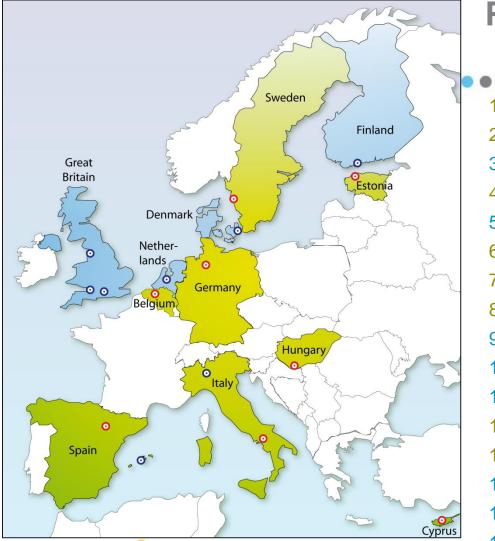


I.Family: key results and suggestions for future priorities in research on childhood obesity

Wolfgang Ahrens Leibniz Institute for Prevention Research and Epidemiology – BIPS

- on behalf of the I.Family consortium -

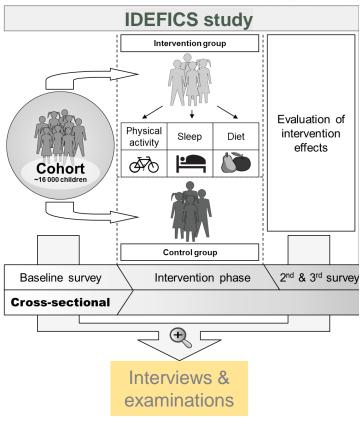

European Commission – Meeting of the High Level Group on Nutrition and Physical Activity,

Brussels, November 23rd 2016

ifam

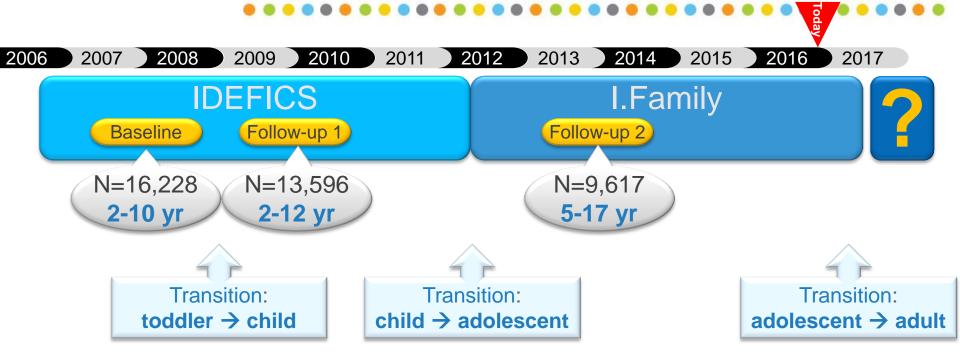
Partners

1. Strovolos, Cyprus


- 2. Ghent, Belgium
- 3. Copenhagen, Denmark
- 4. Tallin, Estonia
- 5. Helsinki, Finland
- 6. Bremen, Germany
- 7. Pécs, Hungary
- 8. Avellino, Italy
- 9. Milan, Italy
- 10. Utrecht, Netherlands
- 11. Palma de Mallorca, Spain
- 12. Zaragoza, Spain
- 13. Gothenburg, Sweden
- 14. Bristol, United Kingdom
- 15. Lancaster, United Kingdom
- 16. Andover, United Kingdom

Longitudinal design of I.Family and concatenation with IDEFICS

Ahrens W et al. Cohort Profile: The transition from childhood to adolescence in European children – how I.Family extends the IDEFICS cohort. Int J Epifdemiol 2016. DOI: 10.1093/ije/dyw317



Timeline of recruitment and follow-up

IDEFICS – I.Family cohort

Endpoints: Food choice, eating behaviour, health indicators (body composition, metabolic profile, bone health)

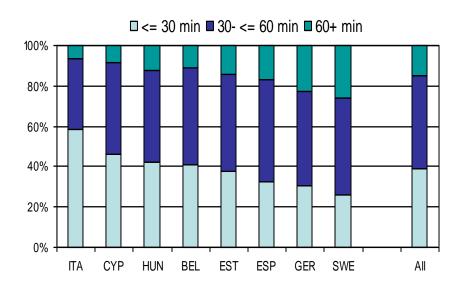
Funded by the EC, FP 7, Project No. 266044 – Building on Ko idefics

