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Humans have only about th rﬁe times as many genes as the
Y,
so human complexity seems unlikely to come from a sheer quantity of genes.
Rather, some scientists suggest, each human has a network with different parts
like genes, proteins and groups
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In the generic networks shown, the points

represent the elements of each organism’s
genetic network, and the dotted lines show the inter- 2
actions between them. Humans have many more ele- @

Sources: Dr. Albert-Laszi6 Barabdsl, University of Notre Dame; Sclence; Celera Genomics

Complex Systems:

They are constituted by
many non-identical elements (nodes)

connected by diverse interactions
(links).

NETWORKS

Steve Duenes/The New York Times
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GENE NETWORK - DISEASE NETWORK

DISEASOME

disease phenome disease genome

Disease Gene Network

Human Disease Network
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NETWORK
THEORY

- Networks are ubiquitous in nature and
everything around us is connected.

- Networks are made up of nodes and links
- The connectivity or degree of a particular
node is the number of other nodes it is
linked to.

- There are 2 types of networks:

Homogeneous Networks &
Heterogeneous Networks

Components: nodes, vertices
Interactions: links, edges

System: Network, graph
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Networks and their corresponding graphs. (A) Random network shows a normal
distribution and (B) Scale-free network shows a power-law distribution when their
number or fraction of nodes with different number of links are plotted.



But why is it important?
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-~} South East Asia

Can we predict the evolution of an epidemic outbreak as we
do in weather forecasting?



Why is it difficult? What has changed?
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0 500 Miles

15 Spread of the Black Death. Spread by merchants and travelers, the plague killed more than a third of Europe’s population within
five years.

H1N1/2009
Invasion tree

Black Death, Europe,
Sicily, 1347

before March 31
April 1 - April 15

= April 16 - April 30

— May 1 - May 15







Infaction

= Epidemic Marketplace Platform
= Epidemic Modelling Platform

population layer
-- census areas

airports

short range mobility layer
- commuting

What do we need?

long range mobility layer
- air travel




Citizen science and volunteering

Influenzanet
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Citizen Science and volunteering
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Iceland’
Ireland’
United Kingdom'
Belgium'
Bulgaria’
Italy '
Norway'
Finland*
Sweden'
Netherlands’
Portugal '
Spain’
Germany *
Denmark’
Slovakia'
Slovenia’
Moldova '
Austria’
Poland'
Croatia’
Lithuania'
Latvia'
Greece '
Albania *
Romania’
Czech Republic’
Estonia’

Results: HTNT
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BUSINESS TIES IN US BIOTECH-INDUSTRY
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R&D and Organizational Networks

Scientific Production

Centrality
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Collaboration Network @BIFI, 2003-2011. Nodes represent researchers from BIFI. Links are established whenever two authors have published a paper
together. The size of the nodes is proportional to: the total number of papers in the period analyzed (scientific production); the betweenness centrality
of the nodes -i.e., how often a node is in the shortest paths between other vertices- (centrality); and the average number of citations per paper (scientific
impact). Colors stand for communities as given by a community detection algorithm. Source: ISI WoK. © J. Borge-Holthoefer & Y. Moreno.



R&D and Organizational Networks

pavANSA

N
/i p\z\\{'\\k\\

W\

/
T,
i

Evolution of the Collaboration Network @BIFI. Nodes represent researchers from BIFI. Links are established
whenever two authors have published a paper together. The size of the nodes is proportional to the total number of
papers in the period analyzed. © J. Borge-Holthoefer & Y. Moreno



Evolution of the scientific collaboration network, @BIFI
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Main Conclusions:

- Complex systems cannot be fully understood by studying only their
isolated constituents. “The whole is more than the sum of its parts”

- Understanding and modeling the structure of complex networks would
lead to a better cottoning on their dynamical and functional behavior.

- To test the innovative tools and methods, and apply new methodologies
and procedures in the analysis and design of complex systems.

- The findings and results obtained will deliver new insights in different
scientific fields such as: Epidemiology, communication technologies,
Biology at all levels (molecular, cellular) etc.

- It is important to foster a community of multidisciplinary scientists, who
master the discipline of complex systems and use it for their daily research.

- Identify the best course of action to transfer the acquired knowledge from
basic sciences to the application level. This is our goal.



Conclusions and Perspectives

- Complex systems cannot be fully understood by studying only their isolated
constituents. “The whole is more than the sum of its parts”

- Understanding and modeling the structure of complex networks would lead to a
better cottoning on their dynamical and functional behavior.

- This would also lead to new methodologies and procedures for the analysis and
design of complex networked systems.

- It is important to foster a community of multidisciplinary scientists, who master the
discipline of complex systems and use it for their daily research.

- Need of identifying the best course of action to transfer the acquired knowledge
from basic sciences to the application level.



