \pm SEM). Threshold limit is 100 Ω .cm⁻². The untreated and vehicle treated cultures 16 17 showed TEER values in the normal range of MucilAir[™] (200-600 Ω.cm⁻²). Triton X-100 (10 %) induced a decrease of TEER below 100 Ω.cm-². Apical exposure to G1-1b, G3-1, G7-5b 18 and G7-5 had no effect on TEER values, the integrity of the tissue was well preserved (> 100 19 20 Ω .cm⁻²) at all concentrations.
- 21
- 22 Cytotoxicity (LDH release)

23 Effect of single apical exposure to four TiO₂ materials on cytotoxicity in MucilAir[™]-Rat-RF (LDH

24 release) was measured at 2, 4 and 7 days post exposure (n=3 cultures, mean±SEM) (48 or

- 72 hours accumulation). Threshold limit is 5 % cytotoxicity, which corresponds to a
 physiological LDH release in MucilAir[™] (human). No cytotoxicity was detected in negative
 control. The 10 % Triton X-100 solution induced toxicity was 100 %.
- 4 After exposure to G1-1b, the cytotoxicity was between 3.7 and 11.3 %. The increase was
- 5 moderate compared to vehicle, not at all time points and no dose dependence was observed.
- 6 Currently no historical data is available to determine the acceptable threshold of cytotoxicity
- for MucilAir[™]-Rat-RF. Using threshold of 10 %, an increase of cytotoxicity was found for 5
 and 50 µg/cm² at 96 hours.
- 9 After exposure to G3-1, the cytotoxicity was between 3.7 and 11.3 %. The increase was
- 10 moderate compared to vehicle, not at all time points and no dose dependence was observed.
- 11 Currently no historical data is available to determine the acceptable threshold of cytotoxicity 12 for MucilAir[™]-Rat-RF. Using a threshold of 10 %, an increase of cytotoxicity was found for 50
- for MucilAir[™]-Rat-RF. Using a threshold of 10 %, an increase of cytotoxicity was found for 50
 µg/cm² at 96 hours.
- After exposure to G7-5b and G7-5, the cytotoxicity was between 2.7 and 10 %. A very slight,
- 15 dose-dependent increase was observed at 96 hours compared to vehicle. Currently no
- 16 historical data is available to determine the acceptable threshold of cytotoxicity for MucilAir[™]-
- 17 Rat-RF. Using a threshold is 10 %, no cytotoxicity was observed.
- 18
- 19

Figure XX: Effect of single apical exposure to G3-1 TiO₂ material on cytotoxicity in MucilAir[™]Rat-RF. LDH release was measured at 2, 4 and 7 days post exposure (n=6 at 48 hours, n=3
cultures at 96 and 168 hours, mean±SEM) (48 or 72 hours accumulation). Threshold limit is
5 % cytotoxicity, which corresponds to a physiological LDH release in MucilAir[™] (human).

- 24
- 26 Cilia beating frequency (CBF)
- 27 Effect of single apical exposure to four TiO₂ materials on cilia beating frequency in MucilAir[™] 28 Rat-RF was measured 7 days post exposure (n=3 cultures, mean±SEM).
- The untreated and vehicle treated cultures showed cilia beating frequency of 12.8 and 12.9 Hz at room temperature, which is above the normal range of human MucilAir[™] (5-10 Hz) at this temperature. Currently, there is insufficient data available to determine the normal range of rat culture. Apical exposure to TiO₂ did not modify CBE compared to vehicle.
- of rat culture. Apical exposure to TiO₂ did not modify CBF compared to vehicle.
- 34 Apical H₂O₂ release
- 35 Effect of single apical exposure to TiO₂ materials on apical H₂O₂ release in MucilAir[™]-Rat-RF.
- H_2O_2 was measured in the apical wash 2, 4 and 7 days post exposure (n=6 at 48 hours, n=3

- 1 cultures at 96 and 168 hours, mean±SEM). The apical wash from the untreated and vehicle
- 2 treated cultures had surprisingly high, 44 and 53 $\mu\text{M},~\text{H}_2\text{O}_2$ concentrations at 48 hours. In
- 3 contrast, very low level of H_2O_2 was detected at 96 and 168 hours. The apical wash of 48
- hours contained materials accumulated during 5 days (-3 days apical wash before experiment,
 according to Epithelix SOP, and 2 days post exposure) on the surface of epithelia, in contrast
- 5 according to Epithelix SOP, and 2 days post exposure) on the surface of epithelia, in contrast 6 to 96 hours (2 days accumulation) and 168 hours (3 days accumulation).

7 Apical exposure to any of tested TiO_2 did not modify H_2O_2 concentration compared to vehicle.

- 8
- 9 Basal Interleukin 8 and 6 release

10 Effect of single apical exposure to TiO_2 materials on basal Interleukin 8 and 6 secretions in

11 MucilAir[™]-Rat-RF was measured in the basal culture medium 2, 4 and 7 days post exposure.

- 12 The untreated and vehicle treated cultures had IL-8 concentrations between 444-537 pg/mL
- (no historical data is available for comparison). Positive control Cytomix induced a 2-3 fold
 increase in IL-8 secretion, the concentrations were 1588, 1185 and 1326 pg/mL at 48, 96
- and 168 hours, respectively. Apical exposure to any of the tested TiO₂ had no effect on IL-8
 secretion.

The untreated and vehicle treated cultures had IL-6 concentrations between 104-625 pg/mL 17 (no historical data is available for comparison). Positive control Cytomix induced a huge 18 19 increase in IL-6 secretion, the concentrations were 5511, 7107 and 6436 pg/mL at 48, 96 20 and 168 hours, respectively. Apical exposure to G1-1b and G3-1 had no effect on IL-6 secretion. Apical exposure to G7-5b at the highest dose, 50 μ g/cm², increased IL-6 secretion 21 22 at 168 hours (1297 pg/mL). The increase was a bit lower for G7-5. (According to the simple 23 unpaired Student t test at 168 hours - G7-5b vs. vehicle or G7-5 vs. vehicle - the differences 24 are not significant).

25

26 27

Figure XXX: Effect of single apical exposure to G7-5b and G7-5 TiO₂ material on basal
Interleukin 6 secretion in MucilAir[™]-Rat-RF. IL-6 concentrations were measured in the basal
culture medium 2, 4 and 7 days post exposure (n=6 at 48 hours, n=3 cultures at 96 and 168
hours, mean±SEM). The dotted line represents the lower limit of the standard curve.

1 Basal RANTES release

Effect of single apical exposure to TiO₂ materials on basal RANTES secretion in MucilAir[™]-Rat-RF was measured in the basal culture medium 2, 4 and 7 days post exposure. The untreated and vehicle treated cultures had low RANTES concentrations between 5-55 pg/mL (no historical data is available for comparison). Cytomix induced an increase in RANTES secretion, the concentrations were 446, 313 and 192 pg/mL at 48, 96 and 168 hours, respectively. Apical exposure to any of the tested TiO2 had no effect on RANTES secretion.

9 Gene expression analysis

10 Effect of single apical exposure to TiO₂ materials on the expression of three oxidative-stress related genes in MucilAir[™]-Rat-RF was measured. As a reference gene, GAPDH was used and 11 12 the expression was presented relative to the vehicle mean, and thus vehicle represents 1. In 13 general, > 2 fold change is considered biologically relevant. Exposure to G1-1b did not modify the expression of Sod2, Gpx2 and Gstp1 at 2 and 7 days post exposure. Exposure to G3-1 14 induced a dose-dependent increase of Sod2 gene (2.3, 5.2, 7.7 and 16.4-fold change for 1, 15 16 5, 20 and 50 µg/cm², respectively), while Gpx2 and Gstp1 were not modified at 2 days after exposure. In contrast, at 7 days after exposure Sod2 gene showed downregulation, and Gpx2 17 and Gstp1 remained unchanged. Exposure to G7-5 and G7-5b at the highest dose, 50 µg/cm² 18 19 decreased the expression of all three genes 2 days after exposure (approximately 0.5 fold-20 change). Seven days after exposure, only Sod2 gene showed a dose-dependent decrease of 21 expression (0.8, 0.4 and 0.2-fold change for 5, 20 and 50 μ g/cm²).

22

8

23 24

Figure xx: Effect of single apical exposure to G3-1 TiO₂ material on the expression of three oxidative-stress related genes in MucilAir^M-Rat-RF. Candidate transcripts were quantified by Tagman RT-PCR 2 and 7 days post exposure (n=3 cultures, mean±SEM).

- 2829 Summary of results of phase 1b:
- 30

	Prese apical	ence of T part (afte	iO ₂ in r wash)	Toxicity	Cytokine secretions			Gene expressions		
	and	and microscopic obervation		LDH,	RANTES	II -6	11 -8	Sod2	Gpx2	Gstn1
	48h	96h	168h	CBF)				GOUL	OPAL	Coth
G1-1b	[50] and [20] µg/cm ² +++	[50] and [20] µg/cm ² ++	[50] and [20] µg/cm ² +	No	No effect	No effect	No effect	No effect	No effect	No effect
	[50] µg/cm ² few detached cells	[50] µg/cm ² few detached cells	[50] µg/cm ² few detached cells							
G3-1	[50] and [20] µg/cm ² +++	[50] and [20] µg/cm ² ++	[50] and [20] µg/cm ² +	No	No effect	No effect	No effect	≯48h dose- dependent; ∿168h	No effect	No effect
	[50] µg/cm ² few detached cells	[50] µg/cm ² few detached cells	[50] µg/cm ² few detached cells							
G7-5b	[50] and [20] µg/cm ² +++	[50] and [20] µg/cm ² ++	[50] and [20] µg/cm ² +	No	No effect	No effect	No effect	≫ 48h [50] µg/cm²; ≫ 168h dose- dependent	∿ 48h [50] µg/cm²	¥ 48h [50] µg/cm²
	[50] and [20] µg/cm ² few detached cells	[50] and [20] µg/cm ² few detached cells	[50] and [20] µg/cm ² few detached cells							
G7-5	[50] µg/cm ² +++	[50] µg/cm ² ++	[50] µg/cm ² +	No	No effect	No effect	No effect	→ 48h [50] µg/cm²; → 168h [50] µg/cm²	∿ 48h [50] µg/cm²	∿ 48h [50] µg/cm²
	few detached cells	few detached cells	few detached cells							

4 Conclusion by the Applicant

5 No effects on tissue integrity and no cytotoxicity were observed at all 3 time points, for exposure to TiO₂ material G1-1b, G3-1 and G7-5B/G7-5 on the apical surface of the epithelia. 6 7 Overall morphology of the rat epithelia was good with presence of TiO₂ materials and the cilia 8 beating was visible. However, a few detached, floating cells were observed at the periphery 9 of the inserts at the highest concentration, 50 µg/cm², for G1-1b, G3-1, G7- 5, and at 20, 50 µg/cm² for G7-5b. RANTES, IL-8 and IL-6 secretions were not changed significantly for all 10 11 TiO₂ materials.

12 In conclusion, a single apical exposure to TiO₂ materials on MucilAir[™]-Rat-RF induces changes 13 in the expression of oxidative stress-related genes, and thus this parameter could be the first relevant biomarker for *in vitro* TiO₂ research. This study shows that a single apical exposure 14 15 to G1-1b does not induce any change in the measured parameters, whereas the TiO_2 materials G3-1 and G7-5 induce both up- and down-regulation of oxidative stress-related genes. The 16 17 most marked change is the dose dependent upregulation of Sod2 at 48 hours by G3-1 TiO₂ at the measured time points. 18

- 19
- 20 Ref.: Single dose testing of TiO₂ materials on MucilAir[™]-Rat Phase 1a & 1b by and between Epithelix and Titanium Dioxide Manufacturers Association (TDMA). Date: 31 May 2022. Final 21 22 Report - ST210902 & ST220203, 2022
- 23 24

25

- The SCCS comments to the MucilAir[™]-Rat-RF study
 - The study results do not include any genotoxicity endpoints (such as expression of genes related to DNA damage and repair, cell cycle etc.).

- No information on characterisation of tested TiO₂ nanomaterials in exposure medium (0.9 % NaCl) or in culture medium was provided.
- The MucilAir[™]-Rat-RF model is a promising 3D model of rat airway epithelium, constituted with primary epithelial cells isolated from trachea and bronchi of rats and co-cultured with primary rat airway fibroblasts, but it is still not validated for endpoints measured and no OECD TG or GD exists.
 - No information on the internalisation of nanoparticles or penetration through the multilayers has been provided.
- The Applicant designed the study in three phases but only the first phase was
 performed, which is incomplete, even if this first phase yeilded some positive results
 (expression of oxidative stress and antioxidant defence genes).
- The study was not conducted under GLP and no quality controls have been provided in addition to the negative and positive controls.
 - No historical controls provided for any of the endpoints.
 - For cilia beating frequency, no positive control was included and the Applicant noted that currently, there is insufficient data available to determine the normal range of rat culture. These data have limited value.
- For "Apical H₂O₂ release no positive control was provided". The apical wash from the untreated and vehicle treated cultures had surprisingly high, 44 and 53 µM, H₂O₂, concentrations at 48 hours. In contrast, very low level of H₂O₂ was detected at 96 and 168 hours. The apical wash of 48 hours contained materials accumulated over 5 days (-3 days apical wash before experiment, according to Epithelix SOP, and 2 days post exposure) on the surface of epithelia, in contrast to 96 hours (2 days accumulation) and 168 hours (3 days accumulation)". The data have limited value.
 - For gene expression study no positive control included. Two TiO₂ (G3-1 and G7-5b) affected gene expression of oxidative stress related genes. Data from gene expression are difficult to explain.
 - The response in gene expression after exposure to TiO₂ was different for different TiO₂ materials. No response was measured after exposure to G1-1, while higher expression was measured after exposure to G3-1 in 48h and lower expression in 168h. For G7-5 and G7-5b lower expression in each time point was detected.
 - While gene expression in antioxidant enzyme was affected, no effect on inflammatory markers was observed.
- SCCS is of opinion that to select only a few genes to study the effect of TiO₂ on gene expression is not meaningful. SCCS agrees with the Applicant that broad selection of relevant genes and a more global approach, such as DNA array, could give more insight into transcriptomic changes after exposure of TiO₂ materials.
- 38 39

