# **Complex Systems and Networks**

Prof. Yamir Moreno

Complex Systems and Networks Lab (COSNET), Institute for Biocomputation and Physics of Complex Systems & Department of Theoretical Physics University of Zaragoza, Spain.



Brussels, June 23, 2014



#### Biological Network Mtb

#### **Online Social Network**





#### Semantic Network



#### Multiscale-diseases Network (TB-HIV)



### **GENE NETWORK – DISEASE NETWORK**



disease genome Dis AR ATM BRCA1 BRCA2 CDH1 GARS HEXB KRAS LMNA MSH2 PIK3CA TP53

MAD1L:

RAD54L

VAPB

CHEK2

BSCL2

ALS:

BRIP1

Disease Gene Network (DGN)



Goh, Cusick, Valle, Childs, Vidal & Barabási, PNAS (2007)



- Networks are ubiquitous in nature and everything around us is connected.

- Networks are made up of **nodes** and **links** 

- The **connectivity or degree** of a particular node is the number of other nodes it is linked to.

- There are 2 types of networks:

Homogeneous Networks & Heterogeneous Networks

**Components**: nodes, vertices

**Interactions:** links, edges

System: Network, graph



Networks and their corresponding graphs. (A) **Random network** shows a normal distribution and (B) **Scale-free network** shows a power-law distribution when their number or fraction of nodes with different number of links are plotted.

### But why is it important?



Can we predict the evolution of an epidemic outbreak as we do in weather forecasting?

### Why is it difficult? What has changed?



Spread of the Black Death. Spread by merchants and travelers, the plague killed more than a third of Europe's population within five years.







# What do we need?





Citizen science and volunteering Influenzanet

## Citizen Science and volunteering





# Results: H1N1



#### **BUSINESS TIES IN US BIOTECH-INDUSTRY**

![](_page_14_Figure_1.jpeg)

# R&D and Organizational Networks

Scientific Production

Centrality

Scientific Impact

![](_page_15_Figure_4.jpeg)

**Collaboration Network @BIFI, 2003-2011.** Nodes represent researchers from BIFI. Links are established whenever two authors have published a paper together. The size of the nodes is proportional to: the total number of papers in the period analyzed (scientific production); the betweenness centrality of the nodes -i.e., how often a node is in the shortest paths between other vertices- (centrality); and the average number of citations per paper (scientific impact). Colors stand for communities as given by a community detection algorithm. Source: ISI WoK. © J. Borge-Holthoefer & Y. Moreno.

## R&D and Organizational Networks

![](_page_16_Figure_1.jpeg)

**Evolution of the Collaboration Network @BIFI.** Nodes represent researchers from BIFI. Links are established whenever two authors have published a paper together. The size of the nodes is proportional to the total number of papers in the period analyzed. © J. Borge-Holthoefer & Y. Moreno

#### Evolution of the scientific collaboration network, @BIFI

![](_page_17_Figure_1.jpeg)

### **Main Conclusions:**

- Complex systems cannot be fully understood by studying only their isolated constituents. "The whole is more than the sum of its parts"

- Understanding and modeling the structure of complex networks would lead to a better cottoning on their dynamical and functional behavior.

- To test the innovative tools and methods, and apply new methodologies and procedures in the analysis and design of complex systems.

- The findings and results obtained will deliver new insights in different scientific fields such as: Epidemiology, communication technologies, Biology at all levels (molecular, cellular) etc.

- It is important to foster a community of multidisciplinary scientists, who master the discipline of complex systems and use it for their daily research.

- Identify the best course of action to transfer the acquired knowledge from basic sciences to the application level. This is our goal.

## **Conclusions and Perspectives**

- Complex systems cannot be fully understood by studying only their isolated constituents. "The whole is more than the sum of its parts"

- Understanding and modeling the structure of complex networks would lead to a better cottoning on their dynamical and functional behavior.

- This would also lead to new methodologies and procedures for the analysis and design of complex networked systems.

- It is important to foster a community of multidisciplinary scientists, who master the discipline of complex systems and use it for their daily research.

- Need of identifying the best course of action to transfer the acquired knowledge from basic sciences to the application level.