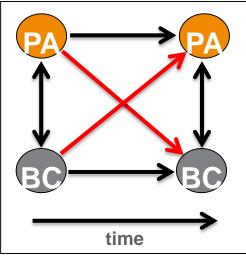
MAIN RESULTS

Dietary behaviours

- Children with low socioeconomic background

 Persistently unhealthier dietary profiles over a 2-year period²⁹
- Dietary patterns rich in vegetables, wholemeal cereals and fruit and low in animal products
 → lower risk of OW/obesity
 - → less 2-year weight gain^{27,28}

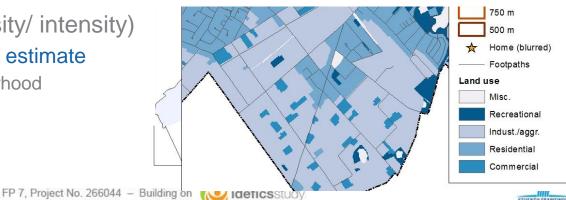



Physical activity and the built environment

 Few children meet physical activity (PA) guidelines (60min MVPA/ day)³²

- Bidirectional longitudinal association between PA and weight status:
 - Higher fat mass/ fat mass increases
 → subsequent decline in MVPA
 - Just 10 minutes more MVPA per day
 → prevent excess weight gain in children

PA = Physical Activity; BC = Body Composition


Built environment: moveability index

8

- Neighbourhood
 - Individual place of residence
 - Network dependent environment
- Walkability measures(Freeman et al, 2013)
 - Population density
 - Land use mix
 - Connectivity (street crossings)
 - Availability of public transport
- Extension (Buck et al., 2011)
 - Public open spaces
- Availability measure (density/ intensity)
 - Anisotrope kernel density estimate
 - Mean intensity per neighbourhood (Buck et al., 2015a)

- PA-friendliness of the built environment (=moveability)
 more MVPA of 596 primary school children in the German study region³⁴
- Playground density and density of playgrounds and parks combined
 - → positive effects on MVPA³⁵

Sleep

- Short sleep duration

 → being overweight particularly in primary school children³⁶
- Inverse relationship between sleep duration and BMI
 - → mainly explained by the inverse association between sleep duration & fat mass
 - Insulin may explain part of this association, in particular in heavier children (at the upper tail of the BMI distribution)³⁷

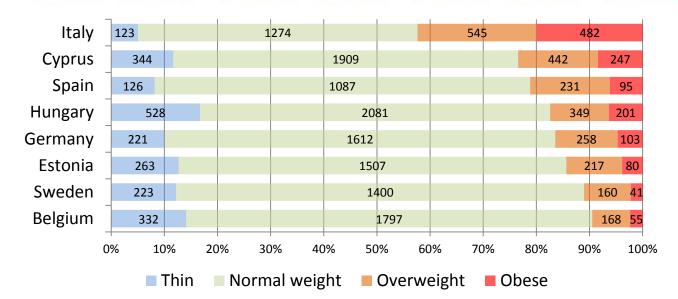
Media consumption

- One-third of children exceeded screen time recommendations (max. 2h/day).³⁸ Children exceeding sedentary guidelines
 → increased risk of high blood pressure³⁹
- Watching TV during meals, having a TV in the children's bedroom and watching TV more than 1h/day
 → being OW/obese⁴⁰
- TV exposure

→ preference for sugary/fatty foods

→ followed by higher consumption of sugarsweetened beverages

 \rightarrow increased the risk of OW/obesity⁴¹



Metabolic health – risk prediction models

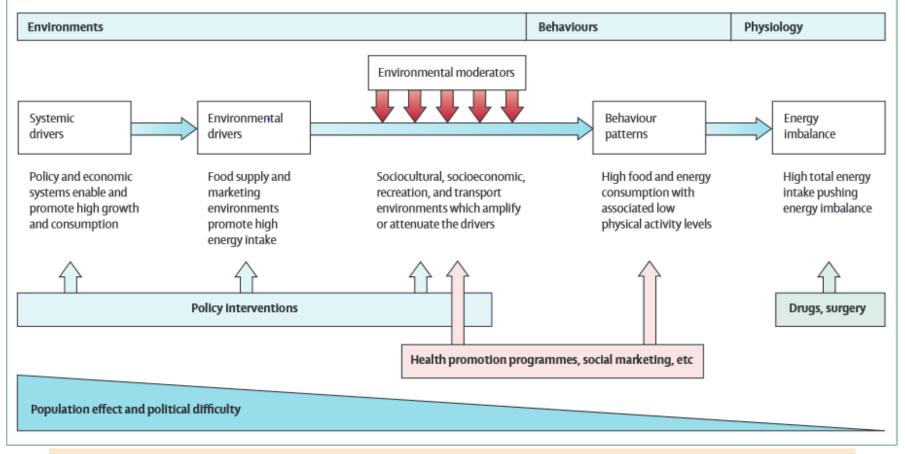
 To identify sensitive periods affecting health we analysed body mass index (BMI) trajectories during infancy/childhood and later metabolic risk.⁴⁸ Starting from birth, rapid BMI growth, especially between 9 months to <6 years, increased later metabolic risk in children