2

3

4 5

6 7

8

14

15

16 17

25

26 27

28

29

30 31

32

1 Annex V: List of publications on TiO₂ particles genotoxicity analysed by the SCCS

2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

22

23

24

25 26

27

28

29

30

31

32 33

34 35

36 37

38

39

40

41 42

43

44

45

46 47

48

49

- 1. Abdel-Wahhab *et al.* (2021) : Abdel-Wahhab MA, El-Nekeety AA, Mohammed HE, Elshafey OI, Abdel-Aziem SH, Hassan NS. *Elimination of oxidative stress and genotoxicity of biosynthesized titanium dioxide nanoparticles in rats via supplementation with whey protein-coated thyme essential oil.* Environ Sci Pollut Res Int. 2021 Nov; 28(41): 57640-57656. doi: 10.1007/s11356-021-14723-7.
- 2. Armand *et al.* (2016) : Armand L, Tarantini A, Beal D, Biola-Clier M, Bobyk L, Sorieul S, Pernet-Gallay K, Marie-Desvergne C, Lynch I, Herlin-Boime N, Carriere M. *Long-term exposure of A549 cells to titanium dioxide nanoparticles induces DNA damage and sensitizes cells towards genotoxic agents*. Nanotoxicology. 2016 Sep;10(7):913-23. doi: 10.3109/17435390.2016.1141338. Epub 2016 Feb 22
- Asare *et al.* (2012) : Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G. *Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells*. Toxicology. 2012 Jan 27;291(1-3):65-72. doi: 10.1016/j.tox.2011.10.022. Epub 2011 Nov 6
- Bessa *et al.* (2017) : Bessa MJ, Costa C, Reinosa J, Pereira C, Fraga S, Fernández J,
 Bañares MA, Teixeira JP. *Moving into advanced nanomaterials. Toxicity of rutile TiO(2) nanoparticles immobilized in nanokaolin nanocomposites on HepG2 cell line* Toxicol
 Appl Pharmacol. 2017 Feb 1;316:114-122. doi: 10.1016/j.taap.2016.12.018. Epub
 2016 Dec 28."
 - Bhattacharya *et al.* (2008) : Bhattacharya K, Cramer H, Albrecht C, Schins R, Rahman Q, Zimmermann U, Dopp E. *Vanadium pentoxide-coated ultrafine titanium dioxide particles induce cellular damage and micronucleus formation in V79 cells*. J Toxicol Environ Health A. 2008; 71(13-14): 976-80. doi: 10.1080/15287390801989218.
 - 6. Bischoff *et al.* (2020) : Bischoff NS,de Kok TM, Sijm DTHM, van Breda SG, Briedé JJ, Castenmiller JJM, Opperhuizen A, Chirino YI, Dirven H, Gott D, Houdeau E, Oomen AG, Poulsen M, Rogler G, and van Loveren H. *Possible Adverse Effects of Food Additive E171 (Titanium Dioxide) Related to Particle Specific Human Toxicity, Including the Immune System.* Int J Mol Sci. 2020 Dec 28;22(1):207. doi : 10.3390/ijms22010207
 - Botelho *et al.* (2014) : Botelho MC, Costa C, Silva S, Costa S, Dhawan A, Oliveira PA, Teixeira JP. *Effects of titanium dioxide nanoparticles in human gastric epithelial cells in vitro.* Biomed Pharmacother. 2014 Feb; 68(1): 59-64. doi: 10.1016/j.biopha.2013.08.006. Epub 2013 Aug 23.
 - 8. Boyadzhiev et al. (2022) : Boyadzhiev A, Solorio-Rodriguez SA, Wu D, Avramescu ML, Rasmussen P, Halappanavar S. *The High-Throughput In Vitro CometChip Assay for the Analysis of Metal Oxide Nanomaterial Induced DNA Damage*.Nanomaterials (Basel). 2022 May 27;12(11):1844. doi: 10.3390/nano12111844
 - 9. Catalan *et al.* (2012) : Catalan J, Jarventaus H, Vippola M, Savolainen K, Norppa H. *Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro*. Nanotoxicology. 2012 Dec; 6:825-36. doi: 10.3109/17435390.2011.625130. Epub 2011 Oct 13.
 - 10. Chen *et al.* (2022) : Chen Z, Shi J, Zhang Y, Han S, Zhang J, Jia G. *DNA Oxidative Damage as a Sensitive Genetic Endpoint to Detect the Genotoxicity Induced by Titanium Dioxide Nanoparticles.* Nanomaterials (Basel). 2022 Jul 29; 12(15): 2616. doi: 10.3390/nano12152616.
 - 11. Dekanski *et al.* (2018) : Dekanski D, Spremo-**Potparevic B, Bajic V, Živkovic L,** Topalovic D, Sredojevic DN, Lazic V, Nedeljkovic JM. *Acute toxicity study in mice of orally administrated TiO(2) nanoparticles functionalized with caffeic acid.* Food Chem Toxicol. 2018 May; 115: 42-48. doi: 10.1016/j.fct.2018.02.064. Epub 2018 Mar 3
- 12. Dhein *et aL.* (2022) : Dhein J, Haller C, Reichl FX, Milz S, Hickel R, Kollmuss M, Högg
 C. Intranuclear cell uptake and toxicity of titanium dioxide and zirconia particles as well as bacterial adhesion on dental titanium- and zirconia-implants. Dent Mater. 2022
 Mar; 38(3): 517-528. doi: 10.1016/j.dental.2021.12.142.
- 55 13. Di Giampaolo *et al.* (2021) : Di Giampaolo L, Zaccariello G, Benedetti A, Vecchiotti G,
 56 Caposano F, Sabbioni E, Groppi F, Manenti S, Niu Q, Poma AMG, Di Gioacchino M,
 57 Petrarca C. *Genotoxicity and Immunotoxicity of Titanium Dioxide-Embedded*

Mesoporous Silica Nanoparticles (TiO(2)@MSN) in Primary Peripheral Human Blood 1 2 Mononuclear Cells (PBMC). Nanomaterials (Basel). 2021 Jan 21;11(2):270. doi: 3 10.3390/nano11020270 4 14. Diabaté et aL (2020) : S Diabaté, L Armand , S Murugadoss, M Dilger, S Fritsch-5 Decker, Ch Schlager, D Béal, M-E Arnal, M Biola-Clier, S Ambrose, S Mülhopt, H-R Paur, I Lynch, E Valsami-Jones, M Carriere, C Weiss. Air-Liquid Interface Exposure of 6 7 Lung Epithelial Cells to Low Doses of Nanoparticles to Assess Pulmonary Adverse 8 *Effects.* Nanomaterials (Basel). 2020 Dec 29;11(1):65. doi: 10.3390/nano11010065 9 15. El Yamani et al. (2022) : El Yamani N., Rubio L., Garcia-Rodriguez A., Kazimirova A., 10 Runded-Pran E., Magdalena B., Marcos R., Dusinska M. Lack of mutagenicity of TiO2 11 nanoparticles in vitro despite cellular and nuclear uptake. Mutat Res Genet Toxicol 12 Environ Mutagen. 2022 Oct; 882: 503545. doi: 10.1016/j.mrgentox.2022.503545. 13 Epub 2022 Sep 5 14 16. El-Said et al. (2014) : El-Said KS, Ali EM, Kanehira K, Taniguchi A. Molecular 15 mechanism of DNA damage induced by titanium dioxide nanoparticles in toll-like 16 receptor 3 or 4 expressing human hepatocarcinoma cell lines. J Nanobiotechnology. 2014 Dec 2; 12 48.. doi: 10.1186/s12951-014-0048-2 17 17. et al. (2022) : Safwat G, Mohamed AA, Mohamed HRH. Estimation of genotoxicity, 18 19 apoptosis and oxidative stress induction by TiO(2) nanoparticles and acrylamide subacute oral coadministration in mice. Sci Rep. 2022 Nov 4;12(1):18648. doi: 20 21 10.1038/s41598-022-23302-w. 22 18. Fayer et al. (2021) : Fayer L, Zanette RSS, Siqueira JTC, Oliveira ER, Almeida CG, 23 Gern JC, Sousa SM, de Oliveira LFC, Brandão HM, Munk M. The distinct effect of 24 titanium dioxide nanoparticles in primary and immortalized cell lines. Toxicology 25 Research, 2021, 10, 511-522.doi: 10.1093/toxres/tfab040 26 19. Fernández-Bertólez et al. (2021) : Fernández-Bertólez N, Brandão F, Costa C, Pásaro E, Teixeira J, Laffon B, and Valdiglesias V. Suitability of the In Vitro Cytokinesis-Block 27 Micronucleus Test for Genotoxicity Assessment of TiO(2) Nanoparticles on SH-SY5Y 28 29 Cells. Int. J. Mol. Sci. 2021, 22, 8558. doi : 10.3390/ijms22168558 20. Freire et al. (2021) : Freire K, Ordónez Ramos F, Soria DB, Pabón Gelves E, Di Virgilio 30 31 AL. Cytotoxicity and DNA damage evaluation of TiO₂ and ZnO nanoparticles. Uptake in lung cells in culture. 32 Toxicology Research. 2021, 10, 264-271. doi 33 10.1093/toxres/tfaa112 34 21. Fresegna et al. (2021) : Fresegna AM, Ursini CL, Ciervo A, Maiello R, Casciardi S, lavicoli S, Cavallo D. Assessment of the Influence of Crystalline Form on Cyto-35 Genotoxic and Inflammatory Effects Induced by TiO(2) Nanoparticles on Human 36 37 Bronchial and Alveolar Cells. Nanomaterials (Basel). 2021 Jan 19;11(1):253. doi 38 10.3390/nano11010253 39 22. Gea *et al.* (2019) : Gea M, Bonetta S, Iannarelli L, Giovannozzi AM, Maurino V, Bonetta 40 S, Hodoroaba VD, Armato C, Rossi AM, Schilirò T. Shape-engineered titanium dioxide nanoparticles (TiO(2)-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. 41 Food Chem Toxicol. 2019 May; 127:89-100. doi: 10.1016/j.fct.2019.02.043. Epub 42 43 2019 Mar 5 44 23. Ghosh et al. (2010) : Ghosh M, Bandyopadhyay M, Mukherjee A. Genotoxicity of titanium dioxide (TiO₂) nanoparticles at two trophic levels: plant and human 45 46 lymphocytes. Chemosphere. 2010 Nov: 81(10): 1253-62. doi: 47 10.1016/j.chemosphere.2010.09.022. Epub 2010 Sep 29 24. Ghosh et al. (2017): Ghosh M, Öner D, Duca RC, Cokic SM, Seys S, Kerkhofs S, Van 48 Landuyt K, Hoet P, Godderis L. Cyto-genotoxic and DNA methylation changes induced 49 50 by different crystal phases of TiO(2)-np in bronchial epithelial (16-HBE) cells. Mutat Res. 2017 Feb; 796: 1-12. doi: 10.1016/j.mrfmmm.2017.01.003. Epub 2017 Feb 10 51 52 25. Hackenberg et al. (2010): Hackenberg S, Friehs G, Froelich K, Ginzkey C, Koehler C, 53 Scherzed A, Burghartz M, Hagen R, Kleinsasser N. Intracellular distribution, geno- and 54 cytotoxic effects of nanosized titanium dioxide particles in the anatase crystal phase on human nasal mucosa cells. Toxicol Lett. 2010 May 19;195(1):9-14. doi: 55 10.1016/j.toxlet.2010.02.022. Epub 2010 Mar 4 56 57 26. Hackenberg et al. (2017): Hackenberg S, Scherzed A, Zapp A, Radeloff K, Ginzkey C, 58 Gehrke T, Ickrath P, Kleinsasser N. Genotoxic effects of zinc oxide nanoparticles in

1 nasal mucosa cells are antagonized by titanium dioxide nanoparticles. Mutat Res Genet 2 Toxicol Environ Mutagen. 2017 Apr; 816-817: 32-37. doi: 3 10.1016/j.mrgentox.2017.02.005. Epub 2017 Mar 31 4 27. Hadrup et al. (2017) : Hadrup N, Bengtson S, Jacobsen NR, Jackson P, Nocun M, Saber 5 AT, Jensen KA, Wallin H, Vogel U. Influence of dispersion medium on nanomaterialinduced pulmonary inflammation and DNA strand breaks: investigation of carbon 6 7 black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis. 2017 8 Dec 31; 32(6): 581-597. doi: 10.1093/mutage/gex042. 9 28. Hamzeh and Sunahara (2013) : Hamzeh M, Sunahara GI. In vitro cytotoxicity and 10 genotoxicity studies of titanium dioxide (TiO_2) nanoparticles in Chinese hamster lung 11 cells. Toxicol In Vitro. 2013 Mar; 27(2): 864-73. fibroblast doi: 12 10.1016/j.tiv.2012.12.018. Epub 2012 Dec 28. 29. Hu and Palic (2020) : Hu M, Palic D. Role of MicroRNAs in regulation of DNA damage 13 14 in monocytes exposed to polystyrene and TiO(2) nanoparticles. Toxicol Rep. 2020 Jun 15 3; 7:743-751. doi: 10.1016/j.toxrep.2020.05.007 30. Jaeger et al. (2012) : Jaeger A, Weiss DG, Jonas L, Kriehuber R. Oxidative stress-16 17 induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology. 2012 Jun 14; 296(1-3): 27-36. doi: 18 19 10.1016/j.tox.2012.02.016. Epub 2012 Mar 16. 31. Jalili *et al.* (2018) : Jalili P, Gueniche N, Rachelle L, Burel A, Lavault MT, Sieg H, Böhmert L, Meyer T, Krause BC, Lampen A, Estrela-Lopis I, Laux P, Luch A, Hogeveen 20 21 22 K, Fessard V. Investigation of the in vitro genotoxicity of two rutile TiO_2 nanomaterials 23 in human intestinal and hepatic cells and evaluation of their interference with toxicity 24 assays. NanoImpact, 2018, Vol.11, p.69-81. doi : 10.1016/j.impact.2018.02.004 25 32. Kampfer et al. (2021) : Kampfer A., Busch M., Buttner V., Bredeck G., Stahlmecke B., 26 Hellack B., Masson I., Sofranko A., Albrecht C., Schins R. Model Complexity as 27 Determining Factor for In Vitro Nanosafety Studies: Effects of Silver and Titanium Dioxide Nanomaterials in Intestinal Models. Small, Nano, Micro. 2021, 17, 2004223. 28 29 doi: 10.1002/smll.202004223 33. Kang et al. (2011) : SJ, Lee YJ, Kim BM, Choi YJ, Chung HW. Cytotoxicity and 30 31 genotoxicity of titanium dioxide nanoparticles in UVA-irradiated normal peripheral lymphocytes. 32 blood Drug Chem Toxicol. 2011 Jul; 34(3): 277-84. doi: 33 10.3109/01480545.2010.546800 34. Kansara et al. (2015) : Kansara K, Patel P, Shah D, Shukla RK, Singh S, Kumar A, 34 35 Dhawan A. TiO₂ nanoparticles induce DNA double strand breaks and cell cycle arrest in human alveolar cells. Environ Mol Mutagen. 2015 Mar; 56(2): 204-17. doi: 36 37 10.1002/em.21925. Epub 2014 Dec 18 38 35. Lindberg et al. (2012) : Lindberg HK, Falck GC, Catalán J, Koivisto AJ, Suhonen S, 39 Järventaus H, Rossi EM, Nykäsenoja H, Peltonen Y, Moreno C, Alenius H, Tuomi T, Savolainen KM, Norppa H. Genotoxicity of inhaled nanosized TiO(2) in mice. Mutat 40 Res. 2012 Jun 14;745(1-2):58-64. doi: 10.1016/j.mrgentox.2011.10.011. Epub 41 42 2011 Nov 7 43 36. Llewellyn et al. (2022) : Llewellyn SV, Kermanizadeh A, Ude V, Jacobsen NR, Conway 44 GE, Shah UK, Niemeijer M, Moné MJ, van de Water B, Roy S, Moritz W, Stone V, Jenkins GJ, Doak SH. Assessing the transferability and reproducibility of 3D in vitro 45 46 liver models from primary human multi-cellular microtissues to cell-line based HepG2 47 spheroids. Toxicol In Vitro. 2022 Dec; 85: 105473. doi 10.1016/j.tiv.2022.105473 37. Malakootian et al. (2021) : Malakootian M, Nasiri A, Osornio-Vargas AR, Faraji M. Effect 48 49 of titanium dioxide nanoparticles on DNA methylation of human peripheral blood 50 mononuclear cells. Toxicol Res (Camb). 2021 Aug 31;10(5):1045-1051. doi: 51 10.1093/toxres/tfab085. 52 38. Mancuso et al. (2022) : Mancuso F, Arato I, Di Michele A, Antognelli C, Angelini L, Bellucci C, Lilli C, Boncompagni S, Fusella A, Bartolini D, Russo C, Moretti M, Nocchetti 53 54 M, Gambelunghe A, Muzi G, Baroni T, Giovagnoli S, Luca G. Effects of Titanium Dioxide Nanoparticles on Porcine Prepubertal Sertoli Cells: An "In Vitro" Study. Front. 55 Endocrinol. 12 (2022) 751915. doi : 10.3389/fendo.2021.751915 56 57 39. Marucco et al. (2020) Marucco A, Prono M, Beal D, Alasonati E, Fisicaro P, Bergamaschi 58 E, Carriere M, Fenoglio I. Biotransformation of Food-Grade and Nanometric TiO(2) in

1 2	the Oral-Gastro-Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. Nanomaterials (Basel). 2020 Oct 27;10(11):2132. doi: 10.2300/pape10112122
3 4 4(5 6 7	 D. May et al. (2022) : May S, Hirsch C, Rippl A, Bürkle A, Wick P. Assessing Genotoxicity of Ten Different Engineered Nanomaterials by the Novel Semi-Automated FADU Assay and the Alkaline Comet Assay. Nanomaterials (Basel). 2022 Jan 10;12(2):220. doi: 10.3390/papo12020220
8 4 ² 9 10 11	I. Møller <i>et al.</i> (2017) : Møller P, Jensen DM, Wils RS, Andersen MHG, Danielsen PH, Roursgaard M. Assessment of evidence for nanosized titanium dioxide-generated DNA strand breaks and oxidatively damaged DNA in cells and animal models. Nanotoxicology. 2017 Nov-Dec; 11(9-10): 1237-1256. doi:
12 13 42 14 15 16	10.1080/17435390.2017.1406549. Epub 2017 Nov 27." 2. Pan et al. (2012) : Pan R, Liu Y, Chen W, Dawson G, Wang X, Li Y, Dong B, Zhu Y. The toxicity evaluation of nano-trititanate with bactericidal properties in vitro. Nanotoxicology. 2012 May; 6(3): 327-37. doi: 10.3109/17435390.2011.579629. Epub 2011 May 9
17 43 18 19	8. Patil <i>et al.</i> (2016) : Patil NA, Gade WN, Deobagkar DD. <i>Epigenetic modulation upon exposure of lung fibroblasts to TiO(2) and ZnO nanoparticles: alterations in DNA methylation</i> . Int J Nanomedicine. 2016 Sep 7; 11:4509-4519. doi:
20 21 44 22 23 24	10.2147/JJN.S110390. eCollection 2016 4. Pedrino <i>et al.</i> (2022) : Pedrino M, Brassolatti P, Maragno Fattori AC, Bianchi J, de Almeida Rodolpho JM, de Godoy KF, Assis M, Longo E, Nogueira Zambone Pinto Rossi K, Speglich C, de Freitas Anibal F. <i>Analysis of cytotoxicity and genotoxicity in a short-</i> <i>term dependent manner induced by a new titanium dioxide nanoparticle in murine</i>
25 26 27 4! 28	 <i>fibroblast cells.</i> Toxicol Mech Methods. 2022 Mar; 32(3): 213-223. doi: 10.1080/15376516.2021.1994075. 5. Petkovic <i>et al.</i> (2011) : Petkovic J, Zegura B, Stevanovic M, Drnoviek N, Uskokovic D, Novak S, Filipic M. <i>DNA damage and alterations in expression of DNA damage</i>
29 30 31	responsive genes induced by TiO ₂ nanoparticles in human hepatoma HepG2 cells. Nanotoxicology. 2011 Sep;5(3):341-53. doi: 10.3109/17435390.2010.507316. Epub 2010 Nov 10
32 40 33 34 35	5. Petkovic <i>et al.</i> (2011) :Petkovic J, Tadeja Kúzma, Katja Rade, Saša Novak, Metka Filipic. <i>Pre-irradiation of anatase TiO</i> ₂ <i>particles with UV enhances their cytotoxic and</i> <i>genotoxic potential in human hepatoma HepG2 cells.</i> J Hazard Mater. 2011 Nov 30:196:145-52. doi : 10.1016/i.ihazmat.2011.09.004.
36 4 ⁻ 37 38 39	 Rajapakse et al. (2013): Rajapakse K, Drobne D, Kastelec D, Marinsek-Logar R. Experimental evidence of false-positive Comet test results due to TiO₂ particleassay interactions. Nanotoxicology. 2013 Aug;7(5):1043-51. doi: 10.3109/17435390.2012.696735. Epub 2012. Jun 29
40 48 41 42 43	 B. Reis Éde <i>et al.</i> (2016) : Reis Éde M, Rezende AA, Oliveira PF, Nicolella HD, Tavares DC, Silva AC, Dantas NO, Spanó MA. <i>Evaluation of titanium dioxide nanocrystal-induced genotoxicity by the cytokinesis-block micronucleus assay and the Drosophila wing spat test</i>. Food Chem. Toxicol. 2016. Oct: 96:309-19. doi:
44 45 40 46 47	 10.1016/j.fct.2016.08.023. Epub 2016 Aug 22 Rodríguez-Ibarra <i>et al.</i> (2022) : Rodríguez-Ibarra C, Medina-Reyes EI, Déciga-Alcaraz A, Delgado-Buenrostro NL, Quezada-Maldonado EM, Ispanixtlahuatl-Meráz O, Ganem-Reperto A, Eloros Eloros IO, Vázguoz Zapión CL, Mata Miranda MM, Lópoz Maruro R.
47 48 49 50 51	Pedraza-Chaverri J, García-Cuéllar CM, Sánchez-Pérez Y, Chirino YI. Food grade titanium dioxide accumulation leads to cellular alterations in colon cells after removal of a 24-hour exposure. Toxicology. 2022 Aug; 478: 153280. doi: 10.1016/j.tox.2022.153280.
52 50 53 54 55	D. Sallam <i>et al.</i> (2022) : MF, Ahmed HMS, EI-Nekeety AA, Diab KA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA. Assessment of the Oxidative Damage and Genotoxicity of Titanium Dioxide Nanoparticles and Exploring the Protective Role of Holy Basil Oil Nanoemulsions in Rats. Biol Trace Elem Res. 2022 Apr 13. doi: 10.1007/s12011-022-
56 57 5 ⁷ 58	03228-0 I. Sallam et al. (2022) : Sallam MF, Ahmed HMS, Diab KA, El-Nekeety AA, Abdel-Aziem SH, Sharaf HA, Abdel-Wahhab MA. <i>Improvement of the antioxidant activity of thyme</i>

essential oil against biosynthesized titanium dioxide nanoparticles-induced oxidative stress, DNA damage, and disturbances in gene expression in vivo. J Trace Elem Med Biol. 2022 Sep; 73: 127024. doi: 10.1016/j.jtemb.2022.127024.

- 52. Salman *et al.* (2021) : Salman AS, Al-Shaikh TM, Hamza ZK, El-Nekeety AA, Bawazir SS, Hassan NS, Abdel-Wahhab MA. *Matlodextrin-cinnamon essential oil nanoformulation as a potent protective against titanium nanoparticles-induced oxidative stress, genotoxicity, and reproductive disturbances in male mice.* Environ Sci Pollut Res Int. 2021 Aug; 28(29): 39035-39051. doi : 10.1007/s11356-021-13518-0
- 53. Shakeel *et al.* (2016) : Shakeel M, Jabeen F, Qureshi NA, Fakhr-E-Alam M. *Toxic Effects of Titanium Dioxide Nanoparticles and Titanium Dioxide Bulk Salt in the Liver and Blood of Male Sprague-Dawley Rats Assessed by Different Assays.* Biol Trace Elem Res. 2016 Oct; 173(2):405-26. doi: 10.1007/s12011-016-0677-4. Epub 2016 Mar 23
- 54. Sherin *et al.* (2017) : Sherin S, Sheeja S, Sudha Devi R, Balachandran S, Soumya RS, Abraham A. *In vitro and in vivo pharmacokinetics and toxicity evaluation of curcumin incorporated titanium dioxide nanoparticles for biomedical applications*. Chem Biol Interact. 2017 Sep 25;275:35-46. doi: 10.1016/j.cbi.2017.07.022. Epub 2017 Jul 28
- 55. Srivastava *et al.* (2011) : Srivastava RK, Rahman Q, Kashyap MP, Lohani M, Pant AB. *Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549.* PLoS One. 2011;6(9):e25767. doi: 10.1371/journal.pone.0025767. Epub 2011 Sep 29
- 56. Tao *et al.* (2018) : Tao R, Wang C, Zhang C, Li W, Zhou H, Chen H, Ye J. *Characterization, Cytotoxicity, and Genotoxicity of TiO(2) and Folate-Coupled Chitosan Nanoparticles Loading Polyprenol-Based Nanoemulsion.* Biol Trace Elem Res. 2018 Jul; 184(1): 60-74. doi: 10.1007/s12011-017-1184-y. Epub 2017 Oct 9.
- 57. Theogaraj *et al.* (2007) : Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D. *An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles.* Mutat Res. 2007 Dec 1;634(1-2):205-19. doi: 10.1016/j.mrgentox.2007.08.002. Epub 2007 Aug 6
- 58. Ursini *et al.* (2014) : Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Tassone P, Buresti G, Casciardi S, Iavicoli S. *Evaluation of cytotoxic, genotoxic and inflammatory response in human alveolar and bronchial epithelial cells exposed to titanium dioxide nanoparticles.* J Appl Toxicol. 2014 Nov; 34(11): 1209-19. doi: 10.1002/jat.3038. Epub 2014 Sep 16
- 59. Use of a common European approach for nanomaterials' testing to support regulation: a case study on titanium and silicon dioxide representative nanomaterials. J Appl Toxicol. 2020 Nov; 40(11): 1511-1525. doi: 10.1002/jat.4002.
- 60. Vieira *et al.* (2022) : Vieira A, Vital N, Rolo D, Roque R, Gonçalves LM, Bettencourt A, Silva M, Louro H *Investigation of the genotoxicity of digested titanium dioxide*. Food and Chemical Toxicology 161 (2022) 112841. doi : 10.1016/j.fct.2022.112841
- 61. Wan *et al.* (2012) : Wan R, Mo Y, Feng L, Chien S, Tollerud DJ, Zhang Q. *DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM.* Chem Res Toxicol. 2012 Jul 16;25(7):1402-11. doi: 10.1021/tx200513t. Epub 2012 May 14.
- 62. Wan et al. (2017) : Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol. 2017 Sep 18;14(1):38. doi: 10.1186/s12989-017-0219-z."
- 63. Wani et al. (2021) : Wani MR, Maheshwari N, Shadab G. Eugenol attenuates TiO(2) nanoparticles-induced oxidative damage, biochemical toxicity and DNA damage in Wistar rats: an in vivo study. Environ Sci Pollut Res Int. 2021 May; 28(18): 22664-22678. doi: 10.1007/s11356-020-12139-3. Epub 2021 Jan 9
- 64. Xiang *et al.* (2022) : Xiang Y, Qian Ran, Chun Wu, Luping Zhou, Weiwei Zhang, Jiuxuan Li, Lixin Xiang, Yanni Xiao, Li Chen, Yan Chen, Xuelian Chen, Andres Stucky, Shengwen Calvin, Lid Jiang, F. Zhong, Zhongjun Li, Kaiyong Cai. *Single-cell transcriptomics uncovers the impacts of titanium dioxide nanoparticles on human bone marrow stromal cells*. Chemical Engineering Journal. Volume 440, 15 July 2022, 135814. doi: 10.1016/j.cej.2022.135814
- 57 65. Zhu *et al.* (2020) : Zhu HM, Huang PC, Zhao TT, Zhou CH, Li RW, Yu CR, Chen ZY, Gu 58 LF, Chang Y. *In vitro* genotoxicity study of silver nanoparticles and titanium dioxide

nanoparticles. Yi Chuan. 2020 Dec 17;42(12):1192-1200. doi: 10.16288/j.yczz.20-161