SUGGESTIONS FOR FUTURE RESEARCH ON CHILDHOOD OBESITY

Funded by the EC, FP 7, Project No. 266044 – Building on idefics

1. Life-course approach: **longitudinal studies**

- The causes of obesity can only be understood in a life-course perspective
 - Identification of sensitive periods (including intrauterine life) ۲
 - Accumulation of risks over time
 - Analysis of weight trajectories, rather than single points in time ۲
 - Development of risk prediction models \rightarrow selective early intervention ۲
- Birth cohort followed from prenatal periods to adulthood
- Funding for further follow-up of existing children cohorts
- Use of **novel technology** to **monitor & influence** behaviour
 - mHealth (smart phones, accelerometers, ...)



System levels of factors influencing the development of obesity

Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, Gortmaker SL. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011 Aug 27;378(9793):804-14.

SEVENTH FRAM

Funded by the EC, FP 7, Project No. 266044 - Building on Key idefics

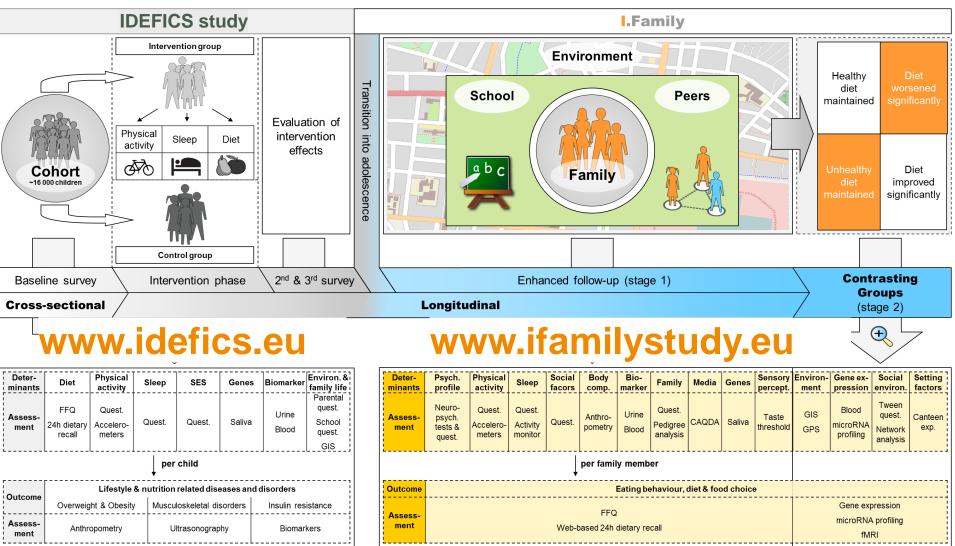
14

2. Environmental determinants of health behaviours

- To prevent obesity health-related behaviours need to be changed in a favourable direction
- Health behaviours are shaped by the **obesogenic environment** ۲
 - Built/ physical environment ٠
 - Social & cultural environment ٠
 - Political & regulatory environment ٠
- Our **understanding of determinants** of diet, physical activity and sedentary behaviours is limited (\rightarrow DEDIPAC)
- Future research should focus on the forces driving our health behaviours

3. Effectiveness of policy interventions

- Assess evidence from existing policy interventions (e.g. sugar tax) & learn from other public health domains (e.g. smoking ban, seat belts)
- Monitor & assess accountability of governments & the private sector to create healthy food environments
 - Assess implementation of good practice nutrition policies by governments to reduce child obesity
 - Assess comprehensiveness, strength & performance of commitments to reduce child obesity
- Assess choice architecture & behavioural public policy
 - Childhood obesity nudges
- Harmonised monitoring system of childhood obesity & related behaviours across Europe → Funding for methods platform



Thank you!

- Although the IDEFICS intervention was developed according to state-ofthe-art knowledge, only weak effects were observed after 2 years of follow-up⁵⁵
- However, beneficial effects after 2 years in children who were already overweight at baseline⁵⁶
- Moreover, 6 years after the intervention phase parents and children who were exposed to the IDEFICS intervention had lower propensities to consume sugar than control families⁵⁷