- 66. Zijno *et al.* (2020) : Zijno A, Cavallo D, Di Felice G, Ponti J, Barletta B, Butteroni C, Corinti S, De Berardis B, Palamides J, Ursini CL, Fresegna AM, Ciervo A, Maiello R, Barone F.
- 6 Reviews: 7

1

2

3

4

5

8

9

10

11

12

13

14 15

16

17

18

19

20 21

22

23

24

25 26

27

28

29

30 31

32

33

34

35

36

- 1. Baranowska-Wojcik *et al.* (2022) : E. Baranowska-Wojcik, D. Szwajgier, A. Winiarska-Mieczan. *A review of research on the impact of E171/ TiO₂ NPs on the digestive tract.* J Trace Elem Med Biol. 2022 Jul; 72: 126988. doi: 10.1016/j.jtemb.2022.126988.
 - Bevacqua *et al.* (2022) : Bevacqua E, Occhiuzzi MA, Grande F, Tucci P. *TiO₂-NPs toxicity and safety: an update of the findings published over the last six years.* Mini Rev Med Chem. 2022 Sep 29. doi: 10.2174/1389557522666220929152403.
 - Charles et al. (2018): Charles S, Jomini S, Fessard V, Bigorgne-Vizade E, Rousselle C, Michel C. Assessment of the in vitro genotoxicity of TiO(2) nanoparticles in a regulatory context. Nanotoxicology. 2018 May;12(4):357-374. doi: 10.1080/17435390.2018.1451567. Epub 2018 Mar 19
- Chen *et al.* (2014) : Chen T, Yan J, Li Y. *Genotoxicity of titanium dioxide nanoparticles*. J Food Drug Anal. 2014 Mar; 22(1):95-104. doi: 10.1016/j.jfda.2014.01.008. Epub 2014 Feb 5
 - 5. *et al.* (2022) : Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. *Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro.* NanoImpact. 2022 Jan; 25: 100377. doi: 10.1016/j.impact.2021.100377.
 - Ferrante et al. (2023): M Ferrante, A Grasso, R Salemi, M Libra, B Tomasello, M Fiore, Ch Copat. DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO₂-NPs) and the Food Additive E171 Toxicity in Colon Cancer Cells: HCT-116 and Caco-2. Int J Environ Res Public Health. 2023 Jan 21; 20(3): 2002. doi: 10.3390/ijerph20032002
 - Klien and Godnic-Cvar (2012) : Klien K, Godnic-Cvar J. Genotoxicity of metal nanoparticles: focus on in vivo studies. Arh Hig Rada Toksikol. 2012 Jun 1;63(2):133-45. doi: 10.2478/10004-1254-63-2012-2213
 - Ling et al. (2021) : Ling C, An H, Li L, Wang J, Lu T, Wang H, Hu Y, Song G, Liu S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: a Systematic Review of the Literature and Meta-analysis. Biol Trace Elem Res. 2021 May; 199(5): 2057-2076. doi: 10.1007/s12011-020-02311-8. Epub 2020 Aug 7
 - Liu and Kong (2021) : Liu L, Kong L. Research progress on the carcinogenicity of metal nanomaterials. J Appl Toxicol. 2021 Sep; 41(9): 1334-1344. doi: 10.1002/jat.4145. Epub 2021 Feb 1
- Miu *et al.* (2023) : BA Miu, IC Voinea, L Diamandescu, A Dinischiotu. *MRC-5 Human Lung Fibroblasts Alleviate the Genotoxic Effect of Fe-N Co-Doped Titanium Dioxide Nanoparticles through an OGG1/2-Dependent Reparatory Mechanism.* Int J Mol Sci.
 2023 Mar 29; 24(7): 6401. doi: 10.3390/ijms24076401.
- 43 11. Wani and Shadab (2020) : Wani MR, Shadab G. *Titanium dioxide nanoparticle*44 *genotoxicity: A review of recent in vivo and in vitro studies*. Toxicol Ind Health. 2020
 45 Jul; 36(7): 514-530. doi: 10.1177/0748233720936835
- 46 47

1 List of publications on TiO_2 particles genotoxicity analysed by the EFSA (included in 2 the Appendices to the EFSA Opinion on TiO_2 as food additive, 2021) and taken into 3 consideration by the SCCS

4 5

6

7

8

9

10

11

12

13 14

15

16 17

18 19

20 21

22 23

24 25

26

27

28 29

30 31

32

33

34

35

36

37

38 39

40

41 42

43

44

45 46

47

48 49

50 51

- 1. Ali *et al.* (2018) : Ali K, Abul QF, Dwivedi S, Abdel-Salam EM, Ansari SM, Saquib Q, Faisal M, Al-Khedhairy AA, Al-Shaeri M and Musarrat J. *Titanium dioxide nanoparticles preferentially bind in subdomains IB, IIA of HSA and minor groove of DNA.* J Biomol Struct Dyn. 2018 Aug; 36(10): 2530-2542. doi: 10.1080/07391102.2017.1361339. Epub 2017 Aug 10
- Ali et al. (2019) : Ali SA, Rizk MZ, Hamed MA, Aboul-Ela EI, EI-Rigal NS, Aly HF, Abdel-Hamid AZ. Assessment of titanium dioxide nanoparticles toxicity via oral exposure in mice: effect of dose and particle size. Biomarkers. 2019 Jul; 24(5): 492-498. doi: 10.1080/1354750X.2019.1620336. Epub 2019 May 28
 - 3. Alsudir S and Lai EPC (2017) : *Electrosteric stabilization of colloidal TiO₂ nanoparticles with DNA and polyethylene glycol for selective enhancement of UV detection sensitivity in capillary electrophoresis analysis.* Analytical and Bioanalytical Chemistry, 409 (2017). doi : 10.1007/s00216-016-0130-8
- Andreoli *et al.* (2018) : Andreoli C, Leter G, De Berardis B, Degan P, De Angelis I, Pacchierotti F, Crebelli R, Barone F, Zijno A. *Critical issues in genotoxicity assessment* of *TiO(2) nanoparticles by human peripheral blood mononuclear cells*. J Appl Toxicol. 2018 Dec; 38(12):1471-1482. doi: 10.1002/jat.3650. Epub 2018 Jun 4
 - Asare et al. (2016) : Asare N, Duale N, Slagsvold HH, Lindeman B, Olsen AK, Gromadzka-Ostrowska J, Meczynska-Wielgosz S, Kruszewski M, Brunborg G, Instanes C. Genotoxicity and gene expression modulation of silver and titanium dioxide nanoparticles in mice. Nanotoxicology. 2016;10(3):312-21. doi: 10.3109/17435390.2015.1071443. Epub 2015 Aug 17
 - Bajic *et al.* (2017) : Bajic V, Spremo-Potparevic B, Zivkovic L, Cabarkapa A, Kotur-Stevuljevic J, Isenovic E, Sredojevic D, Vukoje I, Lazic V, Ahrenkiel SP and Nedeljkovic JM. Surface-modifed TiO₂ nanoparticles with ascorbic acid: antioxidant properties and efficiency against DNA damage in vitro. Colloids and surfaces B, Biointerfaces, 155, 323–331 (2017). doi: 10.1016/j.colsurfb.2017.04.032
 - Bayat et al. (2015) : Bayat N, Lopes VR, Schlermann J, Jensen LD, Cristobal S. Vascular toxicity of ultra-small TiO₂ nanoparticles and single walled carbon nanotubes in vitro and in vivo. Biomaterials. 2015 Sep; 63:1-13. doi: 10.1016/j.biomaterials.2015.05.044. Epub 2015 May 31
 - 8. Bhattacharya *et al.* (2009) : Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E. *Titanium dioxide nanoparticles induce oxidative stress and DNAadduct formation but not DNA-breakage in human lung cells.* Part Fibre Toxicol. 2009 Jun 21;6:17. doi: 10.1186/1743-8977-6-17
 - Biola-Clier *et al.* (2017) : Biola-Clier M, Beal D, Caillat S, Libert S, Armand L, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M. *Comparison of the DNA damage response in BEAS-2B and A549 cells exposed to titanium dioxide nanoparticles*. Mutagenesis. 2017 Jan; 32(1):161-172. doi: 10.1093/mutage/gew055. Epub 2016 Nov 1
 - 10. Brandao *et al.* (2020) : Brandao F, Fernandez-Bertolez N, Rosario F, Bessa MJ, Fraga S, Pasaro E, Teixeira JP, Laffon B, Valdiglesias V and Costa C. *Genotoxicity of TiO*₂ *nanoparticles in four different human cell lines (A549, HEPG2, A172 and SH-SY5Y).* Nanomaterials, Basel, 10 (2020). doi : 10.3390/nano10030412
- 11. Brown *et al.* (2019) : Brown DM, Danielsen PH, Derr R, Moelijker N, Fowler P, Stone V, Hendriks G, Møller P, Kermanizadeh A. *The mechanism-based toxicity screening of particles with use in the food and nutrition sector via the ToxTracker reporter system.* Toxicol *In Vitro.* 2019 Dec; 61:104594. doi: 10.1016/j.tiv.2019.104594. Epub 2019 Jul 4
- 12. Brzicova *et al.* (2019) : Brzicova T, Javorkova E, Vrbova K, Zajicova A, Holan V, Pinkas
 D, Philimonenko V, Sikorova J, Klema J, Topinka J and Rossner Jr P. *Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles.*Nanomaterials (Basel, Switzerland). 9 pp. 2019. doi: 10.3390/nano9050687
- 57 13. Chakrabarti *et al.* (2019) : Chakrabarti S, Goyary D, Karmakar S, Chattopadhyay P.
 58 *Exploration of cytotoxic and genotoxic endpoints following sub-chronic oral exposure*

to titanium dioxide nanoparticles. Toxicol Ind Health. 2019 Sep; 35(9): 577-592. doi: 10.1177/0748233719879611

- 14. Chen *et al.* (2014) : Chen Z, Wang Y, Ba T, Li Y, Pu J, Chen T, Song Y, Gu Y, Qian Q, Yang J, Jia G. *Genotoxic evaluation of titanium dioxide nanoparticles in vivo and in vitro*. Toxicol Lett. 2014 May 2;226(3):314-9. doi: 10.1016/j.toxlet.2014.02.020. Epub 2014 Mar 2
- 15. Cowie *et al.* (2015) : Cowie H, Magdolenova Z, Saunders M, Drlickova M, Correia Carreira S, Halamoda Kenzaoi B, Gombau L, Guadagnini R, Lorenzo Y, Walker L, Fjellsbø LM, Huk A, Rinna A, Tran L, Volkovova K, Boland S, Juillerat-Jeanneret L, Marano F, Collins AR, Dusinska M. *Suitability of human and mammalian cells of different origin for the assessment of genotoxicity of metal and polymeric engineered nanoparticles.* Nanotoxicology. 2015 May; 9 Suppl 1:57-65. doi: 10.3109/17435390.2014.940407
- 16. Danielsen *et al.* **(2020) : Danielsen PH, Knudsen KB, Štrancar J, Umek P, Koklic T,** Garvas M, Vanhala E, Savukoski S, Ding Y, Madsen AM, Jacobsen NR, Weydahl IK, Berthing T, Poulsen SS, Schmid O, Wolff H, Vogel U. *Effects of physicochemical properties of TiO(2) nanomaterials for pulmonary inflammation, acute phase response and alveolar proteinosis in intratracheally exposed mice*. Toxicol Appl Pharmacol. 2020 Jan 1; 386: 114830. doi: 10.1016/j.taap.2019.114830. Epub 2019 Nov 15
- 17. Demir et al. (2013) : Demir E, Burgucu D, Turna F, Aksakal S, Kaya B. Determination of TiO₂, ZrO2, and Al2O3 nanoparticles on genotoxic responses in human peripheral blood lymphocytes and cultured embyronic kidney cells. J Toxicol Environ Health A. 2013; 76(16): 990-1002. doi: 10.1080/15287394.2013.830584
- Demir *et al.* (2015) : Demir E, Akça H, Turna F, Aksakal S, Burgucu D, Kaya B, Tokgün O, Vales G, Creus A, Marcos R. *Genotoxic and cell-transforming effects of titanium dioxide nanoparticles*. Environ Res. 2015 Jan; 136: 300-8. doi: 10.1016/j.envres.2014.10.032. Epub 2014 Nov 22
- 19. Demir *et al.* (2017) : Demir E, Creus A and Marcos R. *Titanium dioxide and zinc oxide nanoparticles are not mutagenic in the mouse lymphoma assay.* Fresenius Environmental Bulletin, 26, 1001–1016 (2017)
- 20. Di Bucchianico *et al.* (2017) : Di Bucchianico S, Cappellini F, Le Bihanic F, Zhang Y, Dreij K, Karlsson HL. *Genotoxicity of TiO₂ nanoparticles assessed by mini-gel comet assay and micronucleus scoring with flow cytometry.* Mutagenesis. 2017 Jan; 32(1):127-137. doi: 10.1093/mutage/gew030. Epub 2016 Jul 5
- 21. Di Virgilio *et al.* (2010) : Di Virgilio AL, Reigosa M, Arnal PM, Fernández Lorenzo de Mele M. *Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells.* J Hazard Mater. 2010 May 15;177(1-3):711-8. doi: 10.1016/j.jhazmat.2009.12.089. Epub 2009 Dec 29
- 22. Dobrzynska et al. (2014) : Dobrzynska MM, Gajowik A, Radzikowska J, Lankoff A, Dušinská M, Kruszewski M. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology. 2014 Jan 6;315:86-91. doi: 10.1016/j.tox.2013.11.012. Epub 2013 Dec 7
 - 23. doi: 10.1002/em.20615. Epub 2010 Aug 25

- 24. Donner et al. (2016) : Donner EM, Myhre A, Brown SC, Boatman R, Warheit DB. In vivo micronucleus studies with 6 titanium dioxide materials (3 pigment-grade & 3 nanoscale) in orally-exposed rats. Regul Toxicol Pharmacol. 2016 Feb; 74: 64-74. doi: 10.1016/j.yrtph.2015.11.003. Epub 2015 Nov 23
- 25. Dorier *et al.* (2017) : Dorier M, Beal D, Marie-Desvergne C, Dubosson M, Barreau F, Houdeau E, Herlin-Boime N and Carriere M. *Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress.* Nanotoxicology, 11, 751–761 (2017). doi: 10.1080/17435390.2017.1349203. Epub 2017 Jul 19
- 54 26. Dorier *et al.* (2019) : Dorier M, Tisseyre C, Dussert F, Beal D, Arnal ME, Douki T,
 55 Valdiglesias V, Laffon B, Fraga S, Brandao F, Herlin- Boime N, Barreau Rabilloud T and
 56 Carriere M. *Toxicological impact of acute exposure to E171 food additive and TiO*₂
 57 *nanoparticles on a co-culture of Caco-2 and HT29-MTX intestinal cells.* Mutation
 58 Research, 845 (2019) 402980. doi : 10.1016/j.mrgentox.2018.11.004

1 27. Driscoll et al. (2017) : Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG 2 and Bertram TA. Effects of particle exposure and particle-elicited inflammatory cells 3 on mutation in rat alveolar epithelial cells. Carcinogenesis, 18, 423-430 (2017). doi: 4 10.1093/carcin/18.2.423 5 28. Du et al. (2019): Du X, Gao S, Hong L, Zheng X, Zhou Q, Wu J. Genotoxicity 6 evaluation of titanium dioxide nanoparticles using the mouse lymphoma assay and the 7 Ames test. Mutat Res Genet Toxicol Environ Mutagen. 2019 Feb; 838: 22-27. doi: 8 10.1016/j.mrgentox.2018.11.015. Epub 2018 Dec 1 9 29. El Yamani *et al.* (2017) : El Yamani N, Collins AR, Rundén-Pran E, Fjellsbø LM, 10 Shaposhnikov S, Zienolddiny S, Dusinska M. In vitro genotoxicity testing of four 11 reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: 12 towards reliable hazard assessment. Mutagenesis. 2017 Jan; 32(1): 117-126. doi: 10.1093/mutage/gew060. Epub 2016 Nov 12 13 14 30. El-Din et al. (2019) : El-Din EAA, Mostafa HE, Samak MA, Mohamed EM, El-Shafei DA. 15 Could curcumin ameliorate titanium dioxide nanoparticles effect on the heart ? A histopathological, immunohistochemical, and genotoxic study. Environ Sci Pollut Res 16 17 Int. 2019 Jul; 26(21): 21556-21564. doi: 10.1007/s11356-019-05433-2. Epub 2019 18 May 24 19 31. El-Ghor et al. (2014) : El-Ghor AA, Noshy MM, Galal A, Mohamed HR. Normalization 20 of nano-sized TiO₂ -induced clastogenicity, genotoxicity and mutagenicity by 21 chlorophyllin administration in mice brain, liver, and bone marrow cells. Toxicol Sci. 22 2014 Nov; 142(1): 21-32. doi: 10.1093/toxsci/kfu157. Epub 2014 Aug 16 32. Elie et al. (2020) : Elje E, Mariussen E, Moriones OH, Bastús NG, Puntes V, Kohl Y, 23 24 Dusinska M, Rundén-Pran E. Hepato(Geno)Toxicity Assessment of Nanoparticles in a 25 HepG2 Liver Spheroid Model. Nanomaterials (Basel). 2020 Mar 18; 10(3): 545. doi: 26 10.3390/nano10030545 27 33. Fadda et al. (2018) : Fadda LM, Hagar H, Mohamed AM and Ali HM. Quercetin and idebenone ameliorate oxidative stress, inflammation, DNA damage, and apoptosis 28 29 induced by titanium dioxide nanoparticles in rat liver. Dose- Response: A Publication Society, 16, 1559325818812188 (2018). doi: 30 International Hormesis of 31 10.1177/1559325818812188 32 34. Fadda et al. (2020) : Fadda LM, Ali HM, Mohamed AM and Hagar H. Prophylactic 33 administration of carnosine and melatonin abates the incidence of apoptosis, 34 inflammation, and DNA damage induced by titanium dioxide nanoparticles in rat livers. 35 Environ Sci Pollut Res Int. 2020 Jun; 27(16): 19142-19150. doi: 10.1007/s11356-019-36 05059-4. Epub 2019 May 4. 37 35. Fadoju et al. (2019) : Fadoju O, Ogunsuyi O, Akanni O, Alabi O, Alimba C, Adaramoye O, Cambier S, Eswara S, Gutleb AC, Bakare A. Evaluation of cytogenotoxicity and 38 39 oxidative stress parameters in male Swiss mice co-exposed to titanium dioxide and zinc oxide nanoparticles. Environ Toxicol Pharmacol. 2019 Aug; 70: 103204. doi: 40 41 10.1016/j.etap.2019.103204. Epub 2019 Jun 5 42 36. Falck et al. (2009) : Falck GC, Lindberg HK, Suhonen S, Vippola M, Vanhala E, Catalán 43 J, Savolainen K, Norppa H. Genotoxic effects of nanosized and fine TiO₂. Hum Exp 44 Toxicol. 2009 Jun; 28(6-7): 339-52. doi: 10.1177/0960327109105163 37. Fernández-Bertólez et al. (2021) : Fernández-Bertólez N, Brandão F, Costa C, Pásaro 45 E, Teixeira JP, Laffon B, Valdiglesias V. Suitability of the In Vitro Cytokinesis-Block 46 47 Micronucleus Test for Genotoxicity Assessment of TiO(2) Nanoparticles on SH-SY5Y Cells. Int J Mol Sci. 2021 Aug 9; 22(16): 8558. doi: 10.3390/ijms22168558 48 49 38. Ferraro et al. (2016) : Ferraro D, Anselmi-Tamburini U, Tredici IG, Ricci V, Sommi P. 50 Overestimation of nanoparticles-induced DNA damage determined by the comet assay. 51 Nanotoxicology. 2016 Sep; 10(7): 861-70. doi: 10.3109/17435390.2015.1130274. 52 Epub 2016 Jan 26 39. Franchi et al. (2015) : Franchi LP, Manshian BB, de Souza TA, Soenen SJ, Matsubara 53 54 EY, Rosolen JM, Takahashi CS. Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol In Vitro. 2015 Oct; 29(7): 1319-31. 55 doi: 10.1016/j.tiv.2015.05.010. Epub 2015 May 28 56 40. Franz et al. (2020) : Franz P, Burkle A, Wick P and Hirsch C. Exploring flow cytometry-57 58 based micronucleus scoring for reliable nanomaterial genotoxicity assessment. Chem

Res Toxicol. 2020 Oct 19;33(10):2538-2549. doi: 10.1021/acs.chemrestox.0c00071. 1 2 Epub 2020 Sep 30 3 41. Ghosh et al. (2013) : Ghosh M, Chakraborty A, Mukherjee A. Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO_2) nanoparticles on human erythrocyte 4 5 and lymphocyte cells in vitro. J Appl Toxicol. 2013 Oct; 33(10): 1097-110. doi: 6 10.1002/jat.2863. Epub 2013 Apr 25 7 42. Grissa et al. (2015) : Grissa I, Elghoul J, Ezzi L, Chakroun S, Kerkeni E, Hassine M, El 8 Mir L, Mehdi M, Ben Cheikh H, Haouas Z. Anemia and genotoxicity induced by sub-9 chronic intragastric treatment of rats with titanium dioxide nanoparticles. Mutat Res 10 Toxicol Environ Mutagen. 2015 Dec; 794: 25-31. Genet doi: 11 10.1016/j.mrgentox.2015.09.005. Epub 2015 Sep 25 12 43. Guichard et al. (2012) : Guichard Y, Schmit J, Darne C, Gaté L, Goutet M, Rousset D, Rastoix O, Wrobel R, Witschger O, Martin A, Fierro V, Binet S. Cytotoxicity and 13 14 genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in 15 Syrian hamster embryo cells. Ann Occup Hyg. 2012 Jul; 56(5): 631-44. doi: 10.1093/annhyg/mes006. Epub 2012 Mar 26 16 17 44. Gurr et al. (2005) : Gurr JR, Wang AS, Chen CH and Jan KY. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human 18 19 bronchial epithelial cells. Toxicology, Volume 213, Issues 1-2, 15 September 2005, 20 Pages 66-73. doi : 10.1016/j.tox.2005.05.007 21 45. Hackenberg et al. (2011) : Hackenberg S, Friehs G, Kessler M, Froelich K, Ginzkey C, Koehler C, Scherzed A, Burghartz M, Kleinsasser N. Nanosized titanium dioxide 22 23 particles do not induce DNA damage in human peripheral blood lymphocytes. Environ 24 Mol Mutagen. 2011 May; 52(4): 264-8 25 46. Han et al. (2020b) : Han B, Pei Z, Shi L, Wang Q, Li C, Zhang B, Su X, Zhang N, Zhou 26 L, Zhao B, Niu Y and Zhang R, 2020b. TiO₂ nanoparticles caused DNA damage in lung and extra-pulmonary organs through ROS- activated FOXO3a signaling pathway after 27 intratracheal administration in rats. Int J Nanomedicine, 15, 6279-6294 (2020). doi: 28 29 10.2147/IJN.S254969. eCollection 2020. 47. Hashem et al. (2020) : Hashem MM, Abo-El-Sooud K, Abd-Elhakim YM, Badr YA, El-30 31 Metwally AE and Bahy-El-Dien A. The long-term oral exposure to titanium dioxide 32 impaired immune functions and triggered cytotoxic and genotoxic impacts in rats. 33 Journal of Trace Elements in Medicine and Biology : Organ of the Society for Minerals 34 and Trace Elements (GMS), 21 Feb 2020, 60:126473. doi 35 10.1016/j.jtemb.2020.126473 36 48. Hekmat et al. (2013) : Hekmat A, Saboury AA, Divsalar A and Seyedarabi A. Structural 37 effects of TiO_2 nanoparticles and doxorubicin on DNA and their antiproliferative roles in T47D and MCF7 cells. Anticancer Agents Med Chem. 2013 Jul 1; 13(6): 932-51. doi: 38 39 10.2174/18715206113139990142. 49. Hekmat et al. (2020) : Hekmat A, Afrough M, Tackallou SH and Ahmad F. Synergistic 40 effects of Titanium dioxide nanoparticles and Paclitaxel combination on the DNA 41 42 structure and their antiproliferative role on MDA-MB-231 cells. Journal of 43 Nanoanalysis, 7, 152-165 (2020) 50. Huang et al. (2009) : Huang S, Chueh PJ, Lin YW, Shih TS, Chuang SM. Disturbed 44 mitotic progression and genome segregation are involved in cell transformation 45 mediated by nano- TiO₂ long-term exposure. Toxicol Appl Pharmacol. 2009 Dec. 46 47 1;241(2):182-94. doi: 10.1016/j.taap.2009.08.013. Epub 2009 Aug 18 51. Hufnagel et al. (2020) : Hufnagel M, Schoch S, Wall J, Strauch BM, Hartwig A. Toxicity 48 49 and Gene Expression Profiling of Copper- and Titanium-Based Nanoparticles Using Air-Liquid Interface Exposure. Chem Res Toxicol. 2020 May 18; 33(5): 1237-1249. doi: 50 10.1021/acs.chemrestox.9b00489. Epub 2020 Apr 28 51 52 52. Jain et al. (2017) : Jain AK, Senapati VA, Singh D, Dubey K, Maurya R, Pandey AK. Impact of anatase titanium dioxide nanoparticles on mutagenic and genotoxic 53 54 response in Chinese hamster lung fibroblast cells (V-79): The role of cellular uptake. Food Chem Toxicol. 2017 Jul; 105: 127-139. doi: 10.1016/j.fct.2017.04.005. Epub 55 56 2017 Apr 8 57 53. Jensen et al. (2019) : Ditte Marie Jensen, Mille Løhr, Majid Sheykhzade, Jens 58 Lykkesfeldt, Regitze Sølling Wils, Steffen Loft, Peter Møller. Telomere length and

1 genotoxicity in the lung of rats following intragastric exposure to food-grade titanium 2 dioxide and vegetable carbon particles. Mutagenesis. 2019 May 29;34(2):203-214. 3 doi: 10.1093/mutage/gez003 54. Jin et al. (2013) : Jin C, Tang Y, Fan XY, Ye XT, Li XL, Tang K, Zhang YF, Li AG and 4 5 Yang YJ. In vivo evaluation of the interaction between titanium dioxide nanoparticle 6 and rat liver DNA. Toxicol Ind Health . 2013 Apr; 29(3): 235-44. doi: 7 10.1177/0748233713479898. Epub 2013 Feb 26 8 55. Jugan et al. (2012) : Jugan ML, Barillet S, Simon-Deckers A, Herlin-Boime N, Sauvaigo 9 S, Douki T, Carriere M. Titanium dioxide nanoparticles exhibit genotoxicity and impair 10 DNA repair activity in A549 cells. Nanotoxicology. 2012 Aug; 6(5): 501-13. doi: 10.3109/17435390.2011.587903. Epub 2011 Oct 13 11 12 56. Kang et al. (2008) : Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. 13 Environ Mol Mutagen. 2008 Jun; 49(5): 399-405. doi: 10.1002/em.20399 14 15 57. Karlsson et al. (2009) : Karlsson HL, Gustafsson J, Cronholm P and Moller L. Sizedependent toxicity of metal oxide particles - a comparison between nano- and 16 17 micrometer size. Toxicol Lett. 2009 Jul 24;188(2):112-8. doi: 10.1016/j.toxlet.2009.03.014. Epub 2009 Mar 26 18 19 58. Kathawala *et al.* (2015) : Kathawala MH, Yun Z, Chu JJH, Ng KW and Loo SCJ. *TiO*₂ -20 nanoparticles shield HPEKs against ZnO-induced genotoxicity. Materials & Design, 88, 41-50 (2015). doi : 10.1016/j.matdes.2015.08.108 21 22 59. Kazimirova et al. (2019) : Kazimirova A, Baranokova M, Staruchova M, Drlickova M, 23 Volkovova K, Dusinska M. Titanium dioxide nanoparticles tested for genotoxicity with 24 the comet and micronucleus assays in vitro, ex vivo and in vivo. Mutat Res Genet 25 Toxicol Environ Mutagen. 2019 Jul; 843: 57-65. doi: 10.1016/j.mrgentox.2019.05.001. Epub 2019 May 2 26 27 60. Kazimirova et al. (2020) : Kazimirova A, El Yamani N, Rubio L, Garcia-Rodriguez A, Barancokova M, Marcos R, Dusinska M. Effects of Titanium Dioxide Nanoparticles on 28 29 the Hprt Gene Mutations in V79 Hamster Cells. Nanomaterials (Basel). 2020 Mar 30 5;10(3):465. doi: 10.3390/nano10030465 31 61. Khan et al. (2015) : Khan M, Naqvi AH, Ahmad M. Comparative study of the cytotoxic 32 and genotoxic potentials of zinc oxide and titanium dioxide nanoparticles. Toxicol Rep. 33 2015 Feb 19; 2: 765-774. doi: 10.1016/j.toxrep.2015.02.004. eCollection 2015 62. Kumar et al. (2020) : Kumar S, Hussain A, Bhushan B, Kaul G. Comparative toxicity 34 35 assessment of nano- and bulk-phase titanium dioxide particles on the human mammary gland in vitro. Hum Exp Toxicol. 2020 Nov; 39(11): 1475-1486. doi: 36 37 10.1177/0960327120927448. Epub 2020 Jun 4 63. Kurzawa-Zegota et al. (2017) : Kurzawa-Zegota M, Sharma V, Najafzadeh M, Reynolds 38 39 PD, Davies JP, Shukla RK, Dhawan A and Anderson D. Titanium dioxide nanoparticles induce DNA damage in peripheral blood lymphocytes from polyposis coli, colon cancer 40 patients and healthy individuals: an ex vivo/in vitro study. Journal of Nanoscience and 41 Nanotechnology, 17, 9274-9285 (2017).doi : 10.1166/jnn.2017.14691 42 43 64. Lazic et al. (2019) : Lazic V, Vukoje I, Milicevic B, Spremo-Potparevic B, Zivkovic L, 44 Topalovic D, Bajic V, Sredojevic D and Nedeljkovic JM. Efficiency of the interfacial 45 charge transfer complex between TiO₂ nanoparticles and caffeic acid against DNA damage in vitro: a combinatorial analysis. Journal of the Serbian Chemical Society, 46 47 84, 539-553 (2019). doi : 10.2298/JSC181217017L 48 65. Li et al. (2010) : Li N, Ma L and Wang J. Interaction Between Nano-Anatase TiO₂ and 49 Liver DNA from Mice In Vivo. Nanoscale Res Lett. 2010; 5(1): 108-115. Published online 2009 Oct 13. doi: 10.1007/s11671-009-9451-2 50 51 66. Li et al. (2017) : Li Y, Doak SH, Yan J, Chen DH, Zhou M, Mittelstaedt RA, Chen Y, Li 52 C, Chen T. Factors affecting the in vitro micronucleus assay for evaluation of 53 nanomaterials. Mutagenesis. 2017 Jan; 32(1): 151-159. doi: 54 10.1093/mutage/gew040. Epub 2016 Aug 27 67. Li et al. (2017) : Li Y, Yan J, Ding W, Chen Y, Pack LM, Chen T. Genotoxicity and gene 55 expression analyses of liver and lung tissues of mice treated with titanium dioxide 56 nanoparticles. Mutagenesis. 2017 Jan; 32(1): 33-46. doi: 10.1093/mutage/gew065 57
SCCS/1661/23

68. Liao et al. (2019) : Liao F, Chen L, Liu Y, Zhao D, Peng W, Wang W, Feng S. The sizedependent genotoxic potentials of titanium dioxide nanoparticles to endothelial cells. Environ Toxicol. 2019 Nov; 34(11): 1199-1207. doi: 10.1002/tox.22821. Epub 2019 Jul

- 69. Linnainmaa *et al.* (1997) : Linnainmaa K, Kivipensas P and Vainio H. *Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells.* Toxicology *In Vitro*, 1997, 329–335 (1997). doi: 10.1016/s0887-2333(97)00000-3
- 70. Lotfi *et al.* (2016) : Lotfi A, Zirak RG, Moghadam MS and Pazooki N. *Effects of the interaction of nanorutile TiO₂ with vincristine sulfate on chromosomal abnormalities in vivo.* International Journal of Advanced Biotechnology and Research, 7, 1083–1093 (2016)
- 71. Louro *et al.* (2014) : Louro H, Tavares A, Vital N, Costa PM, Alverca E, Zwart E, de Jong W, Fessard V, Lavinha J and Silva MJ. *Integrated approach to the in vivo genotoxic effects of a titanium dioxide nanomaterial using LacZ plasmid based transgenic mice.* Environmental and Molecular Mutagenesis, 55, 500–509 (2014). doi : 10.1002/em. 21864
- 72. Magdolenova *et al.* (2012) : Magdolenova Z, Bilanicová D, Pojana G, Fjellsbø LM, Hudecova A, Hasplova K, Marcomini A, Dusinska M. *Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity.* J Environ Monit. 2012 Feb; 14(2): 455-64. doi: 10.1039/c2em10746e. Epub 2012 Jan 25
- 73. Manivannan *et al.* (2020) : Manivannan J, Banerjee R and Mukherjee A. *Genotoxicity* analysis of rutile titanium dioxide nanoparticles in mice after 28 days of repeated oral administration. Nucleus-India, 63, 17–24 (2020)
- 74. Martins *et al.* (2017) : Martins ADC Jr, Azevedo LF, de Souza Rocha CC, Carneiro MFH, Venancio VP, de Almeida MR, Antunes LMG, de Carvalho Hott R, Rodrigues JL, Ogunjimi AT, Adeyemi JA, Barbosa F Jr. *Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles.* J Toxicol Environ Health A. 2017;80(19-21):1156-1165. doi: 10.1080/15287394.2017.1357376. Epub 2017 Sep 11
- 75. Meena *et al.* (2015) : Meena R, Kajal K and Paluraj R. *Cytotoxic and genotoxic effects of titanium dioxide nanoparticles in testicular cells of male Wistar rat.* Appl Biochem Biotechnol. 2015 Jan; 175(2):825-40. doi: 10.1007/s12010-014-1299-y. Epub 2014 Oct 25
- 76. Modrzynska *et al.* (2018) : Modrzynska J, Berthing T, Ravn-Haren G, Jacobsen NR, Weydahl IK, Loeschner K, Mortensen A, Saber AT, Vogel U. *Primary genotoxicity in the liver following pulmonary exposure to carbon black nanoparticles in mice*. Part Fibre Toxicol. 2018 Jan 3; 15(1): 2. doi: 10.1186/s12989-017-0238-9
- 77. Mohamed (2015) : Mohamed HR. *Estimation of TiO₂*, *nanoparticle-induced genotoxicity persistence and possible chronic gastritis-induction in mice*. Food Chem Toxicol. 2015 Sep; 83: 76-83. doi: 10.1016/j.fct.2015.05.018. Epub 2015 Jun 11
- 78. Mohamed and Hussien (2016) : Mohamed HR, Hussien NA. *Genotoxicity Studies of Titanium Dioxide Nanoparticles (TiO₂ NPs) in the Brain of Mice*. Scientifica (Cairo). 2016;2016:6710840. doi: 10.1155/2016/6710840. Epub 2016 Feb 29
- 79. Moran-Martinez *et al.* (2018) : Moran-Martinez J, del Rio-Parra RB, Betancourt-Martinez ND, Garcia-Garza R, Jimenez-Villarreal J, Nino-Castaneda MS, Nava-Rivera LE, Umana JAF, Carranza-Rosales P and Perez-Vertti RDA. *Evaluation of the coating with TiO*₂ *nanoparticles as an option for the improvement of the characteristics of NiTi archwires: histopathological, cytotoxic, and genotoxic evidence.* Journal of Nanomaterials, vol. 2018, Article ID 2585918, 11 pages, 2018. doi : 10.1155/2018/2585918
- 80. Mottola *et al.* (2019) : Mottola F, Iovine C, Santonastaso M, Romeo ML, Pacifico S,
 Cobellis L, Rocco L. *NPs-TiO(2) and Lincomycin Coexposure Induces DNA Damage in Cultured Human Amniotic Cells.* Nanomaterials (Basel). 2019 Oct 23;9(11):1511. doi:
 10.3390/nano9111511
- 81. Nakagawa *et al.* (1997) : Nakagawa Y, Wakuri S, Sakamoto K and Tanaka N. *The photogenotoxicity of titanium dioxide particles*. Mutat Res . 1997 Nov 27;394(1-3):125-32. doi: 10.1016/s1383-5718(97)00126-

82. Nay et al. (2012) : Naya M, Kobayashi N, Ema M, Kasamoto S, Fukumuro M, Takami 1 2 S, Nakajima M, Hayashi M, Nakanishi J. In vivo genotoxicity study of titanium dioxide 3 nanoparticles using comet assay following intratracheal instillation in rats. Regul 4 Toxicol Pharmacol. 2012 Feb; 62(1): 1-6. doi: 10.1016/j.yrtph.2011.12.002. Epub 5 2011 Dec 17 83. Osman et al. (2010) : Osman IF, Baumgartner A, Cemeli E, Fletcher JN, Anderson D. 6 7 Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. 8 Nanomedicine (Lond). 2010 Oct; 5(8): 1193-203. doi: 10.2217/nnm.10.52 9 84. Osman et al. (2018) : Osman IF, Najafzadeh M, Sharma V, Shukla RK, Jacob BK, 10 Dhawan A, Anderson D. TiO₂ NPs Induce DNA Damage in Lymphocytes from Healthy Individuals and Patients with Respiratory Diseases-An Ex Vivo/In Vitro Study. J 11 12 Nanosci Nanotechnol. 2018 Jan 1; 18(1): 544-555. doi: 10.1166/jnn.2018.15236 85. Patel et al. (2016) : Patel S, Patel P, Sachin B, Undre SR, Pandya MS and Sonal B. 13 14 DNA binding and dispersion activities of titanium dioxide nanoparticles with UV/vis 15 spectrophotometry, fluorescence spectroscopy and physicochemical analysis at physiological temperature. Journal of Molecular Liquids, Volume 213 (2016), 304-311. 16 17 doi: 10.1016/j.mollig.2015.11.002. 86. Patel et al. (2017) : Patel S, Patel P, Bakshi SR. Titanium dioxide nanoparticles: an in 18 19 vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology. 2017 Apr; 69(2): 245-263. doi: 10.1007/s10616-016-0054-3. Epub 20 21 2017 Jan 3 87. Prasad et al. (2013) : Prasad RY, Wallace K, Daniel KM, Tennant AH, Zucker RM, 22 23 Strickland J, Dreher K, Kligerman AD, Blackman CF, Demarini DM. Effect of treatment 24 media on the applomeration of titanium dioxide nanoparticles: impact on genotoxicity, 25 cellular interaction, and cell cycle. ACS Nano. 2013 Mar 26;7(3):1929-42. doi: 26 10.1021/nn302280n. Epub 2013 Feb 15 27 88. Progin et al. (2017) : Proquin H, Rodríguez-Ibarra C, Moonen CG, Urrutia Ortega IM, Briedé JJ, de Kok TM, van Loveren H, Chirino YI. Titanium dioxide food additive (E171) 28 29 induces ROS formation and genotoxicity: contribution of micro and nano-sized 30 fractions. Mutagenesis. 2017 Jan; 32(1): 139-149. doi: 10.1093/mutage/gew051. Epub 31 2016 Oct 27 32 89. Rahman et al. (2002) : Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG 33 and Schiffmann D. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect. 2002 34 35 Aug; 110(8): 797-800. doi: 10.1289/ehp.02110797 36 90. Rehn et al. (2003) : Rehn B, Seiler F, Rehn S, Bruch J and Maier M. Investigations on 37 the inflammatory and genotoxic lung effects of two types of titanium dioxide: untreated and surface treated. Toxicol Appl Pharmacol. 2003 Jun 1; 189(2): 84-95. doi: 38 39 10.1016/s0041-008x(03)00092-9 91. Relier et al. (2017) : Ch. Relier, M. Dubreuil, O Lozano Garcia, E Cordelli, J Mejia, P 40 Eleuteri, F Robidel, T Loret, F Pacchierotti, S Lucas, G Lacroix, B Trouiller. Study of 41 42 TiO₂ P25 Nanoparticles Genotoxicity on Lung, Blood, and Liver Cells in Lung Overload 43 and Non-Overload Conditions After Repeated Respiratory Exposure in Rats. Toxicol 44 Sci. 2017 Apr 1; 156(2): 527-537. doi: 10.1093/toxsci/kfx006 45 92. Rizk et al. (2017) : Rizk MZ, Ali SA, Hamed MA, El-Rigal NS, Aly HF, Salah HH. Toxicity of titanium dioxide nanoparticles: Effect of dose and time on biochemical disturbance, 46 47 oxidative stress and genotoxicity in mice. Biomed Pharmacother. 2017 Jun; 90: 466-472. doi: 10.1016/j.biopha.2017.03.089. Epub 2017 Apr 6 48 49 93. Saber et al. (2012) : Saber AT, Jensen KA, Jacobsen NR, Birkedal R, Mikkelsen L, 50 Møller P, Loft S, Wallin H, Vogel U. Inflammatory and genotoxic effects of nanoparticles 51 designed for inclusion in paints and lacquers. Nanotoxicology. 2012 Aug; 6(5): 453-71. 52 doi: 10.3109/17435390.2011.587900. Epub 2011 Jun 7 94. Sadig et al. (2012) : Sadig R, Bhalli JA, Yan J, Woodruff RS, Pearce MG, Li Y, Mustafa 53 54 T, Watanabe F, Pack LM, Biris AS, Khan QM, Chen T. Genotoxicity of TiO(2) anatase nanoparticles in B6C3F1 male mice evaluated using Pig-a and flow cytometric 55 14;745(1-2):65-72. 56 micronucleus assays. Mutat Res. 2012 Jun doi: 57 10.1016/j.mrgentox.2012.02.002

1 95. Safety assessment of titanium dioxide (E171) as a food additive . EFSA J. 2021 May 2 6;19(5): e06585. doi: 10.2903/j.efsa.2021.6585. eCollection 2021 May 3 96. Santonastaso et al. (2019) : Santonastaso M, Mottola F, Colacurci N, Iovine C, Pacifico 4 S, Cammarota M, Cesaroni F, Rocco L. In vitro genotoxic effects of titanium dioxide 5 nanoparticles (n-TiO(2)) in human sperm cells. Mol Reprod Dev. 2019 Oct; 86(10): 1369-1377. doi: 10.1002/mrd.23134. Epub 2019 Feb 25 6 7 97. Saquib et al. (2012) : Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, 8 Azam A, Musarrat J. Titanium dioxide nanoparticles induced cytotoxicity, oxidative 9 stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro. 10 2012 Mar; 26(2): 351-61. doi: 10.1016/j.tiv.2011.12.011. Epub 2011 Dec 19 11 98. Schneider et al. (2017) : Schneider T, Westermann M, Glei M. In vitro uptake and 12 toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Arch Toxicol. 2017 Nov; 91(11): 3517-3527. doi: 10.1007/s00204-017-1976-z. 13 14 Epub 2017 May 2 15 99. Setyawati et al. (2013) : Setyawati MI, Khoo PK, Eng BH, Xiong S, Zhao X, Das GK, Tan TT, Loo JS, Leong DT, Ng KW. Cytotoxic and genotoxic characterization of titanium 16 17 dioxide, gadolinium oxide, and poly(lactic-co-glycolic acid) nanoparticles in human Α. 2013 Mar; 101(3): 633-40. 18 fibroblasts. J Biomed Mater Res doi: 19 10.1002/jbm.a.34363. Epub 2012 Aug 28 Shelby and Witt (1995) : Shelby MD and Witt KL. Comparison of results from 20 100. 21 mouse bone marrow aberration and micronucleus test. Environmental and Molecular Mutagenesis, 25, 302-313 (1995). doi : 10.1002/em.2850250407 22 23 Shelby et al. (1993) : Shelby MD, Erexson GL, Hook GJ and Tice RR. Evaluation of 101. 24 a three-exposure mouse bone marrow micronucleus protocol: results with 49 25 *chemicals*. Environ Mol Mutagen. 1993; 21(2): 160-79. doi: 10.1002/em.2850210210 26 Shi et al. (2010) : Shi Y, Zhang JH, Jiang M, Zhu LH, Tan HQ and Lu B. Synergistic 102. genotoxicity caused by low concentration of titanium dioxide nanoparticles and p, p'-27 DDT in human hepatocytes. Environmental and Molecular Mutagenesis, 51, 192-204 28 29 (2010). doi: 10.1002/em.20527 30 Shi et al. (2015) Shi Z, Niu Y, Wang Q, Shi L, Guo H, Liu Y, Zhu Y, Liu S, Liu C, 103. 31 Chen X and Zhang R. Reduction of DNA damage induced by titanium dioxide 32 nanoparticles through Nrf2 in vitro and in vivo. J Hazard Mater. 2015 Nov 15;298: 33 310-9. doi: 10.1016/j.jhazmat.2015.05.043. Epub 2015 May 27 Shukla et al. (2010) : Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S and 34 104. Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in 35 36 Toxicol In Vitro. 2011 Feb; 25(1): 231-41. doi: human epidermal cells. 37 10.1016/j.tiv.2010.11.008. Epub 2010 Nov 17 Shukla et al. (2011) : Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, 38 105 39 Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in In Vitro. 2011 Feb; 25(1): 231-41. 40 epidermal cells. Toxicol human doi: 41 10.1016/j.tiv.2010.11.008. Epub 2010 Nov 17 42 106. Shukla et al. (2013) : Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, 43 Dhawan A. TiO(2) nanoparticles induce oxidative DNA damage and apoptosis in human Nanotoxicology. 44 liver cells. 2013 Feb; 7(1): 48-60. doi: 45 10.3109/17435390.2011.629747. Epub 2011 Nov 2 Shukla et al. (2014) : Shukla RK, Kumar A, Vallabani NV, Pandey AK and Dhawan 46 107. 47 A. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice. Nanomedicine (Lond), 9, 9 (2014). doi : 10.2217/nnm.13.100 48 49 Sramkova et al. (2019) : Sramkova M, Kozics K, Masanova V, Uhnakova I, Razga 108. 50 F, Nemethova V, Mazancova P, Kapka-Skrzypczak L, Kruszewski M, Novotova M, 51 Puntes VF, Gabelova A. Kidney nanotoxicity studied in human renal proximal tubule 52 epithelial cell line TH1. Mutat Res Genet Toxicol Environ Mutagen. 2019 Sep;845:403017. doi: 10.1016/j.mrgentox.2019.01.012. Epub 2019 Jan 24 53 54 109. Srivastava et al. (2013) : Srivastava RK, Rahman Q, Kashyap MP, Singh AK, Jain G, Jahan S, Lohani M, Lantow M, Pant AB. Nano-titanium dioxide induces genotoxicity 55 and apoptosis in human lung cancer cell line, A549. Hum Exp Toxicol. 2013 56 Feb; 32(2): 153-66. doi: 10.1177/0960327112462725. Epub 2012 Oct 30 57

1	110. Stoccoro <i>et al.</i> (2016) : Stoccoro A, Di Bucchianico S, Uboldi C, Coppedè F, Ponti
2	J, Placidi C, Biosi M, Orteni S, Costa AL, Migliore L. A parter of in vitro tests to evaluate
3	genotoxic and morphological neoplastic transformation potential on Balb/313 cells by
4 5	pristine and remediated titania and zirconia nanoparticles. Mutagenesis. 2016 Sep: 31(5): 511-29 doi: 10.1093/mutage/gew015 Epub 2016 Apr 7
6	111 Stoccoro at al. (2017) : Stoccoro A. Di Bucchianico S. Connòdò: E. Donti I. Uboldi
0	C. Plasi M. Delpivo C. Ortelli S. Costa Al. Migliora L. Multiple and paints to avaluate
/	C, BIOSEM, DEIPIVO C, OFTERIES, COSTA AL, MIGHOFE L. MULTIPLE ENDPOINTS TO EVALUATE
8	pristine and remediated ittanium dioxide nanoparticles genotoxicity in lung epitnelia
9	A549 cells. Toxicol Lett. 2017 Jul 5;276:48-61. doi: 10.1016/j.toxlet.2017.05.016.
10	Epub 2017 May 18
11	112. Suzuki et al. (2016) : Suzuki T, Miura N, Hojo R, Yanagiba Y, Suda M, Hasegawa
12	T, Miyagawa M, Wang RS. Genotoxicity assessment of intravenously injected titanium
13	dioxide nanoparticles in gpt delta transgenic mice . Mutat Res Genet Toxicol
14	Environ Mutagen 2016 May 802 30-7 doi: 10.1016/i.mrgentox 2016.03.007 Epub
15	2016 Mar 29
16	112 Suzuki at al. (2020) - Suzuki T. Miura N. Hojo D. Vanagiha V. Suda M. Hasogawa
10	TTS. Suzuki et al. (2020). Suzuki T, Miura N, Tiojo R, Taliagiba T, Suua M, Haseyawa
17	T, Miyagawa M, Wang RS. Correction to: Genotoxicity assessment of ittanium dioxide
18	nanoparticle accumulation of 90 days in the liver of gpt delta transgenic mice. Genes
19	Environ. 2020 Mar 3; 42: 10. doi: 10.1186/s41021-020-00151-5. eCollection 2020
20	114. Suzuki et al. (2020) : Suzuki T, Miura N, Hojo R, Yanagiba Y, Suda M, Hasegawa
21	T, Miyagawa M, Wang RS. Genotoxicity assessment of titanium dioxide nanoparticle
22	accumulation of 90 days in the liver of gpt delta transgenic mice. Genes Environ. 2020
23	Feb 10: 42: 7. doi: 10.1186/s41021-020-0146-3. eCollection 2020
24	115. Sycheva et al. (2011) : Sycheva LP. Zhurkov VS. Jurchenko VV. Daugel-Dauge
25	NO Kovalenko MA Krivtsova FK Durnev AD Investigation of genotoxic and cytotoxic
26	effects of micro- and nanosized titanium dioxide in six organs of mice in vivo. Mutat
20	$P_{\text{rec}} = 2011 \text{ Nov} = 27:726(1):9.14 \text{ doi: } 10.1016/i \text{ mrgoptov} 2011.07.010 \text{ Epub. 2011}$
27	Aug 17
28	Aug 17 11/ Tayana at al (2014) Tayana ANA Lawa II Aatumaa C. Oyama C. Ciman C. Da
29	116. Tavares et al. (2014) : Tavares AM, Louro H, Antunes S, Quarre S, Simar S, De
30	Temmerman P-J, Verleysen E, Mast J, Jensen KA, Norppa H, Nesslany F and Silva MJ.
31	Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and
32	multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro . 2014
33	Feb; 28(1): 60-9. doi: 10.1016/j.tiv.2013.06.009. Epub 2013 Jun 27.
34	117. Tomankova et al. (2015) ; Tomankova K, Horakova J, Harvanova M, Malina L,
35	Soukupova J, Hradilova S, Kejlova K, Malohlava J, Licman L, Dvorakova M, Jirova D,
36	Kolarova H. Cytotoxicity, cell uptake and microscopic analysis of titanium dioxide and
37	silver nanoparticles in vitro. Food Chem Toxicol. 2015 Aug: 82: 106-15. doi:
38	10 1016/i fct 2015 03 027 Epub 2015 Apr 3
30	118 Trouiller et al. (2009) · Trouiller B. Reliene R. Westbrook A. Solaimani P. Schiest
40	PH Titanium diavide nanonarticles induce DNA damage and genetic instability in vivo
40	in mice Cancer Des 2000 Nev 15:60(22):9794 0, dei: 10.1159/0009 5472 CAN 00
41	111 Mile. Caller Nes. 2007 Nov 13,07(22).0704-7. doi: 10.1130/0000-3472.CAN-07-
42	2490. Epub 2009 NOV 5 110 Turkez and Cavilland (2007) . Turkez Ll and Cavilland L. An in vitra bland aulture
43	119. Turkez and Geyrkogiu (2007) : Turkez H and Geyrkogiu F. An in vitro blood culture
44	for evaluating the genotoxicity of titanium dioxide: the responses of antioxidant
45	enzymes. Toxicol Ind Health. 2007 Feb; 23(1): 19-23. doi:
46	10.1177/0748233707076764
47	120. Uboldi et al. (2016) : Uboldi C, Urbán P, Gilliland D, Bajak E, Valsami-Jones E,
48	Ponti J, Rossi F. Role of the crystalline form of titanium dioxide nanoparticles: Rutile,
49	and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol In Vitro.
50	2016 Mar; 31: 137-45. doi: 10.1016/j.tiv.2015.11.005. Epub 2015 Nov 10
51	121. Valdiglesias <i>et al.</i> (2021) : Valdiglesias V, Fernández-Bertólez N, Lema-Arranz C.
52	Rodríguez-Fernández R. Pásaro F. Reis AT. Teixeira JP. Costa C. Laffon B. Salivary
53	Leucocytes as In Vitro Model to Evaluate Nanonarticle-Induced DNA Damage
54	Nanomaterials (Rasel) 2021 Jul 27:11(8):1020 doi: 10.2200/nano11001020
55	$122 \text{Valos of al} (2015) \in \mathbb{C} \text{ Dubia I: Marcos } \mathbb{D} \text{ Long form subscures to low decay of}$
55	titanium diavida papaparticlas induse call transformation, but not constants
00	inamum uloxide nanoparticles induce cell transformation, but not genoloxic damage
J/	III BEAS-28 CEIIS. INANOLOXICOLOGY. 2015;9(5):568-78. doi:
58	10.3109/17435390.2014.957252. Epub 2014 Sep 19

SCCS/1661/23

123. Vila et al. (2018) : Vila L, García-Rodríguez A, Marcos R, Hernández A. Titanium dioxide nanoparticles translocate through differentiated Caco-2 cell monolayers, without disrupting the barrier functionality or inducing genotoxic damage. J Appl Toxicol. 2018 Sep; 38(9):1195-1205. doi: 10.1002/jat.3630. Epub 2018 May 3

- 124. Wallin *et al.* (2017) : Wallin H, Kyjovska ZO, Poulsen SS, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Vogel U. *Surface modification does not influence the genotoxic and inflammatory effects of TiO₂ nanoparticles after pulmonary exposure by instillation in mice*. Mutagenesis. 2017 Jan; 32(1):47-57. doi: 10.1093/mutage/gew046. Epub 2016 Sep 22
- 125. Wang *et al.* (2007) : Wang JJ, Sanderson BJ, Wang H. *Cyto- and genotoxicity of ultrafine TiO₂ particles in cultured human lymphoblastoid cells*. Mutat Res. 2007 Apr 2;628(2):99-106. doi: 10.1016/j.mrgentox.2006.12.003. Epub 2006 Dec 15
- 126. Wang *et al.* (2011) : Wang S, Hunter LA, Arslan Z, Wilkerson MG, Wickliffe JK. *Chronic exposure to nanosized, anatase titanium dioxide is not cyto- or genotoxic to Chinese hamster ovary cells.* Environ Mol Mutagen. 2011 Oct; 52(8):614-22. doi: 10.1002/em.20660. Epub 2011 Jul 22
- 127. Wang *et al.* (2014) : Wang Y, Chen Z, Ba T, Pu J, Gu Y, Guo J, Jia G. *Genotoxic effects of oral-exposed TiO*² *nanoparticles on bone marrow cells in young rats.* Zhonghua Yu Fang Yi Xue Za Zhi. 2014 Sep; 48(9): 815-8
- 128. Warheit *et al.* (2007) : Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. *Development of a base set of toxicity tests using ultrafine TiO₂ particles as a component of nanoparticle risk management*. Toxicol Lett. 2007 Jul 10;171(3):99-110. doi: 10.1016/j.toxlet.2007.04.008. Epub 2007 Apr 27
- 129. Woodruff *et al.* (2012) : Woodruff RS, Li Y, Yan J, Bishop M, Jones MY, Watanabe F, Biris AS, Rice P, Zhou T, Chen T. *Genotoxicity evaluation of titanium dioxide nanoparticles using the Ames test and Comet assay.* J Appl Toxicol. 2012 Nov; 32(11):934-43. doi: 10.1002/jat.2781. Epub 2012 Jun 29
- 130. Xu *et al.* (2009) : Xu A, Chai Y, Nohmi T, Hei TK. *Genotoxic responses to titanium dioxide nanoparticles and fullerene in gpt delta transgenic MEF cells*. Part Fibre Toxicol. 2009 Jan 20; 6: 3. doi: 10.1186/1743-8977-6-3
- 131. Xu et al. (2013) : Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One. 2013 Aug 8;8(8):e70618. doi: 10.1371/journal.pone.0070618. eCollection 2013
- 132. Younes *et al.* (2021) : Maged Younes, Gabriele Aquilina, Laurence Castle, Karl-Heinz Engel, Paul Fowler, Maria Jose Frutos Fernandez, Peter Fürst, Ursula Gundert-Remy, Rainer Gürtler, Trine Husøy, Melania Manco, Wim Mennes, Peter Moldeus, Sabina Passamonti, Romina Shah, Ine Waalkens-Berendsen, Detlef Wölfle, Emanuela Corsini, Francesco Cubadda, Didima De Groot, Rex FitzGerald, Sara Gunnare, Arno Christian Gutleb, Jan Mast, Alicja Mortensen, Agnes Oomen, Aldert Piersma, Veronika Plichta, Beate Ulbrich, Henk Van Loveren, Diane Benford, Margherita Bignami, Claudia Bolognesi, Riccardo Crebelli, Maria Dusinska, Francesca Marcon, Elsa Nielsen, Josef Schlatter, Christiane Vleminckx, Stefania Barmaz, Maria Carfí, Consuelo Civitella, Alessandra Giarola, Ana Maria Rincon, Rositsa Serafimova, Camilla Smeraldi, Jose Tarazona, Alexandra Tard, Matthew Wright
- I33. Zijno *et al.* (2015) : Zijno A, De Angelis I, De Berardis B, Andreoli C, Russo MT,
 Pietraforte D, Scorza G, Degan P, Ponti J, Rossi F, Barone F. *Different mechanisms are involved in oxidative DNA damage and genotoxicity induction by ZnO and TiO*2 *nanoparticles in human colon carcinoma cells*. Toxicol *In Vitro*. 2015 Oct; 29(7): 150312. doi: 10.1016/j.tiv.2015.06.009. Epub 2015 Jun 13

Annex W. Comparison of approaches to evaluation of the genotoxicity of TiO_2 (shaded rows show discrepancies) used by EFSA (2021), Kirkland et al. (2022), and 1

2

- 3 the SCCS
- 4

Parameter	EFSA FAF Panel approach 2021	Kirkland et al., 2022	SCCS
LI TERATURE SEARC	CH TERMS		
Search period	The last search on 2020-12-30	Not clear	The last search on 2023-04-16
TiO2 forms considered	Included:	Included:	Included:
	Food grade E171 pigmentary grade microparticles nanoparticles	Food grade E171 pigmentary grade microparticles nanoparticles	Microsized: - food-grade (E171, anatase/rutile) - pigment grade: non- coated/coated - other: non-coated/coated
	analase with diameter less than 30 nm was excluded (because less than 1% of primary particles detected in pristine samples of food-grade TiO2 as well as food products with TiO2 on the European market were smaller than 30 nm (Verleysen et al. 2020; 2021)		Nanoparticles: - anatase: non-coated/coated - rutile: non-coated/coated
Studies performed with TiO2	Included	Included	Included
nanoparticles	Opinion largely based on studies that used TiO2-NPs (of which many used TiO2-NPs < 30 nm) to characterize the genotoxic potential of TiO2 added to food.		
Studies performed only with coated TiO2	Excluded (at TiAb stage)	Included (if endpoint and test system had default "Moderate" or "High" weight)	Included
Studies performed only with TiO2 nanofibres, nanocomposites or nanotubes, titanates (EaTiO2	Excluded (at TiAb stage)	Included (if endpoint and test system had default "Moderate" or "High" weight)	Excluded
(Fefio3, H4TiO4)			
studies using sonication of TiO2 particles before exposure	Included	Included	Included
EVALUATI ON CRITE	ERIA		
Reviews, editorials, letters to the editor etc.	Excluded (at TiAb stage)	Excluded (but if original data included in a review paper was found, this was included and both references cited)	Excluded (but if original data included in a review paper was found, this was included and both references cited)
Abstract only	Excluded (at TiAb stage), unless there was sufficient information provided	Included (if endpoint and test system had default "Moderate" or "High" weight)	Excluded (at TiAb stage)
Cooring for	Klimiach (1007) civing 5	TayD Taol (Cobpoider et al., 2000)	Klimioch (1007) di lar Electer l
reliability	categories	giving 3 Klimisch categories	
Nano considerations	4 categories from 1 (highest) to 4 (lowest) based on study design (dispersion and/or confirmation of internal exposure)	Nano score from 0 (lowest) to 10 (highest) identified based on whether characterisation of physico-chemical properties had been performed according to Card & Magnuson (2010)	l'est article (source) and sample preparation considered but no scoring system used
Relevance categories for endpoints	3 categories (High, Limited or Low)	4 default weights (High, Moderate, Low or Negligible) but final weights could also be Moderate-high or Low- moderate	3 categories (High, Limited or Low)
NON-BI OLOGI CAL STUDI ES	Excluded (at TiAb stage)	Excluded (only studies with a conventional genotoxic endpoint were reviewed)	Excluded (at TiAb stage)

STUDIES			
Studies on non- mammal species (e.g., fish, <i>Drosophila</i> , bees) and plants)	Excluded (at TiAb stage)	Excluded	Excluded (at TiAb stage)
STUDIES ON MAMMALS			
<i>In vitro</i> and <i>in vivo</i> studies	Included	Included	Included
Gut microbiota studies	Included	Excluded	Excluded
Toxicokinetic studies	Included	Included (if genotoxicity data in the same publication)	Included (if genotoxicity data in the same publication)
Local effects (e.g., inflammation, immune dysregulation, proliferation)	Included	Included (if genotoxicity data in the same publication)	Included (if genotoxicity data in the same publication)
Apical effects, general toxicity	Included	Included (if genotoxicity data in the same publication)	Included (if genotoxicity data in the same publication)
Mechanisms of action (e.g., oxidative stress)	Included	Included (if genotoxicity data in the same publication)	Included (if genotoxicity data in the same publication)
Test/measured endpoints	Different recognized genotoxicity endpoints	Only those endpoints and test systems with default "Moderate" or "High" weight were included according to the publication by Brusick et al 2016.	Different recognized genotoxicity endpoints
Information on study design (e.g., type of cells/animal species, doses tested, duration of studies etc.)	Included	Included	Included
IN VITRO ENDPOIN			· · · · · · · · · · · · · · · · · · ·
Cytotoxicity evaluation <i>in vitro</i>	A low weight was given to studies in which no parallel toxicity evaluation was performed or an inappropriate toxicity test had been used.	Both negative and positive studies in which there was no concurrent measure of cytotoxicity, or an inappropriate measure of cytotoxicity was used, were considered unreliable and weight was downgraded.	Cytotoxicity assessed and its influence in each study considered. A low weight was given to studies in which no parallel toxicity evaluation was performed or an inappropriate toxicity test had been used.
Exposure of cells in vitro	More weight was given to study designs including observations confirming that cells were exposed to the nanoparticles. Negative results from studies where the cell uptake was not demonstrated were considered as inconclusive (to which only low relevance was assigned).	Negative results in mammalian cells were accepted, even if cellular exposure was not demonstrated, as long as treatment was for at least 1 cell cycle. Relevance (weight) of the study was then determined by other design and quality factors.	Negative results in mammalian cells were accepted only if different design and quality factors were acceptable (e.g. treatment was for at least 1 cell cycle).
Concentrations tested <i>in vitro</i>	A low weight was given to studies performed using only excessively high concentrations <i>i.e.</i> higher than 100 µg/ml (because of aggregation/agglomeration and precipitation of the tested nanoparticles at high concentration).	The relevance (weight) of the study was not changed just because high concentrations were tested, but agglomeration/aggregation was noted if it was measured and reported. Several studies with testing to concentrations >100 µg/mL retained Moderate weight.	The relevance of the study was not changed just because high concentrations were tested. Agglomeration/aggregation status was considered where possible. Several studies with testing to concentrations >100 µg/mL retained Limited relevance.
Ames test	Bacterial reverse mutation (Ames) assay is not considered suitable for investigation of gene mutations (due to limitations in the penetration of particles through the bacterial cell wall and the lack of internalisation in bacteria), and therefore assigned low relevance.	All Ames studies reviewed were given only Low or Low- moderate weight for the reasons given, whereas mammalian cell studies could retain Moderate weight if otherwise well-conducted.	Bacterial reverse mutation (Ames) assay is not considered suitable for investigation of gene mutations (due to limitations in the penetration of particles through the bacterial cell wall and the lack of internalisation in bacteria), and therefore assigned low relevance and not analysed.

Gene mutations in mammalian cells <i>in</i>	High relevance	Moderate default weight	High relevance
vitro In vitro micronucleus test	Higher weight was given to studies with an extended treatment, covering at least one cell cycle. A low weight was given to studies in which cytochalasin B and nanoparticles were simultaneously added. A higher weight was given to studies in which the uptake capability of the selected cell lines was demonstrated. A low weight was given to studies based on cell lines with high background micronuclei frequency (higher than 2%).	Studies with an extended treatment, covering at least one cell cycle (either without cytochalasin B or before cytochalasin B was added) were more likely to retain Moderate weight. Studies with shorter treatments and no demonstration of cellular uptake, or where treatment was done in the presence of cytochalasin B, were considered unreliable and weight was downgraded. The uptake capability of the cells was not considered since there are few comparative data to make such judgements. The final weight was assessed on multiple design and quality factors. The weight of a study was not influenced by whether the background MN frequency was high, but on whether the control MN frequencies were within pre-agreed normal ranges (see Appendix 3 (ii)). The same approach was applied to <i>in</i> <i>vitro</i> CA and gene mutation studies (not discussed by EESA)	Higher weight was given to studies with an extended treatment, covering at least one cell cycle. A low weight was given to studies in which cytochalasin B and nanoparticles were simultaneously added. A higher weight was given to studies in which the uptake capability of the selected cell lines was demonstrated. A low weight was given to studies based on cell lines with high background micronuclei frequency (higher than 2%).
Structural and numerical chromosomal aberrations <i>in vitro</i>	High relevance	Moderate default weight	High relevance
<i>In vitro</i> comet assay	High relevance Evaluation of the relevance of the test design included identification of possible interferences (e.g., interaction of nanoparticles with dye and lysis condition) within the comet assay at the applied test conditions.	In vitro comet assays were not reviewed (not included) because, as indicator tests (as specified in OECD guidance document; OECD, 2015a), they are less relevant in terms of genotoxic or carcinogenic risk.	High relevance Evaluation of the relevance of the test design included identification of possible interferences (e.g., interaction of nanoparticles with dye and lysis condition) within the comet assay at the applied test conditions.
Other genotoxic endpoints (SCE, UDS, γH2AX, direct DNA binding etc.)	Lower relevance (but included)	Low or Negligible default weight (and therefore excluded)	Lower relevance (but included)
IN VIVO ENDPOIN	rs		
In vivo studies Routes of exposure	Because TiO2 needs to be assessed as a food additive, administration by non-oral routes of exposure was considered of limited or low relevance, depending on the reliability of the study and other aspects such as information on the level of dispersion. Included: ingestion (feed, drinking water, gavage) intravenous, intraperitoneal injection Excluded: dermal contact injection (subcutaneous) inhalation dental bone implants	Of the non-oral routes, IP dosing was considered less physiologically relevant. However, IV studies were considered particularly relevant since exposure of the target tissue (e.g., bone marrow, liver) was more likely than by oral dosing. Included: ingestion (feed, drinking water, gavage) intravenous, intraperitoneal injection Excluded: dermal contact injection (subcutaneous) inhalation	Of the non-oral routes, IP dosing was considered less physiologically relevant. However, studies with inhalation, dermal and intravenous exposure were considered relevant. Included: ingestion (feed, drinking water, gavage) intravenous, intraperitoneal injection inhalation dermal contact Excluded: subcutaneous injection dental bone implants
Gene mutations <i>in</i>	High relevance	High default weight	High relevance
Structural and numerical chromosomal aberrations <i>in vivo</i>	High relevance	High default weight	High relevance
comet assay in vivo	High relevance	woderate weight	nigh relevance

Scientific Advice on Titanium dioxide (TiO₂) (CAS/EC numbers 13463-67-7/236-675-5, 1317-70-0/215-280- 1, 1317-80-2/215-282-2)

FINAL CONCLUSIONS ON GENOTOXICITY	Concerning the genotoxicity studies, combining the available lines of evidence, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles – such as crystalline form, size of constituent particles, shape and agglomeration state – and the outcome of in vitro or in vivo genotoxicity assays. The Panel concluded that several modes of action (MOA) may operate in parallel and the relative contributions of the different molecular mechanisms resulting in the genotoxicity of TiO2 particles are unknown. Based on the available data, no conclusion could	The conclusions from the 34 robust datasets reviewed, that achieved "Moderate" or higher weight, do not support a direct DNA-damaging mechanism for TiO2. However, carefully designed studies of apical endpoints (gene mutation, MN and/or CA, in vitro and in vivo), following OECD recommended methods, performed with well characterised preparations of TiO2, would allow firmer conclusions to be reached.	
	action (MOA) may operate in parallel and the relative contributions of the different molecular mechanisms resulting in the genotoxicity of TiO2 particles are unknown. Based on the available data, no conclusion could be drawn as to whether the genotoxicity of TiO2 particles is mediated by a mode (s) of action with a threshold(s). Therefore, the Panel concluded that a concern for genotoxicity of TiO2 particles cannot be ruled out.		

TiAb = title and abstract (initial stage of literature screening) Table adapted according to Kirkland et al., Regulatory Toxicology and Pharmacology 136 (2022) 105263; <u>https://doi.org/10.1016/j.yrtph.2022.105263</u>

- 1 Annex X. SCCS and EFSA analysis of studies on TiO₂ genotoxicity
- 2
- 3 The Annex is a separate MS Excel file linked to the Scientific Advice.